On Embeddings into Toric Prevarieties

Jürgen Hausen
Stefan Schröer

Konstanzer Schriften in Mathematik und Informatik
Nr. 93, Juli 1999
ISSN 1430–3558
On Embeddings into Toric Prevarieties

J. Hausen and S. Schröer

Abstract

We give examples of proper normal surfaces that are not embeddable into simplicial toric prevarieties nor toric prevarieties of affine intersection.

Introduction

This note is concerned with embeddability and non-embeddability into toric prevarieties. Wlodarczyk [12] has shown that a normal variety Y admits a closed embedding into a toric variety X if and only if every pair $y_1, y_2 \in Y$ allows a common affine open neighbourhood. If one drops the latter condition there still exists a closed embedding into some toric prevariety X. This means that X may be non-separated.

The above embedding result has the following refinement: Supposing that Y is \mathbb{Q}-factorial one can choose X to be simplicial and of affine intersection. In other words, X is \mathbb{Q}-factorial and the intersection of any two affine open subsets of X is again affine (see [12] and [8]). Embeddings into toric prevarieties of affine intersection are of particular interest: For example, they can be used to obtain global resolutions of coherent sheaves on Y. Moreover, they play an important role in the construction of categorical quotients for subtorus actions on toric varieties (see [8] and [1]).

The purpose of this note is to find out whether or not every normal variety Y can be embedded into a toric prevariety X which is simplicial or of affine intersection. Unfortunately, the answer is negative: We provide examples of normal surfaces that admit neither embeddings into toric prevarieties of affine intersection nor into simplicial ones.

Together with Wlodarczyk’s embedding result, these counterexamples imply that there are toric prevarieties of affine intersection that cannot be embedded into simplicial toric prevarieties of affine intersection. An analogous statement is easily seen to hold in the category of toric varieties, since there are proper toric varieties with trivial Picard group (see for example [5]).

1 Non-projective proper surfaces

Here we briefly discuss some properties of proper normal surfaces which are non-projective. First, we have to fix notation. Throughout, we will work over an uncountable algebraically closed ground field k. The word prevariety refers to an integral k-scheme of finite type. A variety is a separated prevariety, and a surface is a 2-dimensional variety. By a toric
prevariety we mean a prevariety X arising from a system of fans in some lattice N in the sense of [2]. For $k = \mathbb{C}$ this notion precisely yields the normal prevarieties X endowed with an effective regular action of a torus T with an open orbit.

The following facts are well known (compare [9], theorem 4.2, and [12]):

1.1 Proposition. Let S be a normal surface and denote by $s_1, \ldots, s_n \in S$ its non-\mathbb{Q}-factorial singularities.

i) The surface S is quasi-projective if and only if the points s_1, \ldots, s_n have a common affine neighbourhood.

ii) The surface S admits a closed embedding into a toric variety if and only if every pair s_i, s_j lies in a common affine neighbourhood.

In view of these statements, the simplest possible candidate for a normal variety without closed embeddings into toric prevarieties of affine intersection is a normal surface having precisely two non-\mathbb{Q}-factorial singularities $s_1, s_2 \in S$. In fact we will work with surfaces of this type.

Let S be a proper normal surface. There is a projective reduction $r: S \to S^{\text{proj}}$ of S, which means that the morphism r is universal with respect to morphisms to projective schemes (see [3]). Since $\mathcal{O}_{S^{\text{proj}}} \to r_* (\mathcal{O}_S)$ is necessarily bijective, the projective scheme S^{proj} is normal and the fibres of r are connected.

If S^{proj} is a curve, any Weil divisor E on S has a decomposition

$$E = E^{\text{vert}} + E^{\text{hor}}$$

into the part E^{vert} consisting of those prime cycles of E that are contained in the fibres of r and the part E^{hor} which consists of the remaining prime cycles. A Weil divisor E on S is called vertical if $E = E^{\text{vert}}$, and it is called horizontal if $E = E^{\text{hor}}$.

For a Weil divisor D on a variety Y and $y \in Y$, we denote by D_y the Weil divisor obtained from D by omitting all prime cycles not containing the point y. The following statement will be crucial for non-embeddability:

1.2 Lemma. Let S be a proper normal surface with precisely two non-\mathbb{Q}-factorial singularities $s_1, s_2 \in S$. Assume that S^{proj} is a curve and that every vertical Weil divisor on S is \mathbb{Q}-Cartier. If E is a \mathbb{Q}-Cartier divisor on S with $E_{s_2} \geq 0$ and $E^{\text{hor}} \neq 0$, then $E^{\text{hor}}_{s_1}$ is not effective.

Proof. Assume that $E^{\text{hor}}_{s_1} \geq 0$ holds. Since E and E^{vert} are \mathbb{Q}-Cartier, so is their difference E^{hor}. Consider the decomposition

$$E^{\text{hor}} = E^{\text{hor}}_+ + E^{\text{hor}}_-$$

into positive and negative parts. Since s_1 and s_2 are not contained in E^{hor}_-, the surface S is \mathbb{Q}-factorial near E^{hor}_+. So E^{hor}_- is \mathbb{Q}-Cartier. Hence E^{hor}_+ is also \mathbb{Q}-Cartier. As $E^{\text{hor}} \neq 0$, there must be at least one horizontal Cartier divisor $C \subset S$.
Consider the line bundle $L = \mathcal{O}_S(C)$. Obviously, L is \mathbb{P}^n-generated on $S \setminus C$. Since $C \to \mathbb{P}^n$ is finite, we can apply [11], Corollary 2.2, and deduce that $L^{\otimes n}$ is \mathbb{P}^n-generated for some $n > 0$. Consequently, the homogeneous spectrum

$$S' = \text{Proj}(f_* \text{Sym}(L))$$

is a projective \mathbb{P}^n-scheme, hence projective. But L is ample on the generic fibre of $r: S \to \mathbb{P}^n$, contradicting the universal property of the projective reduction. □

1.3 Remark. Surfaces as above really exist, compare [10], 2.5. Here the assumption that the ground field k is uncountable comes in.

We will also make use of the following elementary fact:

1.4 Lemma. Let $f: Y \to X$ be a morphism of integral normal prevarieties. Given a Cartier divisor D on X such that the counterimage $E := f^*(D)$ exists as Cartier divisor. Decompose $D = \sum \lambda_i D_i$ and $E = \sum \mu_j E_j$ into prime cycles. If there is a component E_j with $\mu_j < 0$, then there is a component D_i with $\lambda_i < 0$ and $f(E_j) \subset D_i$.

Proof. Assume there is no such D_i. Decompose $D = D_+ - D_-$ into positive and negative parts. Then we have $E_j \not\subset f^{-1}(D_-)$. Hence the restriction of E to $Y \setminus f^{-1}(D_-)$ is not effective. On the other hand, the restriction of D to $X \setminus D_-$ is effective, contradiction. □

2 Non-embeddability

Recall that a scheme X is separated if the diagonal morphism $\Delta: X \to X \times X$ is a closed embedding. A weaker condition is that Δ is affine. In this situation we call X to be of affine intersection. To check this property it suffices to find an open affine covering $X = \bigcup_i X_i$ such that each intersection $X_i \cap X_j$ is affine. Clearly, if X is of affine intersection, every subscheme is so.

2.1 Theorem. Let S be a proper normal surface with precisely two non-\mathbb{Q}-factorial singularities $s_1, s_2 \in S$. Assume that the projective reduction \mathbb{P}^n is a curve and that all irreducible components of the fibres of $r: S \to \mathbb{P}^n$ are \mathbb{Q}-Cartier. Let $f: S \to X$ be a morphism to a toric prevariety X. If X is simplicial or of affine intersection, then there is a morphism $\widehat{f}: \mathbb{P}^n \to X$ with $f = \widehat{f} \circ r$.

Let us record the following evident

2.2 Corollary. The surface S is neither embeddable into a toric prevariety of affine intersection nor into a simplicial toric prevariety. □

Proof of theorem 2.1. First we treat the case that X is of affine intersection. Let T denote the acting torus of X. There is a unique T-orbit $B \subset X$ such that $f(S) \subset \overline{B}$ holds. Note that \overline{B} is again a toric prevariety of affine intersection. Replacing X by \overline{B} we may assume that $f(S)$ hits the open T-orbit.
Set $x_i := f(s_1)$ and $x_2 := f(s_2)$. For $i = 1, 2$ let $X_i \subset X$ be the affine T-stable neighborhoods containing Tx_i as closed orbits, respectively. Set $N := \text{Hom}(k^*, T)$ and let $M := \text{Hom}(N, \mathbb{Z})$. Then we have

$$X_i = X_{\sigma_i} = \text{Spec}(k[\sigma_i^\vee \cap M])$$

for certain cones σ_i in the lattice N. Since X is of affine intersection, the set $X_{12} := X_1 \cap X_2$ is of the form $X_{12} = X_{\sigma_{12}}$ for some common face σ_{12} of σ_1 and σ_2. Hence there is a linear form $u \in M$ with

$$u \in \sigma_1^\vee \quad \text{and} \quad \sigma_{12} = \sigma_1 \cap u^\perp.$$

Since $f(S)$ hits the open T-orbit, all characters χ^m, $m \in M$, admit pullbacks $f^*(\chi^m)$ as rational functions. In particular χ^u has a pullback ψ with respect to f, and the principal divisor $\text{div}(\chi^u)$ has the principal divisor $\text{div}(\psi)$ as pullback. Since χ^u is defined on X_1, we have

$$\text{div}(\psi)_{S_1} \geq 0.$$

We claim that no component of $\text{div}(\psi)_{S_1}$ contains the point $s_2 \in S$. Otherwise, let $E \subset S$ be such a component. Then there exists a T-stable component $D_1 \subset X_1$ of $\text{div}(\chi^u) \cap X_1$ containing $f(E) \cap X_1$. This component corresponds to an extremal ray $\varrho_1 \subset \sigma_1$. Note that by [6], p. 61 we have $\varrho_1 \notin u^\perp$. Take the closure $D := \overline{D_1}$ in X, set $D_2 := D \cap X_2$, and let $\varrho_2 \subset \sigma_2$ be the extremal ray corresponding to $D_2 \subset X_2$. Then $s_2 \in E$ implies

$$x_2 := f(s_2) \in f(E) \cap X_2 \subset D_2.$$

Thus $D \cap X_2$ is non-empty, hence $D_{12} := D \cap X_{12}$ is a T-stable Weil divisor in $X_{12} = X_{\sigma_{12}}$. Let $\varrho_{12} \subset \sigma_{12}$ be the extremal ray corresponding to $D_{12} \subset X_{12}$. Since D_{12} is induced by D_1 and D_2 as well, we conclude $\varrho_1 = \varrho_{12} = \varrho_2$. Thus we have $\varrho_1 \subset \sigma_1 \subset u^\perp$, contradicting $\varrho_1 \notin u^\perp$. As a consequence of our claim, $\text{div}(\psi)_{S_1}$ is an effective \mathbb{Q}-Cartier divisor. According to lemma 1.2, the divisor $\text{div}(\psi)_{S_1}$ is vertical.

Next, we show that for every principal divisor $D = \text{div}(\chi^m)$, $m \in M$ its pullback to S is vertical. It suffices to check this for a set of generators of M, for example $M \cap \sigma_2^\vee$. Assume that there is some $m \in M \cap \sigma_2^\vee$ such that $E := f^*(D)$ is not vertical. Decompose $D = \sum_i \lambda_i D_i$ and $E = \sum_j \mu_j E_j$ into prime cycles. Since $D_{x_2} \geq 0$, we also have $E_{x_2} \geq 0$. By lemma 1.2 there must be some horizontal component E_j containing s_1 with $\mu_j < 0$. Lemma 1.4 tells us that there is some component D_i with $\lambda_i < 0$ and $f(E_j) \subset D_i$. In particular we have $x_1 \in D_i$. Let $\varrho_i \subset \sigma_1$ be the extremal ray corresponding to the T-invariant Weil divisor $D_i \cap X_1$. Since $s_2 \notin D_i$ we have $\varrho_i \notin \sigma_{12}$. Hence $\varrho_i \notin \sigma_1 \cap u^\perp$, and D_i occurs with positive multiplicity in $\text{div}(\chi^u)_{S_1}$. On the other hand, we already have seen that $\text{div}(\psi)_{S_1}$ is vertical. Consequently, $E_j \subset f^{-1}(D_i)$ is also vertical, contradiction. We have shown that $\text{div}(f^*(\chi^m))$ is vertical for all $m \in M$.

As a consequence, the induced morphism $f^{-1}(T) \rightarrow T$ is constant along the generic fibre of $r:S \rightarrow S^{\text{prj}}$. By the rigidity lemma (see for example [4], 1.5), all fibres of r are mapped to points under $f:S \rightarrow X$. Now [7], 8.11.1 gives a morphism $f:S^{\text{prj}} \rightarrow X$ with $f = f \circ r$. This proves the theorem for toric prevarieties of affine intersection.

It remains to treat the case that X is simplicial. According to [8], Section 1, there is a toric prevariety X' of affine intersection and a local isomorphism $g:X \rightarrow X'$. As we have seen, $g \circ f$ is constant along the fibres of $r:S \rightarrow S^{\text{prj}}$. Since the fibres of r are connected, this
implies that f is constant along the fibres of r, and we obtain the desired factorization as above.

\[\Box\]

References

Jürgen Hausen, Fakultät für Mathematik und Informatik, Universität Konstanz, D-78557 Konstanz, Germany. Email: Juergen.Hausen@uni-konstanz.de

Stefan Schröer, Mathematisches Institut, Ruhr-Universität Bochum, D-44780 Bochum, Germany. Email: s.schroer@ruhr-uni-bochum.de