Magneto-thermo-elasticity — large time behavior for linear systems

Jaime E. Muñoz Rivera
Reinhard Racke

Konstanzer Schriften in Mathematik und Informatik
Nr. 102, November 1999
ISSN 1430-3558
Magneto-thermo-elasticity — large time behavior for linear systems*

Jaime E. Muñoz Rivera and Reinhard Racke

102/1999
Universität Konstanz
Fachbereich Mathematik und Statistik

Abstract: Initial and initial boundary value problems for linearized magneto-thermo-elastic models are considered. For the Cauchy problem in three space dimensions, a polynomial rate of decay as time tends to infinity is proved. In bounded domains a boundary condition of memory type is considered for the displacement. When the relaxation function satisfies dissipative properties and decays exponentially, we show that the solution of the magneto-thermo-elastic system decays exponentially. When the relaxation function decays polynomially, it is proved that the solution decays polynomially. Energy methods are used.

AMS subject classification: 73 B 30, 35 Q 99
Keywords and phrases: exponential stability, damping boundary condition

1 Introduction

We consider initial and initial boundary value problems for some linear magneto-thermo-elastic models describing elastic materials where reciprocal effects of the temperature, the magnetic field and the elastic displacement are taken into account. The linear differential equations — for the homogeneous, isotropic case — which govern these models in three space dimensions, are the following:

\[u_{tt} - Eu - \alpha [\nabla \times h] \times \vec{H} + \gamma \nabla \theta = 0, \]
\[h_t - \Delta h - \beta \nabla \times [u_t \times \vec{H}] = 0, \]
\[\theta_t - \kappa \Delta \theta + \gamma \text{div} u_t = 0. \]

Here \(u = (u^1, u^2, u^3)^t = u(t, x) \) is the displacement vector depending on the time variable \(t \geq 0 \) and on \(x \in \mathbb{R}^3 \), \(h = (h^1, h^2, h^3)^t = h(t, x) \) is the magnetic field, \(\theta = \theta(t, x) \) is the temperature difference with respect to a fixed reference temperature, \(E \) is the elasticity operator

\[Eu = \left[(C_{ijkl}u^k_{,i})_{,j} \right]_{i=1,2,3}, \]

*Supported by a CNPq-DLR grant
where C_{ijkl} ($i,j,k,l = 1,2,3$) are the elastic moduli being constant here and leading in the homogeneous isotropic case under consideration to

$$
C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{jk} \delta_{il}) \\
(\delta_{ij} : \text{Kronecker delta})
$$

and hence

$$
E u = \mu \Delta u + (\lambda + \mu) \nabla \text{div} u,
$$

with positive constants λ and μ. The coupling constants α, β satisfy $\alpha \beta > 0$ and $\gamma \in \mathbb{R}$. κ is a positive constant and $\vec{H} = (0,0,H)^t$ is a constant vector with $H \neq 0$, distinguishing the x_3-direction. The notation ".,." means differentiation with respect to x_j.

Additionally, one has initial conditions

$$
u(0,x) = u_0(x), \quad u_1(0,x) = u_1(x), \quad h(0,x) = h_0(x), \quad \theta(0,x) = \theta_0(x).
$$

The Cauchy problem (1.1)-(1.3), (1.7) will be considered in Section 2 giving a description of the asymptotic behavior of the solution as time tends to infinity in terms of polynomial decay rates depending on the smoothness of the initial data. The Cauchy problem in magneto-elasticity i.e. neglecting thermal effects, was recently studied by Andréou & Dassios [2] using spectral analysis and techniques provided from thermoelasticity; polynomial decay rates were obtained. Here we discuss the more complicated system of magneto-thermo-elasticity — indeed, it might be too complicated for the approach from [2] —, and we use energy methods constructing appropriate Lyapunov functional. Note that our results are also valid for magneto-elasticity, i.e. for $\gamma = 0$, $\theta = 0$.

For a derivation of the equations and earlier papers on magneto-thermo-elastic plane waves see Paria [12], Willson [17] or Chander [3] and the references in [2].

The bounded domain case will be studied in Section 3. Then x will vary in a bounded domain $\Omega \subset \mathbb{R}^3$ with smooth boundary $\Gamma = \partial \Omega$ and $\Gamma = \Gamma_0 \cup \Gamma_1$ with $\Gamma_0 \cap \Gamma_1 \neq \emptyset$. We assume that there is $x_0 \in \Omega$ such that

$$
\Gamma_0 = \{x \in \Gamma \mid (x - x_0) \cdot \nu(x) \leq 0\},
$$

$$
\Gamma_1 = \{x \in \Gamma \mid (x - x_0) \cdot \nu(x) \geq a > 0\}
$$

for some $a > 0$ and $\nu = \nu(x)$ denoting the exterior normal vector in $x \in \Gamma$. This means that typically we have

![Diagram](image)

The boundary conditions for h and θ are

$$
\nu \times (\nabla \times h) = 0, \quad \nu \cdot h = 0, \quad \theta = 0 \quad \text{on} \ \Gamma
$$

![Diagram](image)
and the memory type boundary condition

\[u = 0 \quad \text{on } \Gamma_0, \quad u + r \star \partial_v u = 0 \quad \text{on } \Gamma_1 \]

(1.11)

for \(u \). We denote by \(\partial_v u \) the abbreviation

\[\partial_v u := \left(C_{ijkl} u_i^k u_j^l \right)_{i=1,2,3} - \alpha H h^3 \nu + \alpha H \nu^3 h \]

(1.12)

which is the natural Neumann type boundary operator for the equations (1.1). By \(* \) we denote the convolution in time,

\[(r \star f)(t) := \int_0^t r(t - s) f(s) ds. \]

Differentiating the boundary condition on \(\Gamma_1 \) we get

\[\partial_v u + \frac{r'}{r(0)} \star \partial_v u = - \frac{u_t}{r(0)}, \]

(1.13)

or, in terms of the associated resolvent kernel \(g \),

\[\partial_v u = - \tau u_t - \tau g \star u_t \]

(1.14)

with

\[\tau := \frac{1}{r(0)} > 0. \]

(1.15)

First we shall assume that \(g \) essentially decays exponentially, i.e. for \(t \geq 0 \)

\[\begin{aligned} 0 < g(t) &\leq c_0 e^{-g_0 t}, \\ -c_1 g(t) &\leq g'(t) \leq -c_2 g(t), \\ -c_3 g' (t) &\leq g''(t) \leq -c_4 g'(t), \end{aligned} \]

(1.16)

with positive constants \(g_0, c_0, c_1, c_2, c_3, c_4 \). The classical example \(\tilde{g} \) is of course

\[\tilde{g}(t) = c_0 e^{-g_0 t}. \]

The exponential type kernel together with the "damping" boundary condition on \(\Gamma_1 \) will lead to an exponential decay result for \((u, h, \theta)(t) \).

Second, we shall consider polynomially decaying kernels satisfying for \(t \geq 0 \)

\[\begin{aligned} 0 < g(t) &\leq b_0 (1 + t)^{-p}, \\ -b_1 g(t)^{\frac{p+1}{p}} &\leq g'(t) \leq -b_2 g(t)^{\frac{p+1}{p}}, \\ -b_3 [g'(t)]^{\frac{p+2}{p+1}} &\leq g''(t) \leq -b_4 [g'(t)]^{\frac{p+2}{p+1}}, \end{aligned} \]

(1.17)

with positive constants \(b_0, b_1, b_2, b_3, b_4 \) and \(p > 1 \). The typical example \(\tilde{g} \) is

\[\tilde{g}(t) = b_0 (1 + t)^{-p}. \]
The result will be a polynomial decay for the solution.

We present the first discussion of magneto-thermo-elastic initial boundary value problems that leads to a description of the asymptotic behavior in terms of decay rates as time tends to infinity. Perla Menzala & Zuaza studied the asymptotic behavior of magneto-elastic systems with \(u \) being zero everywhere on the boundary, see [13]. They proved decay results without giving decay rates but it should be observed that their system is more complicated to deal with because of the boundary conditions considered. In this connection, it should be mentioned that in the related thermo-elastic system exponential decay can only be expected in special situations like radial symmetry, for example, see Jiang & the authors [7], but not in general, see Koch [8] or Lebeau & Zuaza [9].

In our case, the complexity of the system can be dealt with because of the memory type boundary condition. For a discussion of this kind of boundary conditions in connection with viscoelastic effects see e.g. the papers [14, 15] by Qin. In [6], Fabrizio & Morro also consider a boundary condition of memory type for an electromagnetic system (see also Ciarletta [4]). The boundary condition was also studied for a pure elastic system by Andrade & Muñoz Rivera [1]. Their approach and techniques from Muñoz Rivera & Barreto [11] are adapted here and modified for our purposes.

In Section 2 we discuss the Cauchy problem and in Section 3 the bounded domain case is considered. In both sections, the existence and uniqueness of solutions with smoothness in relation to that of the initial data is simply assumed, its proof — e.g. via semigroup theory as in [13] for the magneto-elastic system — is rather standard and omitted here.

We denote the Fourier transform by

\[
(\mathcal{F}w)(\eta) \equiv \hat{w}(\eta) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} e^{-ix\eta} w(x)dx
\]

for a function \(w : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \).

2 The Cauchy problem

We consider smooth solutions to the Cauchy problem (1.1)–(1.3), (1.7). The necessary regularity of the initial data will be specified below. Noting that

\[
(\nabla \times h) \times \hat{H} = -H \nabla h^3 + H \frac{\partial h}{\partial x_3},
\]

\[
\nabla \times (u_t \times \hat{H}) = H \frac{\partial u_t}{\partial x_3} - H(0, 0, \text{div } u_t)',
\]

and using (1.6), the system (1.1)–(1.3) is equivalent to

\[
u_{tt} - \mu \Delta u - (\mu + \lambda) \nabla \text{div } u + \alpha H \nabla h^3 - \alpha H \frac{\partial h}{\partial x_3} + \gamma \nabla \theta = 0, \quad (2.1)
\]

\[
h_t - \Delta h - \beta H \frac{\partial u_t}{\partial x_3} + \beta H(0, 0, \text{div } u_t)' = 0, \quad (2.2)
\]

\[
\theta_t - \kappa \Delta \theta + \gamma \text{div } u_t = 0. \quad (2.3)
\]
Taking the Fourier transform and denoting
\[v := \hat{u}, \quad w := \hat{h}, \quad \psi := \hat{\theta}, \]
with Fourier variable \(\eta = (\eta_1, \eta_2, \eta_3)' \), we obtain from (2.1)-(2.3)

\[v_{tt} + \mu|\eta|^2v + (\mu + \lambda)(\eta v)\eta - i\alpha H\eta w^3 + i\alpha H\eta_3 w - i\gamma\psi\eta = 0, \quad (2.4) \]

\[w_t + |\eta|^2w + i\beta H\eta_3 v_t - \beta H(0, 0, v_t)' = 0, \quad (2.5) \]

\[\psi_t + \kappa|\eta|^2\psi - i\gamma v_t\eta = 0. \quad (2.6) \]

Multiplying equation (2.4) by \(\overline{\eta}_1 \), and (2.5) by \(\frac{\alpha}{\beta} \overline{\eta}_2 \) and (2.6) by \(\overline{\psi} \) we get

\[\frac{d}{dt}\mathcal{E}_1(t) = -\frac{\alpha}{\beta}|\eta|^2|w|^2 - \kappa|\eta|^2|\psi|^2 \]

where

\[\mathcal{E}_1(t) := \frac{1}{2} \left\{ |v_t|^2 + \mu|\eta|^2|v|^2 + (\mu + \lambda)(\eta v)^2 + \frac{\alpha}{\beta}|w|^2 + |\psi|^2 \right\}(t). \]

To study the dissipative properties of the above system, we will consider the equations for the components separately. Denoting

\[z := \eta_1 v^1 + \eta_2 v^2 \]

we obtain

\[v_{tt}^1 + \mu|\eta|^2v^1 + (\mu + \lambda)\eta_1 z + (\mu + \lambda)\eta_1 \eta_3 v^3 - i\alpha H\eta_1 w^3 + i\alpha H\eta_3 w^1 - i\gamma\psi\eta_1 = 0, \quad (2.7) \]

\[v_{tt}^2 + \mu|\eta|^2v^2 + (\mu + \lambda)\eta_2 z + (\mu + \lambda)\eta_2 \eta_3 v^3 - i\alpha H\eta_2 w^3 + i\alpha H\eta_3 w^2 - i\gamma\psi\eta_2 = 0, \quad (2.8) \]

\[v_{tt}^3 + \mu|\eta|^2v^3 + (\mu + \lambda)\eta_3 z + (\mu + \lambda)\eta_3 \eta_2 v^3 - i\gamma\psi\eta_3 = 0, \quad (2.9) \]

\[w_t^1 + |\eta|^2w^1 + i\beta H\eta_3 v_t^1 = 0, \quad (2.10) \]

\[w_t^2 + |\eta|^2w^2 + i\beta H\eta_3 v_t^2 = 0, \quad (2.11) \]

\[w_t^3 + |\eta|^2w^3 - i\beta Hz_t = 0. \quad (2.12) \]

Lemma 2.1 Let

\[\Phi_1(t) := -\text{Re}\left\{ \frac{i}{\eta_3} (v_t^1 w^1 + v_t^2 w^2) \right\}(t), \quad (\text{Re: real part}) \]

\[\Phi_2(t) := -\text{Re}\left\{ \frac{i}{\eta_3} (v_t^1 w_t^1 + v_t^2 w_t^2) \right\}(t). \]

Then we have for \(\eta_3 \neq 0 \):
\[
\frac{d}{dt} \Phi_1 \leq -\frac{\beta H}{2} \left(|v_1|^2 + |v_2|^2 \right) + \frac{c|\eta|^2}{\eta_3^2} \left(1 + |\eta|^2 \right) |w|^2 \\
+ \frac{c|\eta|^2}{|\eta_3|} |v_1| + c|\eta||v_3||w| + c\frac{|\eta|}{|\eta_3|} |\psi||w|,
\]

\[
\frac{d}{dt} \Phi_2 \leq -\frac{\beta H}{2} \left(|v_1|^2 + |v_2|^2 \right) + \frac{c|\eta|^2}{\eta_3^2} \left(1 + |\eta|^2 \right) |w_1|^2 \\
+ c|\eta||v_3||w_1| + \frac{c|\eta|^2}{|\eta_3|} |\psi_t w_1| + \overline{v_t^1 w_1^2}.
\]

Here and in the sequel \(c \) will denote positive constants not depending on \(\eta \) or on \(t \).

Proof: Multiplying equation (2.10) by \(\overline{\eta_3 v_t} \) and equation (2.11) by \(\frac{1}{\eta_3 v_t} \) we get

\[
\frac{d}{dt} \Phi_1 = \text{Re} \frac{i}{\eta_3} |\eta|^2 \left(w_1 \overline{v_t^1} + w_2 \overline{v_t^2} \right) - \beta H \left(|v_1|^2 + |v_2|^2 \right) - \text{Re} \frac{i}{\eta_3} (w_1 \overline{v_t^1} + w_2 \overline{v_t^2}).
\]

Using the equations (2.7), (2.8) the conclusion for \(\Phi_1 \) follows. The estimate for \(\Phi_2 \) follows similarly after differentiating the equations with respect to \(t \).

Q.E.D.

Introducing the function

\[
\Phi_3(t) := \text{Re} \left(v_t^1 \overline{v_t^1} \right)(t) \quad \text{and} \quad \Phi_4(t) := \text{Re} \left(v_t^2 \overline{v_t^2} \right)(t)
\]

we have

Lemma 2.2 Let for \(\eta_3 \neq 0 \neq \eta_1 \)

\[
J(t) := \frac{\eta_1}{\eta_3} \Phi_3(t) + \frac{\eta_3}{\eta_1} \Phi_3(t) + \frac{\eta_1}{\eta_3} \Phi_4(t).
\]

Then

\[
\frac{d}{dt} J \leq c|\eta|^4 \left(\frac{1}{\eta_1^2} + \frac{1}{\eta_3^2} \right) \left(|v_t^1|^2 + |v_t^2|^2 \right) - \frac{\mu + \lambda}{2} |\eta|^2 |v_t^3|^2 \\
+ c|\eta|^2 \left(\frac{1}{\eta_1^2} + \frac{1}{\eta_3^2} \right) |w_t|^2 \left(\frac{\eta_3}{\eta_1} + \frac{\eta_1}{\eta_3} \right) \left(|\eta|^2 |v_t^1| + |\eta|^2 |v_t^2| \right) \\
+ c|\eta|^2 \left(\frac{1}{\eta_1^2} + \frac{1}{\eta_3^2} \right) |\psi_t|^2.
\]

Proof: Differentiating \(\Phi_3 \) we get

\[
\frac{d}{dt} \Phi_3 = \left(v_t^1 \overline{v_t^1} + v_t^1 \overline{v_t^1} \right) \\
= -(\mu |\eta|^2 v_t^1 + (\mu + \lambda) \eta_1 v_t + (\mu + \lambda) \eta_1 \eta_3 v_t^3 - \overline{i\alpha H \eta_1 w_t^3} \\
+ i\alpha H \eta_3 \psi_t \overline{v_t} + \gamma \eta_1 \psi_t) \overline{v_t} + \overline{v_t} \overline{v_t}.
\]
which implies
\[
\frac{d}{dt} \left(\frac{\eta_3}{\eta_3} \Phi_1 \right) \leq \frac{c|\eta|^4}{\eta_3} |v_1|^2 + \frac{c|\eta|^2 |z_1|^2}{\eta_3^2} - \frac{\mu + \lambda}{2} \eta_3^2 |\psi_3|^2 \\
+ \frac{c|\eta|^2}{\eta_3^2} \left(|w_1|^2 + |\psi_1|^2 \right) - \frac{\eta_3^2}{\eta_3} \psi_1^* \psi_3^*.
\]

Similarly we have
\[
\frac{d}{dt} \left(\frac{\eta_3^3}{\eta_1} \Phi_3 \right) \leq \frac{c|\eta|^4}{\eta_1^2} |v_1|^2 + \frac{c|\eta|^2 |z_1|^2}{\eta_1^2} - \frac{\mu + \lambda}{2} \eta_3^2 |\psi_3|^2 \\
+ \frac{c|\eta|^2}{\eta_1^2} \left(|w_1|^2 + |\psi_1|^2 \right) + \frac{\eta_3^2}{\eta_1} \psi_1^* \psi_3^*.
\]

\[
\frac{d}{dt} \left(\frac{\eta_2}{\eta_3} \Phi_4 \right) \leq \frac{c|\eta|^4}{\eta_3^2} |v_1|^2 + \frac{c|\eta|^2 |z_1|^2}{\eta_3^2} - \frac{\mu + \lambda}{2} \eta_2^2 |\psi_3|^2 \\
+ \frac{c|\eta|^2}{\eta_3^2} \left(|w_1|^2 + |\psi_1|^2 \right) + \frac{\eta_3^2}{\eta_3} \psi_1^* \psi_3^*.
\]

Summing up these inequalities our conclusion follows.

Q.E.D.

As a consequence of Lemma 2.1 and Lemma 2.2 we obtain

Lemma 2.3 Let, for \(\eta_1 \neq 0 \neq \eta_3 \),
\[A \equiv A(\eta) := |\eta|^2 \left(\frac{1}{\eta_1^2} + \frac{1}{\eta_3^2} \right), \]
and let \(\delta > 0 \) be sufficiently small. Then we have the estimates
\[
\frac{d}{dt} \left((|\eta|^2 + |\eta|^2 A) \Phi_1 + \delta J \right) \leq -\frac{\beta H}{4} (|\eta|^2 + |\eta|^2 A) (|v_1|^2 + |v_1|^2) \\
- \delta k_0 |\eta|^2 |v_1|^2 + c(\eta^2 + |\eta|^2 A) \frac{|\eta|^2}{\eta_3^2} (1 + |\eta|^2) (|w|^2 + |\psi|^2) \\
+ cA(\eta^3 |v^3| |w| + \frac{c|\eta|^4}{|\eta_3|} A(|v^1| + |v^2|) |w| + c\delta A(|w_1|^2 + |\psi_1|^2) \\
+ c\delta \left(\frac{\eta_1}{\eta_3} + \frac{\eta_3}{\eta_1} + \frac{\eta_1}{\eta_3} \left(|\eta|^2 |v| + |\eta| |\psi| \right) (|v_1^1| + |v_1^2|), \right)
\]
where \(k_0 > 0 \) is a constant only depending on the coefficients of the differential equation.

Now let
\[\Phi_5(t) := \text{Re}(v_1 \sigma)(t). \]

Using equation (2.1) it is not difficult to prove that
\[
\frac{d}{dt} \Phi_5 \leq |v_1|^2 - \frac{\mu}{2} |\eta|^2 |v|^2 - \frac{\mu + \lambda}{2} (\eta v)^2 + c|\eta|(|w|^2 + |\psi|^2)
\]

which, together with Lemma 2.3, yields
\[
\frac{d}{dt} \left\{ (|\eta|^2 + |\eta|^2 A) \Phi_1 + \delta J + \frac{\delta k_0}{2} |\eta|^2 \Phi_5 \right\} \leq \\
- \frac{\beta H}{4} |\eta|^2 A(|v_t|^2 + |v_t^2|^2) - \frac{\delta k_0}{2} |\eta|^2 \mathcal{E}_1 \\
+ c \left(\frac{|\eta|^4}{\eta^2_{3}} (1 + |\eta|^2) A + |\eta|^2 A + |\eta|^6 A \right) (|w|^2 + |\psi|^2) \\
+ c \frac{|\eta|^4}{|\eta_{3}|} A(|\psi|^2) |w| + c \delta A(|w_t|^2 + |\psi_t|^2) \\
c \delta A (|w|^2 + |\psi|^2). \tag{2.13}
\]

Notice that
\[
\frac{d}{dt} \left\{ (|\eta|^2 + |\eta|^2 A) \Phi_1 + \delta J + \frac{\delta k_0}{2} |\eta|^2 \Phi_5 \right\} \leq \\
- \frac{\beta H}{4} |\eta|^2 A(|v_t|^2 + |v_t^2|^2) - \frac{\delta k_0}{2} |\eta|^2 \mathcal{E}_1 + c |\eta|^6 \left(\frac{1}{\eta_1^2} + \frac{1}{\eta^2_3} \right) (|w|^2 + |\psi|^2) \\
+ c \delta A(|v_t|^2 + |\psi_t|^2) + c \delta A(|w_t|^2 + |\psi_t|^2) \\
+ \frac{|\eta|^4}{|\eta_{3}|} A(|\psi|^2) |w| \tag{2.14}
\]
and that
\[
c \frac{|\eta|^4}{|\eta_{3}|} A(|\psi|^2) |w| \leq \varepsilon \frac{|\eta|^4}{|\eta_{3}|} (|v_t|^2 + |v_t^2|^2) + c(\varepsilon) |\eta|^4 A^2 |w|^2, \tag{2.15}
\]
where \(\varepsilon > 0 \) will be chosen small enough in the sequel and \(c(\varepsilon) \) denotes a constant depending on \(\varepsilon \). Let
\[
\Phi_6(t) := \text{Re} \left(v_t^1 \bar{v} + v_t^2 \bar{v} \right) (t).
\]
Then, by
\[
\frac{d}{dt} \Phi_6 = |v_t|^2 + |v_t^2|^2 + |v_t^1 \bar{v} + v_t^2 \bar{v}|^2 \\
= |v_t|^2 + |v_t^2|^2 - \mu |\eta|^2 |v_t|^2 - \mu |\eta|^2 |v_t^2|^2 - (\mu + \lambda) |z|^2 \\
- (\mu + \frac{\lambda}{\eta^2_{3}}) |v^3|^2 + i \alpha H \bar{z} w^3 - i \alpha H |\eta| (w^3 v_t + w v_t^3) - i \gamma z \psi,
\]
we get
\[
\frac{d}{dt} \Phi_6 \leq |v_t|^2 + |v_t^2|^2 - \mu |\eta|^2 |v_t|^2 - \frac{\mu + \lambda}{2} |z|^2 \\
+ c |w|^2 + (|\psi|^2) + c |\eta|^2 |v^3|^2. \tag{2.16}
\]
Taking \(\varepsilon \) small enough we conclude from (2.13)-(2.16)
\[
\frac{d}{dt} \left\{ (|\eta|^2 + |\eta|^2 A) \Phi_1 + \delta J + \frac{\delta k_0}{2} |\eta|^2 \Phi_5 + \frac{\delta k_0}{\psi} \frac{|\eta|^2}{\eta^2_3} \Phi_6 \right\} \leq \\
- \frac{\beta H}{8} |\eta|^2 A(|v_t|^2 + |v_t^2|^2) - \frac{\delta k_0}{8} |\eta|^2 \mathcal{E}_1 + |\eta|^6 \left(\frac{1}{\eta_1^2} + \frac{1}{\eta^2_3} \right) (|w|^2 + |\psi|^2) \\
+ c \delta A(|v_t|^2 + |v_t^2|^2) + c \delta A(|w_t|^2 + |\psi_t|^2) \\
+ c(\varepsilon) |\eta|^4 A^2 |w|^2 - \frac{k_0}{4} |\eta|^4 \left(|v_t|^2 + |v_t^2|^2 \right). \tag{2.17}
\]
Note that
\[
\frac{d}{dt}(A\Phi_2) \leq -\frac{\beta H}{2} A(|v^1_t|^2 + |v^2_t|^2) + \frac{|\eta|^2}{\eta_3} A(1 + |\eta|^2)|w_t|^2 \\
+ c|\eta| A|v^3_t| |w_t| + \frac{|\eta|^2}{\eta_3} A|v^1_t w_t^- + v^2_t w_t^+| \\
+ \frac{|\eta|}{\eta_3} A|\psi_t w_t|,
\]
(2.18)
and
\[
I_1 \leq \frac{\delta k_0}{4}|\eta|^2|v^3_t|^2 + c(\delta) A^2|w_t|^2,
\]
(2.19)
\[
I_2 \leq \delta A|\eta|^2(|v^1_t|^2 + |v^2_t|^2) + c(\delta) \frac{|\eta|^2}{\eta_3} A|w_t|^2.
\]
(2.20)
Denoting by Φ the following function
\[
\Phi(t) := (|\eta|^2 + |\eta|^2 A)\Phi_1(t) + (\delta J(t) + \frac{\delta k_0}{2} |\eta|^2 \Phi_5(t) + \frac{\delta k_0 |\eta|^2}{4|\eta_3|^2} \Phi_6(t) + A\Phi_2(t)
\]
we obtain from (2.13)–(2.20)
\[
\frac{d}{dt} \Phi \leq -\frac{\beta H}{8}|\eta|^2 A(|v^1_t|^2 + |v^2_t|^2) - \frac{\delta k_0}{4} |\eta|^2 \mathcal{E}_1 \\
- \frac{\beta H}{4} A(|v^1_t|^2 + |v^2_t|^2) + c|\eta|^2 \left(1 + \frac{|\eta|^2}{\eta_3}\right) \left(\frac{1}{\eta_1} + \frac{1}{\eta_3}\right) (|w|^2 + |\psi|^2) \\
c(\delta) \left(\frac{|\eta|^2}{\eta_3} A + A^2\right) (|w_t|^2 + |\psi_t|^2) \\
: I_3 \\
+ c(\varepsilon)|\eta|^2 A^2 |\omega|^2 - \frac{k_0 |\eta|^4}{4|\eta_3|^2} (|v^1_t|^2 + |v^2_t|^2).
\]
Using
\[
I_3 \leq 2A^2
\]
we conclude
\[
\frac{d}{dt} \Phi \leq -\frac{\beta H}{8}|\eta|^2 A(|v^1_t|^2 + |v^2_t|^2) - \frac{\delta k_0}{4} |\eta|^2 \mathcal{E}_1 \\
- \frac{\beta H}{4} A(|v^1_t|^2 + |v^2_t|^2) + c|\eta|^2 (1 + |\eta|^2) A^2(|w|^2 + |\psi|^2) \\
+ c(\delta) A^2 (|w_t|^2 + |\psi_t|^2) - \frac{k_0 |\eta|^4}{\psi \eta_3^2} (|v^1_t|^2 + |v^2_t|^2).
\]
(2.21)
Let
\[
\mathcal{L}(t) := \Phi(t) + N_1 (1 + |\eta|^2) A^2 \mathcal{E}_1(t) + N_2 \frac{A^2}{|\eta|^2} \mathcal{E}_2(t),
\]
9
where
\[\mathcal{E}_2(t) \equiv \mathcal{E}_2(t; v_t, w_t, \psi_t) \]

if
\[\mathcal{E}_1(t) = \mathcal{E}_1(t; v, w, \psi), \]

and \(N_1, N_2 \) are positive constants to be determined below. Observe that \(\mathcal{L} \) is non-negative for large \(N_1, N_2 \). From the inequalities up to (2.21) we know that there is \(d_0 > 0 \) such that

\[
\frac{d}{dt} \mathcal{L} \leq -d_0 \mathcal{N} \tag{2.22}
\]

where \(d_0, d_1, \ldots \) will denote positive constants and

\[
\mathcal{N}(t) := |\eta|^2 \mathcal{A}(|v_t|^2 + |v_t^2|^2)(t) + |\eta|^2 \mathcal{E}_1(t) + \mathcal{A}(|v_t|^2 + |v_t^2|^2) \\
+ \frac{|\eta|^4}{\eta^5}(|v_t|^2 + |v_t^2|^2) + (1 + |\eta|^2) \mathcal{A}^2(\mathcal{w}^2 + |\psi|^2) \\
+ \frac{\mathcal{A}^2}{|\eta|^2} (w_t^2 + |\psi_t|^2).
\]

Since
\[
|\Phi| \leq \tilde{c} \left((1 + |\eta|^2) \mathcal{A}^2 \mathcal{E}_1 + \frac{\mathcal{A}^2}{|\eta|^2} \mathcal{E}_2 \right), \tag{2.23}
\]

for some \(\tilde{c} > 0 \), and
\[
\mathcal{E}_2(t) \leq \tilde{c} |\eta|^2 (1 + |\eta|^2) \mathcal{E}_1(t) \tag{2.24}
\]

we have
\[
\mathcal{L}(t) \leq d_1 (1 + |\eta|^2) \mathcal{A}^2 \mathcal{E}_1(t). \tag{2.25}
\]

The relations (2.22)–(2.25) imply
\[
\frac{d}{dt} \mathcal{L} \leq -d_0 \mathcal{N} \\
\leq -d_0 |\eta|^2 \mathcal{E}_1 \\
\leq - \frac{d_0}{d_1} \frac{|\eta|^2}{(1 + |\eta|^2)^2 \mathcal{A}^2} \mathcal{L} \\
= : d_2 \mathcal{L} \quad = : k(\eta)
\]

and hence
\[
\mathcal{L}(t) \leq \mathcal{L}(0) e^{-d_2 k(\eta) t}. \tag{2.26}
\]

Using (2.23), (2.24) and choosing
\[N_2 := \frac{\tilde{c}}{2} \]

10
we obtain
\[
\mathcal{L} \geq (N_1 - 2N_2)(1 + |\eta|^2)A\mathcal{E}_1 - \frac{N_2 A^2}{|\eta|^2}\mathcal{E}_2
\]
\[
\geq \left(N_1 - 2N_2 - \frac{N_2}{2} - \frac{N_2}{2} \right) (1 + |\eta|^2)A^2\mathcal{E}_1,
\]
that is, choosing
\[
N_1 := \frac{5}{2}N_2.
\]
\[
\mathcal{L} \geq N_2(1 + |\eta|^2)A^2\mathcal{E}_1. \tag{2.27}
\]
From (2.25) and (2.27) we have
\[
N_2(1 + |\eta|^2)A^2\mathcal{E}_1(t) \leq \mathcal{L}(t) \leq d_1(1 + |\eta|^2)A^2\mathcal{E}_1(t).
\]
Therefore, (2.25) implies for the "energy" term \(\mathcal{E}_1 \)
\[
\mathcal{E}_1(t) \leq \frac{d_1}{N_2}\mathcal{E}(0)e^{-d_2k(\eta)t}
\]
which implies for \(m \in \mathbb{N}_0, \; t \geq 0 \):
\[
\int_0^t s^m\mathcal{E}_1ds \leq c(m)\left(\frac{1}{k(\eta)} \right)^m \mathcal{E}(0). \tag{2.28}
\]
This gives the desired polynomial decay in a standard manner:
\[
\frac{d}{dt}\mathcal{E}_1(t) = \mathcal{E}_1(t) + t\frac{d}{dt}\mathcal{E}_1(t) \leq \mathcal{E}_1(t)
\]
implies using (2.28) for \(m = 0 \):
\[
\mathcal{E}_1(t) = \mathcal{O}(t^{-1}) \; \text{as} \; t \to \infty.
\]
The estimate
\[
\frac{d}{dt}t^2\mathcal{E}_1(t) \leq 2t\mathcal{E}_1(t)
\]
implies
\[
\mathcal{E}_1(t) = \mathcal{O}(t^{-2}),
\]
and so on. Integrating (2.28) with respect to \(\eta \) — for appropriate initial data yielding a finite value of the integral on the right-hand side — gives the final result. Observing
\[
\mathcal{E}(0) = \mathcal{E}(0, \eta), \quad A = A(\eta)
\]
we have
Theorem 2.4 If the initial data satisfy
\[
\int_{\mathbb{R}^n} \left(\frac{(1 + |\eta|^2)A^2}{|\eta|^2} \right)^m \mathcal{E}_i(0, \eta)d\eta < \infty,
\]
\(m \in \mathbb{N}_0\), then the energy term
\[
E(t) := \frac{1}{2} \int_{\mathbb{R}^n} \left\{ |u_t|^2 + \mu |\nabla u|^2 + (\mu + \lambda) |\text{div} \, u|^2 + \frac{\alpha}{\beta} |h|^2 + |\theta|^2 \right\} (t, x) \, dx
\]
associated to a solution \((u, h, \theta)\) to the Cauchy problem (1.1)-(1.3), (1.7) decays polynomially:
\[
E(t) = \mathcal{O}(t^{-m}) \quad \text{as} \quad t \to \infty.
\]

3 The bounded domain case

In a bounded domain \(\Omega \subset \mathbb{R}^3\) described by (1.8), (1.9) we consider the differential equations (1.1)-(1.3) together with the initial conditions (1.7) and the boundary conditions (1.10), (1.11). The initial magnetic field \(h_0\) is assumed to satisfy
\[
\text{div} \, h_0 = 0
\]
which implies by (1.2)
\[
\text{div} \, h(t, \cdot) = 0 \quad \text{for all} \quad t \geq 0.
\]
Either the condition (1.16) or (1.17) on the resolvent kernel \(g\) is assumed to hold. Since we have formulated conditions in terms of the resolvent kernel, we point out the following relationship between the decay of a kernel and the decay of the associated resolvent kernel.
Let
\[
b(t) := -\frac{r'(t)}{r(0)},
\]
Then \(b\) and \(g\) satisfy
\[
b + g = -b * g.
\]

Lemma 3.1 (i) If \(g\) satisfies
\[
\exists \gamma > 0 \exists c_g > 0 \quad \forall t \geq 0 : \quad |g(t)| \leq c_g e^{-\gamma t},
\]
and if for some \(0 < \varepsilon < \gamma\)
\[
c_g < \gamma - \varepsilon
\]
holds, then we have
\[
\forall t \geq 0 : \quad |b(t)| \leq \frac{c_g(\gamma - \varepsilon)}{\gamma - \varepsilon - c_g} e^{-\varepsilon t}.
\]
(ii) If \(g\) satisfies
\[
\exists p > 1 \exists c_g > 0 \quad \forall t \geq 0 : \quad |g(t)| \leq c_g (1 + t)^{-p},
\]
and if
\[
\frac{1}{c_g} > c_p := \sup_{0 \leq t < \infty} \int_0^t (1 + t)^p (1 + t - \tau)^{-p} (1 + \tau)^{-p} d\tau
\]
holds, then we have

$$\forall t \geq 0 : \ |b(t)| \leq \frac{c_g}{1 - c_g c_p} (1 + t)^{-p}.$$

Proof: (i): Let

$$\tilde{g}(t) := e^{\epsilon t} g(t), \quad \tilde{b}(t) := e^{\epsilon t} b(t).$$

Then

$$\tilde{b} + \tilde{g} = -\tilde{b} \ast \tilde{g}.$$

The operator G given by

$$G(h) := \tilde{g} \ast h,$$

acting on $C^0([0, T])$, $T > 0$ arbitrary, but fixed, has norm less than or equal to

$$\frac{c_g}{\gamma - \epsilon},$$

hence

$$\sup_{0 \leq t \leq T} |\tilde{b}(t)| \leq \frac{1}{1 - c_g / (\gamma - \epsilon)} \sup_{0 \leq t \leq T} |\tilde{g}(t)| \leq \frac{c_g (\gamma - \epsilon)}{\gamma - \epsilon - c_g},$$

which implies the assertion in (i).

(ii): Let

$$\tilde{g}(t) := (1 + t)^p g(t), \quad \tilde{b}(t) := (1 + t)^p b(t).$$

Then

$$\tilde{b} + \tilde{g} = -k[g] \ast b$$

with kernel

$$k[g](t, \tau) := \tilde{g}(t - \tau)(1 + t)^p (1 + t - \tau)^{-p} (1 + \tau)^{-p}.$$

The operator $K[g]$ acting on $C^0([0, T])$ as

$$K[g](h) := k[g] \ast h$$

has norm less than or equal to

$$c_g \sup_{0 \leq t \leq T} \int_0^t (1 + t)^p (1 + t - \tau)^{-p} (1 + \tau)^{-p} d\tau \leq c_g c_p,$$

hence

$$\sup_{0 \leq t \leq T} |\tilde{b}(t)| \leq \frac{1}{1 - c_g c_p} \sup_{0 \leq t \leq T} |\tilde{g}(t)| \leq \frac{c_g}{1 - c_g c_p},$$

which gives the assertion.

Q.E.D.

Remarks: 1. For the finiteness of c_p compare Lemma 7.4 in [16] in a more general setting.

2. Since the resolvent kernel of the resolvent kernel is the original kernel, it is clear that in (ii) of Lemma 3.1 no stronger uniform polynomial decay can be obtained. In this sense the characterization is sharp and shows that exponentially decaying kernels correspond to exponentially decaying resolvents, and polynomially decaying kernels correspond to polynomially decaying resolvents.
Taking the boundary condition (1.11) for \(u \) on \(\Gamma_1 \) in the form (1.14), and performing an integration by parts, we get
\[
\partial_{\nu} u = -\tau u_t - \tau g \ast u_t \\
= -\tau u_t - \tau g(0)u - \tau g' \ast u + \tau gu_0.
\] (3.2)

As a non-negative energy function we define
\[
F(t) := \frac{1}{2} \int_{\Omega} (|u_t|^2 + C_{ijkl} u^k_t u^i_j + \frac{\alpha}{\beta} |h|^2 + |\theta|^2)(t,x)dx \\
- \frac{\tau}{2} \int_{\Gamma_1} (g' \Box u)(t,z)dz + \frac{\tau}{2} \overline{g}(t) \int_{\Gamma_1} |u|^2(t,z)dz,
\] (3.3)
where
\[
(f \Box \varphi)(t) := \int_0^t f(t-s) |\varphi(t) - \varphi(s)|^2 ds.
\]

Lemma 3.2 For \(f, \varphi \in C^1([0,\infty), \mathbb{R}) \) we have
\[
2(f \ast \varphi)(t) \varphi_t(t) = (f' \Box \varphi)(t) + \frac{d}{dt} \left\{ \int_0^t f(s)ds |\varphi(t) - \varphi(s)|^2 \right\} - f(t)|\varphi(t)|^2.
\]

Proof:
\[
\frac{d}{dt}(f \Box \varphi) = f' \Box \varphi + 2 \int_0^t f(t-s)(\varphi(t) - \varphi(s))ds \varphi_t \\
= f' \Box \varphi - 2f \ast \varphi \varphi_t + 2 \int_0^t f(s)ds \varphi \varphi_t \\
= f' \Box \varphi - 2f \ast \varphi \varphi_t + \frac{d}{dt} \left\{ \int_0^t f(s)ds |\varphi|^2 \right\} - f|\varphi|^2.
\]
Q.E.D.

Lemma 3.3
\[
\frac{d}{dt} F \leq -\frac{\alpha}{\beta} \int_{\Omega} |\nabla \times h|^2 dx - \kappa \int_{\Omega} (\nabla \theta)^2 dx - \frac{\tau}{2} \int_{\Gamma_1} |u|^2 dz \\
- \frac{\tau}{2} \int_{\Gamma_1} g'' \Box u dz + \frac{\tau g'}{2} \int_{\Gamma_1} |u|^2 dz + \tau g^2 \int_{\Gamma_1} |u_0|^2 dz.
\]

Proof: Multiplying equation (1.1) by \(u_t \), equation (1.2) by \(\frac{\partial}{\partial t} h \) and (1.3) by \(\theta \), we obtain after integration and summation
\[
\frac{1}{2} \frac{d}{dt} \int_{\Omega} (|u_t|^2 + C_{ijkl} u^k_t u^i_j + \frac{\alpha}{\beta} |h|^2 + |\theta|^2)dx \\
= \int_{\Gamma_1} \partial_{\nu} uu_t dz - \frac{\alpha}{\beta} \int_{\Omega} |\nabla \times h|^2 dx - \kappa \int_{\Omega} |\nabla \theta|^2 dz.
\] (3.4)
Using (3.2) and Lemma 3 we get

\[
\frac{d}{dt}M = -\frac{\alpha}{\beta} \int_{\Omega} (\nabla \times h)^2 dx - \kappa \int_{\Omega} |\nabla \theta|^2 dx - \tau \int_{\Gamma_1} |u_1|^2 dz \\
- \tau g(0) \int_{\Gamma_1} u u_1 dz - \tau \int_{\Gamma_1} (g' * u) u_1 + \tau g \int_{\Gamma_1} u_0 u_1 dz \\
= -\frac{\alpha}{\beta} \int_{\Omega} |\nabla \times h|^2 dx - \kappa \int_{\Omega} |\nabla \theta|^2 dx - \tau \int_{\Gamma_1} |u_1|^2 dz \\
- \frac{1}{2} \frac{d}{dt} \left\{ \tau g \int_{\Gamma_1} |u|^2 dz - \tau \int_{\Gamma_1} g' \Box u \, dz \right\} \\
- \frac{\tau}{2} \int_{\Gamma_1} g'' \Box u \, dz + \frac{\tau}{2} g' \int_{\Gamma_1} |u|^2 dz + \tau g \int_{\Gamma_1} u_0 u_1 dz
\]

which yields the assertion.

Q.E.D.

Define

\[q(x) := x - x_0. \]

Lemma 3.4 Let

\[f := \alpha (\nabla \times h) \times \hat{H} - \gamma \nabla \theta. \]

Then

\[
\frac{d}{dt} \int_{\Omega} u_1 q^k u_1 \, dx = \int_{\Gamma} \frac{\partial u}{\partial n_A} q^k u_1 \, dz - \int_{\Omega} \sum_{ij} u^m_i q^k u^i_j \, dx \\
- \frac{1}{2} \int_{\Gamma} q^k \nu^k C_{ijm} u^m_i u^i_j \, dz + \frac{1}{2} \int_{\Gamma} q^k |u|^2 \, dz \\
+ \frac{1}{2} \int_{\Gamma} q^k C_{ijm} u^m_i u^i_j \, dx - \frac{1}{2} \int_{\Omega} q^k |u_1|^2 \, dx + \int_{\Omega} f q^k u_1 \, dx.
\]

Proof: Multiplying (1.1) by \(q^k u_1 \) and integrating yields

\[
\frac{d}{dt} \int_{\Omega} u_1 q^k u_1 \, dx = \int_{\Omega} u_{1t} q^k u_1 \, dx + \int_{\Omega} u_1 q^k u_{1,kl} \, dx \\
= \int_{\Omega} (C_{ijm} u^m_i, j q^k u^i_k) \, dx + \frac{1}{2} \int_{\Omega} q^k |u_1|^2 \, dx + \int_{\Omega} f q^k u_1 \, dx \\
= \int_{\Gamma} C_{ijm} u^m_j \nu^i q^k u^i_k \, dz - \int_{\Gamma} C_{ijm} u^m_i \partial_j (q^k u^i_k) \, dx \\
+ \frac{1}{2} \int_{\Gamma} q^k \nu^k |u_1|^2 \, dz - \frac{1}{2} \int_{\Omega} q^k |u_1|^2 \, dx + \int_{\Omega} f q^k u_1 \, dx.
\]
Using the symmetry of the moduli C_{ijml}, we conclude

$$
\frac{d}{dt} \int_{\Omega} u_t q^k u_k dx = \int_{\Gamma} \frac{\partial u}{\partial \nu_A} q^k u_k dz - \int_{\Omega} C_{ijml} u^m_i q^k u^i_k dx - \frac{1}{2} \int_{\Gamma} q^k (C_{ijml} u^m_i u^i_j)_k dx + \frac{1}{2} \int_{\Gamma} q^k |u_t|^2 dz
$$

$$
- \frac{1}{2} \int_{\Omega} q^k |u_t|^2 dx + \int f q^k u_k dx.
$$

Q.E.D.

From Lemma 3.4 we get using $q^k = x^k - x_0^k$

$$
\frac{d}{dt} \int_{\Omega} u_t q^k u_k dx = \int_{\Gamma} \frac{\partial u}{\partial \nu_A} q^k u_k dz - \frac{1}{2} \int_{\Omega} (u_t^2 + C_{ijml} u^m_i u^i_k)_k dx
$$

$$
+ \int_{\Omega} (C_{ijml} u^m_i u^i_k - |u_t|^2) dx - \frac{1}{2} \int_{\Gamma} q^k |u_t|^2 dz + \frac{1}{2} \int_{\Gamma} q^k C_{ijml} u^m_i u^i_k dz
$$

$$
+ \frac{1}{2} \int_{\Gamma} q^k |u_t|^2 dx + \int f q^k u_k dx. \tag{3.5}
$$

Using the differential equation (1.1) we obtain

$$
\frac{d}{dt} \int_{\Omega} uu_t dx = \int_{\Omega} uu_t dx + \int |u_t|^2 dx
$$

$$
= \int_{\Omega} u \left\{ (C_{ijml} u^m_i)_{,j} + f^i \right\} dx + \int |u_t|^2 dx
$$

$$
= \int_{\Omega} u \frac{\partial u}{\partial \nu_A} dx - \int (C_{ijml} u^m_i u^i_j - |u_t|^2) dx + \int uf dx
$$

which implies

$$
\int_{\Omega} (C_{ijml} u^m_i u^i_j - |u_t|^2) dx = - \frac{d}{dt} \int_{\Omega} uu_t dx + \int u \frac{\partial u}{\partial \nu_A} dx + \int uf dx.
$$

Substituting this identity into (3.5) yields

$$
\frac{d}{dt} \left\{ \int_{\Omega} u_t q^k u_k dx + \int_{\Omega} uu_t dx \right\} = \chi(t)
$$

16
\[
\begin{align*}
&= \int_{\Gamma} \frac{\partial u}{\partial \nu} q^k u_x dx - \frac{1}{2} \int_{\Omega} (|u_t|^2 + C_{ijm} u_i^n u_j^i) dx \\
&\quad + \int_{\Gamma} u \frac{\partial u}{\partial \nu} dz + \int_{\Omega} u f dx - \frac{1}{2} \int_{\Gamma} q^k \nu^k C_{ijm} u_i^n u_j^i dz \\
&\quad + \frac{1}{2} \int_{\Gamma} q^k \nu^k |u_t|^2 dz + \int f q^k u_x dx.
\end{align*}
\]

Since \(u = 0 \) on \(\Gamma_0 \) we have
\[
\int_{\Gamma_0} \frac{\partial u}{\partial \nu} q^k u_x dz = \int_{\Gamma_0} q^k \nu^k \left| \frac{\partial u}{\partial \nu} \right|^2 dz, \quad (3.6)
\]
\[
\int_{\Gamma_0} \text{div} \, u \nu q^k u_x dz = \int_{\Gamma_0} q^k \nu^k |\text{div} \, u|^2 dz, \quad (3.7)
\]
\[
\int_{\Gamma_0} (\nabla u) \nu q^k u_x dz = \int_{\Gamma_0} q^k \nu^k |\nabla u|^2. \quad (3.8)
\]

Observing that (1.5) yields

\[
\frac{\partial u}{\partial \nu A} = \lambda \text{div} \, u \nu + \mu \frac{\partial u}{\partial \nu} + \mu (\nabla u) \nu,
\]

we conclude from (3.6)–(3.8)
\[
\int_{\Gamma} \frac{\partial u}{\partial \nu A} q^k u_x dz = \int_{\Gamma_0} q^k \nu^k \left\{ \mu \left| \frac{\partial u}{\partial \nu} \right|^2 + (\mu + \lambda) |\text{div} \, u|^2 \right\} dz \\
\quad + \int_{\Gamma_1} \frac{\partial u}{\partial \nu A} q^k u_x dz
\]

which implies
\[
\frac{d}{dt} \chi(t) = \int_{\Gamma_0} q^k \nu^k \left\{ \mu \left| \frac{\partial u}{\partial \nu} \right|^2 + (\mu + \lambda) |\text{div} \, u|^2 \right\} dz \\
\quad + \int_{\Gamma_1} \frac{\partial u}{\partial \nu A} q^k u_x dz - \frac{1}{2} \int_{\Omega} (|u_t|^2 + C_{ijm} u_i^n u_j^i) dx \\
\quad - \frac{1}{2} \int_{\Gamma} q^k \nu^k C_{ijm} u_i^n u_j^i dz + \int_{\Gamma} u \frac{\partial u}{\partial \nu A} dz \\
\quad + \int_{\Omega} u f dx + \frac{1}{2} \int_{\Gamma_1} q^k \nu^k |u_t|^2 dz + \int f q^k u_x dx \quad (3.9)
\]

Since on \(\Gamma_1 \) we have

\[
q^k \nu^k \geq a > 0
\]

17
we get
\[
\int_{\Gamma_1} \frac{\partial u}{\partial \nu_A} q^k u_k \, dz \leq c \int \left| \frac{\partial u}{\partial \nu_A} \right|^2 \, dz + \frac{1}{8} \int q^k \nu^k C_{ijml} u_j^m u_l^i \, dz, \tag{3.10}
\]

\[
\int_{\Gamma_1} u \frac{\partial u}{\partial \nu_A} \, dz \leq c \int \left| \frac{\partial u}{\partial \nu_A} \right|^2 \, dz + \frac{1}{8} \int C_{ijml} u_j^m u_l^i \, dz, \tag{3.11}
\]

where \(c > 0 \) denotes various positive constants. Observing that on \(\Gamma_0 \)
\[
C_{ijml} u_j^m u_l^i = \mu \left| \frac{\partial u}{\partial \nu} \right|^2 + (\lambda + \mu)(\text{div} \, u)^2
\]
and using (3.9)-(3.11) we obtain
\[
\frac{d}{dt} \chi(t) \leq -\frac{1}{4} \int_{\Omega} (|u_t|^2 + C_{ijml} u_j^m u_l^i) \, dx + \frac{1}{2} \int_{\Gamma_1} \left| \frac{\partial u}{\partial \nu_A} \right|^2 \, dz + \frac{1}{2} \int_{\Gamma_1} q^k \nu^k C_{ijml} u_j^m u_l^i \, dz + \int_{\Omega} u f \, dx + \int_{\Omega} f q^k u_k \, dx.
\]

On \(\Gamma_1 \) we have using (3.2)
\[
\frac{\partial u}{\partial \nu_A} = \partial_\nu u + \alpha H \nu^3 \nu + \alpha H \nu^3
\]
\[
= -\tau u_t - \tau \nu u - \tau \int_0^t g'(t-s)(u(s, \cdot) - u(t, \cdot)) \, ds + \tau \nu u_0 + \alpha H \nu^3 \nu - \alpha H \nu^3.
\]

Together with
\[
\int_0^t g'(t-s)(u(s, \cdot) - u(0, \cdot)) \, ds \leq \left(\int_0^t |g'(s)| \, ds \right)^{1/2} (|g'| \square u)^{1/2}
\]
we arrive at
\[
\int_{\Omega} |f|^2 \, dx \leq c \int_{\Omega} |\nabla \times h|^2 \, dx + c \int_{\Omega} |\nabla \theta|^2 \, dx,
\]
\[
\int_{\Gamma_1} \left| \frac{\partial u}{\partial \nu_A} \right|^2 \, dz \leq c \int_{\Gamma_1} (|u_t|^2 + g^2 |u|^2 + |g'| \square u) \, dx + c g^2 F(0) + c \int_{\Omega} |\nabla \times h|^2 \, dx.
\]
Using
\[\int_\Omega |h|^2 dx + \int_\Omega |\nabla h|^2 dx \leq c \int_\Omega |\nabla \times h|^2 dx \]
in our situation because of the properties of \(h \) and the fact that \(\Omega \) is simply connected (see page 358 in [5] or page 157 in [10]), we thus have proved

Lemma 3.5
\[\frac{d}{dt} \chi(t) \leq -\frac{1}{2} \int_\Omega (|u|^2 + C_{ijm} u_m u^i u^j) dx - \frac{1}{4} \int_\Gamma C_{ijm} u^m u^i u^j dz \]
\[+ c \int_\Omega (|\nabla \times h|^2 + |\nabla \theta|^2) dx + c \int_\Gamma |u|^2 dz \]
\[+ c \int_{\Gamma_1} |g'| \square u dz + cg^2 F(0). \]

Now we can formulate and prove the main results of this section. First we assume the case where the kernel decays exponentially.

Theorem 3.6 Let \(g \) be an exponentially decaying resolvent kernel as in (1.16), and assume (3.1). Then the energy \(F \) defined in (3.3), which is associated to the solution of the initial boundary value problem (1.1)–(1.3), (1.7), (1.10), (1.11) decays exponentially, i.e.

\[\exists d_0, d_1 > 0 \quad \forall t \geq 0 : \quad F(t) \leq d_0 e^{-d_1 t} F(0). \]

Proof: Let
\[L(t) := NF(t) + \chi(t), \quad (3.12) \]
\(N > 0 \) sufficiently large. Then there are positive constants \(k_0, k_1 \) such that for all \(t \geq 0 \)
\[k_0 F(t) \leq L(t) \leq k_1 F(t). \quad (3.13) \]

Moreover, for \(N \) large enough, using the Lemmas 3.3 and 3.5,
\[\frac{d}{dt} L(t) \leq -k_2 F(t) + cg^2(t) F(0) \]
with a constant \(k_2 > 0 \). Here we used the assumption (1.16) in order to conclude the following estimates
\[-\frac{\tau}{2} \int_{\Gamma_1} g'' \square u dz \leq \bar{c} \int_{\Gamma_1} g' \square u dz \]
and
\[\frac{\tau}{2} \int_{\Gamma_1} g' |u|^2 dz \leq -\bar{c} \int_{\Gamma_1} g |u|^2 dz \]
for the corresponding two terms appearing in Lemma 3.3, where \(\bar{c} \) is a positive constant. Thus we obtain
\[\frac{d}{dt} L(t) \leq -k_2 \frac{k_1}{k_1} L(t) + cg^2(t) F(0). \]

19
Using the exponential decay of g we conclude

$$
\exists \tilde{d}_0, \tilde{d}_1 > 0 \quad \forall t \geq 0: \quad L(t) \leq \tilde{d}_0 e^{-\tilde{d}_1 t} L(0)
$$

which implies the assertion by using (3.13) again.

Q.E.D.

Finally, we consider the case where g decays polynomially as in (1.17).

Theorem 3.7 Let g be a polynomially decaying resolvent kernel as in (1.17), and assume (3.1). Then the energy F defined in (3.3), which is associated to the initial boundary value problem (1.1)-(1.3), (1.7), (1.10), (1.11), decays polynomially, i.e.

$$
\exists d_2 > 0 \quad \forall t \geq 0: \quad F(t) \leq \frac{d_2}{(1 + t)^p} F(0).
$$

Proof: We define the functional L as in (3.12) and we have the equivalence to the energy term F as given in (3.13) again. A negative term

$$
-c g(t) \int_{\Gamma_1} |u|^2(t, z) dz
$$

can be obtained from Lemma 3.5 and the estimate

$$
g(t) \int_{\Gamma_1} |u|^2(t, z) dz \leq c \int_{\Omega} G_{ij}(t) u_i^* u_j(t, x) dx.
$$

From Lemma 3.3 and Lemma 3.5, using the properties of g'' from the assumption (1.17) for the term

$$
-\frac{\tau}{2} \int_{\Gamma_1} g'' \square u \, dz,
$$

we obtain

$$
\frac{d}{dt} L(t) \leq -k_3 \left(M(t) + g(t) \int_{\Gamma_1} |u|^2 dz + N \int_{\Gamma_1} |g'|^{1+\frac{4}{p+1}} \square u \, dz \right)
$$

$$
+ k_4 \int_{\Gamma_1} |g'| \square u \, dz + c g^2(t) F(0),
$$

(3.14)

where k_3, k_4 denote positive constants and $M = M(t)$ was defined in (3.4).

In the sequel we need several inequalities collected in the next three Lemmas which are based on those from [11], partially extending those.

Lemma 3.8 Let m and h be integrable functions, and let $0 \leq r < 1$ and $q > 0$. Then, for $t \geq 0$:

$$
\int_0^t |m(t - \tau) h(\tau)| d\tau \leq
$$

$$
\left(\int_0^t |m(t - \tau)|^{1+\frac{r}{q}} |h(\tau)| d\tau \right)^{\frac{q}{q+1}} \left(\int_0^t |m(t - \tau)|^r |h(\tau)| d\tau \right)^{\frac{1}{q+1}}.
$$

20
PROOF: Define
\[
v(\tau) := |m(t - \tau)|^{1 - \frac{q}{q+1}}|h(\tau)|^{\frac{q}{q+1}},
\]
\[
w(\tau) := |m(t - \tau)|^{\frac{1}{q+1}}|h(\tau)|^{\frac{q}{q+1}}.
\]
Then, for fixed \(t \geq 0 \),
\[
|m(t - \tau)h(\tau)| = |v(\tau) h(\tau)|.
\]
An application of Hölder’s inequality with exponents
\[
\delta = \frac{q}{q+1} \quad \text{for } v
\]
\[
\delta^* = q + 1 \quad \text{for } w
\]
gives the assertion of Lemma 3.8.

Q.E.D.

Lemma 3.9 Let \(p > 1 \), \(0 \leq r < 1 \) and \(t \geq 0 \). Then we have for \(r > 0 \):
\[
\int_{\Gamma_1} |g'\square u| \, dz \leq 2 \left(\int_0^t |g' (\tau)|^p \, d\tau \right)^{\frac{1}{p}} \left(\int_{\Gamma_1} |g'|^{1 + \frac{1}{p+1}} \, dz \right)^{\frac{1}{p+1}},
\]
and for \(r = 0 \):
\[
\int_{\Gamma_1} |g'\square u| \, dz \leq 2 \left(\int_0^t \|u(\tau, \cdot)\|^2_{L^2(\Gamma_1)} \, d\tau + t \|u(\cdot, \cdot)\|^2_{L^2(\Gamma_1)} \right)^{\frac{1}{p+2}} \left(\int_{\Gamma_1} |g'|^{1 + \frac{1}{p+1}} \, dz \right)^{\frac{p+1}{p+2}}.
\]

PROOF: Apply Lemma 3.8 with \(m(\tau) := |g'(\tau)| \), \(h(\tau) := \int_{\Gamma_1} |u(t) - u(\tau)|^2 \, dz \) and \(q := (1-r)(p+1) \) (t fixed). This proves Lemma 3.9.

Q.E.D.

Lemma 3.10 Let \(f \geq 0 \) be differentiable, let \(\alpha > 0 \) and let \(f \) satisfy
\[
f'(t) \leq \frac{-\tilde{c}_1}{f(0)^{1/\alpha}} f(t)^{1 + \frac{1}{\alpha}} + \frac{\tilde{c}_2}{(1 + t)^\beta} f(0)
\]
for \(t \geq 0 \), positive constants \(\tilde{c}_1, \tilde{c}_2 \) and
\[
\beta \geq \alpha + 1.
\]
Then there exists a constant \(\tilde{c}_3 > 0 \) such that for \(t \geq 0 \):
\[
f(t) \leq \frac{\tilde{c}_3}{(1 + t)^\alpha} f(0).
\]
PROOF: Let $t \geq 0$ and

$$F(t) := f(t) + \frac{2\tilde{c}_2}{\alpha} (1 + t)^{-\alpha} f(0).$$

Then

$$F' = f' - 2\tilde{c}_2 (1 + t)^{-(\alpha + 1)} f(0)$$

$$\leq \frac{-c}{f(0)^{1/\alpha}} (1 + t)^{-(\alpha + 1)} f(0)^{1 + \frac{1}{\alpha}}$$

where we used $\beta \geq \alpha + 1$. Hence

$$F' \leq \frac{-c}{F(0)^{1/\alpha}}$$

Integration yields

$$F(t) \leq \frac{F(0)}{(1 + ct)^\alpha} \leq \frac{c}{(1 + t)^\alpha} f(0)$$

whence

$$f(t) \leq \frac{\tilde{c}_3}{(1 + t)^\alpha} f(0)$$

follows for some $\tilde{c}_3 > 0$, which proves Lemma 3.10.

Q.E.D.

Applying Lemma 3.9 with $r > 0$ we get

$$\int_{\gamma_1} |g'|^{1 + \frac{1}{p-1}} \Box u \, dz \geq$$

$$\frac{c}{\left(\int_0^t |g'|^{r(\tau)} d\tau \right)^{1 + \frac{1}{(1-r)(p+1)}}} \left(\int_{\gamma_1} |g'| \Box u \, dz \right)^{1 + \frac{1}{(1-r)(p+1)}}$$

(with $c = c(r)$ as long as r is not yet fixed). On the other hand we have

$$\left(c \int_{\gamma_1} |u|^2 \, dz + M \right)^{1 + \frac{1}{(1-r)(p+1)}} \leq c F(0)^{1 + \frac{1}{(1-r)(p+1)}} \left(M + c g \int_{\gamma_1} |u|^2 \, dz \right).$$

We conclude from (3.14) using the last two inequalities:

$$\frac{d}{dt} L(t) \leq \frac{-c}{F(0)^{1 + \frac{1}{(1-r)(p+1)}}} \left[\left(M + c g \int_{\gamma_1} |u|^2 \, dz \right)^{1 + \frac{1}{(1-r)(p+1)}} \right.$$
if

\[r > \frac{1}{p+1} \]

(such that \(\int_0^\infty |g'(\tau)|^r d\tau < \infty \)). This implies, using (3.13),

\[
\frac{d}{dt} L(t) \leq \frac{-\tilde{c}}{L(0)^{1/r^*}} L(t)^{1+\frac{1}{r^*+1}} + cg^2(t)L(0)
\]

(3.15)

with some \(\tilde{c} > 0 \). Lemma 3.10 with \(f = L, \alpha = (1-r)(p+1) \) and \(\beta = p^2 \) gives

\[L(t) \leq \frac{c}{(1+t)^{(1-r)(p+1)}} L(0). \]

(3.16)

Choosing \(1 \geq r > \frac{1}{p+1} \) such that

\((1-r)(p+1) > 1 \)

or, equivalently,

\[\frac{1}{p+1} < r < \frac{p}{p+1}, \]

we obtain from the inequality (3.16)

\[
\int_0^\infty F(\tau)d\tau \leq c \int_0^\infty L(\tau)d\tau \leq cL(0)
\]

(3.17)

and

\[
t\|u(t,\cdot)\|_{L^2(\Omega_1)}^2 \leq cL(t) \leq cL(0)
\]

(3.18)

as well as

\[
\int_0^t \|u(\tau,\cdot)\|_{L^2(\Omega_1)}^2 d\tau \leq c \int_0^\infty L(\tau)d\tau \leq cL(0).
\]

(3.19)

With the estimates (3.17)–(3.19) we conclude, using Lemma 3.9 again, now with \(r = 0 \):

\[
\int_{\Omega_1^*} |g'|^{1+\frac{1}{r^*+1}} \Delta u \, dz \geq \frac{c}{F(0)^{1/r^*+1}} \left(\int_{\Omega_1^*} |g'| \Delta u \, dz \right)^{1+\frac{1}{r^*+1}},
\]

and hence, with the same arguments as in the derivation of (3.15),

\[
\frac{d}{dt} L(t) \leq \frac{-\tilde{c}}{L(0)^{1/r^*}} L(t)^{1+\frac{1}{r^*+1}} + cg^2(t)L(0).
\]

This implies by applying Lemma 3.10 again

\[L(t) \leq \frac{c}{(1+t)^p} L(0) \]

and hence, by (3.13) and for some \(d_2 > 0 \):

\[F(t) \leq \frac{c}{(1+t)^p} F(0) \]

23
which completes the proof of Theorem 3.7.

Q. e. d.

Remark: For a thermoviscoelastic system discussed in [11] it was shown that a polynomial relaxation function cannot lead to an exponential decay. This gives a hint for the conjecture that the polynomial decay rate obtained here cannot be replaced by an exponential decay result. Indeed, for the system of pure elasticity, with the memory type boundary as discussed here, the exponential decay for exponential kernels was shown in [1]. A merely polynomial kernel there can not lead to a general exponential decay result, which can be seen as follows.

In one space dimension the system of equations of elasticity in \(\Omega := (0, 1) \) with memory type boundary condition reduces to

\[
\begin{align*}
\frac{\partial u}{\partial t} - \alpha \frac{\partial^2 u}{\partial x^2} &= 0, \\
u(t = 0) &= u_0, \\
\frac{\partial u}{\partial t} (t = 0) &= u_1, \\
u(x = 0) &= 0, \\
(\frac{\partial u}{\partial x} + (u_x * r))(x = 1) &= 0,
\end{align*}
\]

where \(\alpha \) is a positive constant. The energy is given by

\[E(t) := \int_0^1 \left(|u_t|^2 + \alpha |u_x|^2 \right) (t, x) \, dx. \]

We will argue by contradiction. Assume

\[\exists c > 0 \ \exists \delta > 0 \ \forall t \geq 0 : \ E(t) \leq ce^{-\delta t} E(0), \]

and let us take

\[u_0 = 0, \quad u_1 \in C_0^\infty(\Omega) \setminus \{0\} \]

and for the kernel \(b \) with \(b(t) = -\tau'(t)/\tau(0) \):

\[b(t) = \frac{1}{(1 + t)^p} \]

for some \(p > 1. \)

With the conditions above, \(v := u_t \) satisfies the same system (3.20)-(3.22) as \(u \), due to the choice of the initial data in (3.24). Hence also the energy associated to \(v \) decays exponentially, which implies, using the differential equation and Sobolev’s imbedding theorem, that there is a constant \(c_0 \) depending on the initial data such that for all \(t \geq 0 \):

\[|u(t, 1)| + |u_x(t, 1)| \leq c_0 e^{-\delta t}. \]

The boundary condition (3.22) can also be stated as (cp. (1.13))

\[(-b * u_x + u_x + \tau u)(x = 1) = 0, \]

which implies by (3.25)

\[\left| \int_0^t \frac{1}{(1 + t - s)^p} u_x(s, 1) \, ds \right| \leq c_0 e^{-\delta t}. \]
On the other hand, by dividing the integral from 0 to \(t \) into two parts from 0 to \(t/2 \) and from \(t/2 \) to \(t \), it can be easily seen that for any \(m > 1 \)

\[
\left| \int_0^t \frac{1}{(1 + t - s)^m} u_x(s, 1) \, ds \right| \leq \frac{c_0}{(1 + t)^m}.
\]

For \(t \geq 0 \) and \(\beta \geq 0 \) let

\[
G_\beta(t) := \int_{t+\beta}^{\infty} u_x(s, 1) \, ds.
\]

Then

\[
\int_0^t \frac{1}{(1 + t - s)^p} u_x(s, 1) \, ds = \left[\frac{1}{(1 + s)^p} G_\beta(t - s) \right]_{s=0}^{s=t} + p \int_0^t \frac{1}{(1 + s)^{p+1}} G_\beta(t - s) \, ds
\]

\[
= \frac{G_\beta(0)}{(1 + t)^p} - G_\beta(t) + O\left(\frac{1}{(1 + t)^{p+1}} \right),
\]

where we used (3.27) for \(m = p + 1 \).

Case 1: \(\exists \beta \in [0, \infty) : G_\beta(0) \neq 0 \).

Thus, from (3.28),

\[
\lim_{t \to \infty} \left| \int_0^t \frac{1}{(1 + t - s)^p} u_x(s, 1) \, ds \right| (1 + t)^p = G_\beta(0) \neq 0
\]

which is a contradiction to (3.26).

Case 2: \(\forall \beta \in [0, \infty) : G_\beta(0) = 0 \).

This implies

\[\forall t \geq 0 : u_x(t, 1) = 0 \]

and hence, using the boundary condition and the initial condition \(u_0 = 0 \), we see that \(u \) satisfies

\[
u_{tt} - \alpha u_{xx} = 0,
\]

\[u(t = 0) = 0, \quad u_t(t = 0) = u_1,
\]

\[u(x = 0) = 0, \quad u(x = 1) = 0,
\]

which implies that the energy

\[
\mathcal{E}(t) = \int_0^1 |u_1|^2(x) \, dx
\]

is constant being a contradiction to the assumption (3.23).

References

Jaime E. Muñoz Rivera, Department of Research and Development, National Laboratory for Scientific Computation, Rua Getúlio Vargas 333, Quitandinha, CEP 25651-070 Petrópolis, RJ, Brasil

e-mail: rivera@lncc.br

Reinhard Racke, Department of Mathematics and Statistics, University of Konstanz, Box D 187, 78457 Konstanz, Germany

e-mail: reinhard.racke@uni-konstanz.de