Assignment 6

Available Since: 28 May 2015 Due Date: 4 June 2015, 11:45 a.m.
You are permitted and encouraged to work in groups of two.

— NOTE: As June 4th is a holiday, please hand in handwritten solutions in the tutorial on
Wednesday 3rd or send a digital version by email! —

Exercise 1: Grid drawing

Find a straight line drawing of the following plane graph on a grid. Make sure your drawing
takes the minimum grid size.

Exercise 2: Orthogonal drawing

Find an orthogonal drawing of the following plane graph.

Exercise 3: Orthogonal drawing

Show that there is at least one edge having more than two bends in any planar orthogonal
layout of an octahedron.

Hint: Consider the bends of edges incident to the outer face.
Exercise 4: Canonical ordering

Compute the canonical ordering for the following graph:

Exercise 5: Canonical ordering

Let $G = (V, E)$ be a triangulated plane graph of $n \geq 3$ vertices, and let v_1, v_2 and v_n be the vertices on the outer face. Let $\pi = v_1, v_2, \ldots, v_n$ be an ordering of all vertices in G. For each integer $k, 3 \leq k \leq n$, we denote by G_k the plane subgraph of G induced by the k vertices v_1, v_2, \ldots, v_k.

Prove that the following two definitions of a canonical ordering are equivalent to each other.

Definition 1 We call π a canonical ordering if the following conditions hold for each index $k, 3 \leq k \leq n$:

- G_k is 2-connected and internally triangulated
- (v_1, v_2) is an outer edge of G_k
- if $k + 1 \leq n$, then vertex v_{k+1} is located in the outer face of G_k, and all neighbours of v_{k+1} in G_k appear on the outer cycle (boundary of the outer face) of G_k consecutively.

Definition 2 We call π a canonical ordering if for each index $k, 3 \leq k < n$, there are $1 \leq i_1 < i_2 < k < j \leq n$ such that $\{v_{i_1}, v_k\}, \{v_{i_2}, v_k\}, \{v_k, v_j\} \in E$.