Chapter 8: Concurrency Control on Relational Databases

• 8.2 Predicate-Oriented Concurrency Control
• 8.3 Relational Update Transactions
• 8.4 Exploiting Transaction-Program Knowledge
• 8.5 Lessons Learned

“Knowledge without wisdom is a load of books on the back of an ass.”
(Japanese proverb)
Relational Databases

• Database consists of tables
• Operations on tables and databases are
 – Queries (select-from-where expressions)
 – Insertions
 – Deletions
 – Modifications
• Queries and updates use (single or sets of) predicates or conditions (where clause)
• Sets C of conditions span hyperplanes H(C) of tuples
• Hyperplanes can be subject to locking
Example 8.1

<table>
<thead>
<tr>
<th>Emp</th>
<th>Name</th>
<th>Department</th>
<th>Position</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jones</td>
<td>Service</td>
<td>Clerk</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td>Meier</td>
<td>Service</td>
<td>Clerk</td>
<td>22000</td>
</tr>
<tr>
<td></td>
<td>Paulus</td>
<td>Service</td>
<td>Manager</td>
<td>42000</td>
</tr>
<tr>
<td></td>
<td>Smyth</td>
<td>Toys</td>
<td>Cashier</td>
<td>25000</td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td>Sales</td>
<td>Clerk</td>
<td>28000</td>
</tr>
<tr>
<td></td>
<td>Albert</td>
<td>Sales</td>
<td>Manager</td>
<td>38000</td>
</tr>
</tbody>
</table>

Update transaction t:

(a) Delete From Emp
 Where Department = ‘Service’
 And Position = ‘Manager’

(b) Insert Into Emp Values
 (‘Smith’, ‘Service’, ‘Manager’, 40000)

(c) Update Emp Set Department = ‘Sales’
 Where Department = ‘Service’
 And Position <> ‘Manager’

(d) Insert Into Emp Values
 (‘Stone’, ‘Service’, ‘Clerk’, 13000)

Retrieval transaction q:

Select Name, Position, Salary
From Emp
Where Department = ‘Service’

Retrieval transaction p:

Select Name, Position, Salary
From Emp
Where Department = ‘Sales’

Observations:

• Interleaving q with t leads to inconsistent read known as “phantom problem”
• Locking existing records cannot prevent this problem
Predicate Locking

- Associate with each operation on table $R(A_1, ..., A_n)$ a set C of conditions that covers a set $H(C)$ of existing or conceivable tuples with $H(C) = \{\mu \in \text{dom}(A_1) \times ... \times \text{dom}(A_n) \mid \mu \text{ satisfies } C\}$
- Each operation locks its $H(C)$

 [Update operations need to lock pre- and postcondition $H(C)$ and $H(C')$]

Example 8.2:

C_a: Department = ‘Service’ ∧ Position = ‘Manager’

C_b: Name=‘Smith’ ∧ Department=‘Service’ ∧ Position=‘Manager’ ∧ Salary=40000

C_c: Department = ‘Service’ ∧ Position ≠ ‘Manager’

C_c‘: Department = ‘Sales’ ∧ Position ≠ ‘Manager’

C_d: Name=‘Stone’ ∧ Department=‘Service’ ∧ Position=‘Clerk’ ∧ Salary=13000

C_q: Department = ‘Service’

C_p: Department = ‘Sales’

$H(C_a) \cap H(C_q) \neq \emptyset$, $H(C_b) \cap H(C_q) \neq \emptyset$, $H(C_c) \cap H(C_q) \neq \emptyset$, $H(C_d) \cap H(C_q) \neq \emptyset$

$H(C_c) \cap H(C_q) = \emptyset$

$H(C_a) \cap H(C_p) = H(C_b) \cap H(C_p) = H(C_c) \cap H(C_p) = H(C_d) \cap H(C_p) = \emptyset$

$H(C_c) \cap H(C_p) \neq \emptyset$
Precision Locking

• Predicate locks on predicates C_t and $C_{t'}$
on behalf of transactions t and t' in modes m_t and $m_{t'}$are compatible iff
 • $t = t'$ or
 • both m_t and $m_{t'}$ are read (shared) mode or
 • $H(C_t) \cap H(C_{t'}) = \emptyset$

• Testing whether $H(C_t) \cap H(C_{t'}) = \emptyset$ is NP-complete

• For preventing the phantom problem it is sufficient that
 • queries lock predicates (intentional locks) and
 • insert, update, and delete operations lock individual records (extensional locks), and
 • compatibility is checked by testing that an update-affected record does not satisfy any of the query predicate locks
Chapter 8: Concurrency Control on Relational Databases

- 8.2 Predicate-Oriented Concurrency Control
- 8.3 Relational Update Transactions
- 8.4 Exploiting Transaction-Program Knowledge
- 8.5 Lessons Learned
Idea

- Transactions are sequences of insert, delete, or modify operations (in the style of SQL updates)

- Define notions of serializability along the lines of the classical ones

- The semantic information available on transaction effects can be exploited to allow more concurrency

- Additional concurrency can be allowed by using dependency information, in particular FDs
Transaction Syntax and Semantics

Definition 8.1 (IDM Transaction):
An **IDM transaction** over a database schema D is a finite sequence of update operations (insertions, deletions, modifications) over D.

If $t = u_1 \ldots u_m$ is an IDM transaction over a given database, the **effect** of t, $\text{eff}(t)$, is defined as

$$\text{eff}(t) := \text{eff}[u_1] \circ \ldots \circ \text{eff}[u_m]$$

- **Insertion:** expression of the form $i_R(C)$, where C specifies a tuple over R
- **Deletion:** expression of the form $d_R(C)$, where C is a set of conditions
- **Modification:** expression of the form $m_R(C_1; C_2)$ (tuples satisfying C_1 are modified so that they satisfy C_2)
Transaction Equivalence

Definition 8.2 (Transaction Equivalence):
Two IDM transactions over the same database schema are equivalent, written $t \approx t'$, if $\text{eff}(t) = \text{eff}(t')$, i.e., t and t' have the same effect.

Transaction equivalence can be decided in polynomial time:

- using a graphical illustration of transaction effects ("transition specs"")
- using a sound and complete axiomatization of "≈"

We look at the latter (but only at some of the relevant rules)
Commutativity Rules

Let C_1, C_2, C_3, C_4 be sets of conditions describing pairwise disjoint hyperplanes:

1. $i(C_1) \approx i(C_2) \approx i(C_2) \approx i(C_1)$
2. $d(C_1) \approx d(C_2) \approx d(C_2) \approx d(C_1)$
3. $d(C_1) \approx i(C_2) \approx i(C_2) \approx d(C_1)$ if $C_1 \not\subset C_2$
4. $m(C_1; C_2) \approx m(C_3; C_4) \approx m(C_3; C_4) \approx m(C_1; C_2)$ if $C_3 \not\subset C_1, C_2$ and $C_1 \not\subset C_4$
5. $m(C_1; C_2) \approx i(C_3) \approx i(C_3) \approx m(C_1; C_2)$ if $C_1 \not\subset C_3$
6. $m(C_1; C_2) \approx d(C_3) \approx d(C_3) \approx m(C_1; C_2)$ if $C_3 \not\subset C_1, C_2$
Simplification Rules

Let C_1, C_2, C_3, be sets of conditions describing pairwise disjoint hyperplanes:

1. $i(C_1) \cdot i(C_1) \Rightarrow i(C_1)$
2. $d(C_1) \cdot d(C_1) \Rightarrow d(C_1)$
3. $i(C_1) \cdot d(C_1) \Rightarrow d(C_1)$
4. $d(C_1) \cdot i(C_1) \Rightarrow i(C_1)$
5. $m(C_1; C_1) \Rightarrow \varepsilon$
6. $m(C_1; C_2) \cdot i(C_2) \Rightarrow d(C_1) \cdot i(C_2)$
7. $i(C_1) \cdot m(C_1; C_2) \Rightarrow m(C_1; C_2) \cdot i(C_2)$
8. $m(C_1; C_2) \cdot d(C_1) \Rightarrow m(C_1; C_2)$
9. $m(C_1; C_2) \cdot d(C_2) \Rightarrow d(C_1) \cdot d(C_2)$
10. $d(C_1) \cdot m(C_1; C_2) \Rightarrow d(C_1)$
11. $m(C_1; C_2) \cdot m(C_1; C_3) \Rightarrow m(C_1; C_2)$
 \hspace{1cm} \text{if } C_1 \not< C_2
12. $m(C_1; C_2) \cdot m(C_2; C_3) \Rightarrow m(C_1; C_3) \cdot m(C_2; C_3)$

These rules can be used for transaction optimization.
Definition 8.3 (Final State Serializability):
A history \(s \) for a set \(T = \{ t_1, \ldots, t_n \} \) of IDM transactions is final state serializable if \(s \approx s' \) for some serial history \(s' \) for \(T \).
Let \(\text{FSR}_{\text{IDM}} \) denote the class of all final state serializable histories (for \(T \)).

Example 8.3/4: Let
\[
t_1 = d(3) m(1; 2) m(3; 4), \quad t_2 = d(3) m(2; 3)
\]
and consider \(s = d_2(3) d_1(3) m_1(1; 2) m_2(2; 3) m_1(3; 4) \)

\(s \) is neither equivalent to \(t_1 t_2 \) nor to \(t_2 t_1 \); thus, \(s \) is not in \(\text{FSR}_{\text{IDM}} \)

However, optimizing \(t_1 \) to \(d(3) m(1; 2) \) yields
\[
s' = d_2(3) d_1(3) m_1(1; 2) m_2(2; 3) \approx t_1 t_2
\]
Testing Membership in FSR_{IDM}

Theorem 8.1:
The problem of testing whether a given history is in FSR_{IDM} is NP complete.

Thus, “exact“ testing is no easier than for page model transactions when semantic information is present.

… but: it is also no harder!
Definition 8.4 (Conflict Serializability):
A history s for a set T of n transactions is conflict serializable if the equivalence of s to a serial history can be proven using the commutativity rules alone. Let CSR_{IDM} denote the class of all conflict serializable histories (for T).

Definition 8.5 (Conflict Graph):
Let T be a set of IDM transactions and s a history for T. The conflict graph $G(s) = (T, E)$ of s is defined by: (t_i, t_j) is in E if for transactions t_i and t_j in V, $i \neq j$, there is an update u in t_i and an update u' in t_j s.t. $u <_s u'$ and uu' is not equivalent to $u'u$ (i.e., $uu' \approx u'u$ does not hold).

Theorem 8.2:
Let s be a history for a set T of transactions. Then s is in CSR_{IDM} iff $G(s)$ is acyclic.
Example 8.6

Consider \(s = m_2(1; 2) m_1(2; 3) m_2(3; 2) \)

\(G(s) \) is cyclic, so \(s \) is not in \(\text{CSR}_{IDM} \)

On the other hand, \(s \approx m_1(2; 3) m_2(1; 2) m_2(3; 2) \approx t_1 t_2 \)

so \(s \) is in \(\text{FSR}_{IDM} \)

\[\text{Consequence: } \text{CSR}_{IDM} \text{ is a strict subset of } \text{FSR}_{IDM} \]
Extended Conflict Serializability

Sometimes, the context in which a conflict occurs can make a difference:

Example: Let

\[s = d_1(0) \ m_1(0; 1) \ m_2(1; 2) \ m_1(2; 3) \]

\(G(s) \) is cyclic, but \(s \approx m_2(1; 2) \ d_1(0) \ m_1(0; 1) \ m_1(2; 3) \approx t_2 \ t_1 \)

Intutively, the conflict involving \(m_1(0; 1) \) does not exist (due to \(d_1(0) \) !

Definition 8.6 (Extended Conflict Graph / Serializability):

Let \(s \) be a history for a set \(T = \{ t_1, ..., t_n \} \) of transactions.

(i) The *extended conflict graph* \(E(s) = (T, E) \) of \(s \) is defined by:

 \((t_i, t_j) \) is in \(E \) if there is an update \(u \) in \(t_j \) s.t. \(s = s' \ u \ s'' \) and \(u \) does not commute with the projection of \(s' \) onto \(t_i \).

(ii) \(s \) is *extended conflict serializable* if \(E(s) \) is acyclic.

Let \(\text{ECS}_{\text{IDM}} \) denote the class of all extended conflict serializable histories.
Relationship between the Classes

Theorem 8.3:
\[
\text{CSR}_{\text{IDM}} \subseteq \text{ECSR}_{\text{IDM}} \subseteq \text{FSR}_{\text{IDM}}.
\]
Serializability with Functional Dependencies

Consider a relation with attributes A and B s.t. $A \rightarrow B$ holds, and the following history:

$$s = m_1(A=0, B=0; A=0, B=2) \quad m_2(A=0, B=0; A=0, B=3)$$
$$m_2(A=0, B=1; A=0, B=3) \quad m_1(A=0, B=1; A=0, B=2)$$

s is in neither of CSR_{IDM}, $ECSR_{IDM}$, FSR_{IDM}. However, the first conflict affects $(0,0)$, while the second affects $(0,1)$, and these two tuples cannot occur simultaneously in a relation satisfying the given FD! So depending on the state, $s \approx t_1 \ t_2$ or $s \approx t_2 \ t_1$.
Chapter 8: Concurrency Control on Relational Databases

- 8.2 Predicate-Oriented Concurrency Control
- 8.3 Relational Update Transactions
- **8.4 Exploiting Transaction-Program Knowledge**
- 8.5 Lessons Learned
Example 8.12:

Debit/credit:
\[t_1: r(A_1)w(A_1)r(B_1)w(B_1)\]
\[t_2: r(A_3)w(A_3)r(B_1)w(B_1)\]
\[t_3: r(A_4)w(A_4)r(B_1)w(B_1)\]

Balance:
\[t_4: r(A_2)\]
\[t_5: r(A_4)\]

Audit:
\[t_6: r(A_1)r(A_2)r(A_3)r(B_1)r(A_4)r(A_5)r(B_2)\]
Transaction Chopping

Assumption:
all potentially concurrent app programs are known in advance and
their structure and resulting access patterns can be precisely analyzed

Definition 8.8 (Transaction Chopping):
A chopping of transaction t_i is a decomposition of t_i into pieces t_{i1}, \ldots, t_{ik} s.t.
every step of t_i is contained in exactly one piece and the step order is preserved.

Definition 8.10 (Correct Chopping):
A chopping of $T=\{t_1, \ldots, t_n\}$ is correct if every execution of the transaction
pieces is conflict-equivalent to a serial history of T under a protocol with
• transaction pieces obey the execution precedences of the original programs.
• each piece is executed as a unit under a CSR scheduler.
Definition 8.9 (Chopping Graph): For a chopping of transaction set T the chopping graph $C(T)$ is an undirected graph s.t.

- the nodes of $C(T)$ are the transaction pieces
- for two pieces p, q from different transactions $C(T)$ contains a c edge between p and p' if p and q contain conflicting operations
- for two pieces p, q from the same transaction $C(T)$ contains an s edge

Theorem 8.5: A chopping is correct if the associated chopping graph does not contain an sc cycle (i.e., a cycle that involves at least one s edge and at least one c edge).

Example 8.13:

$t_1 = r(x)w(x)r(y)w(y)$
$t_2 = r(x)w(x)$
$t_3 = r(y)w(y)$
$t_{11} = r(x)w(x)$
$t_{12} = r(y)w(y)$

$C(T):$

- t_{11} to t_{12} with s
- t_1 to t_2 with c
- t_2 to t_3 with c
- t_3 to t_1 with c
Chopping Example 8.14

t_1: r(A_1)w(A_1)r(B_1)w(B_1)
t_2: r(A_3)w(A_3)r(B_1)w(B_1)
t_3: r(A_4)w(A_4)r(B_1)w(B_1)
t_4: r(A_2)
t_5: r(A_4)
t_6: r(A_1)r(A_2)r(A_3)r(B_1)r(A_4)r(A_5)r(B_2)

t_{61}: r(A_1)r(A_2)r(A_3)r(B_1)
t_{62}: r(A_4)r(A_5)r(B_2)

t_{11}: r(A_1)w(A_1)
t_{12}: r(B_1)w(B_1)
Applicability of Chopping

Directly applicable to straight-line, parameter-less SQL programs with predicate locking

Needs to conservatively derive covering program for parameterized SQL, if-then-else and loops, and needs to be conservative about c edges

Example:

Select AccountNo From Accounts Where AccountType='savings' And City = :x;
if not found then
 Select AccountNo From Accounts Where AccountType='checking' And City = :x
fi;

→

Select AccountNo From Accounts Where AccountType='savings';
Select AccountNo From Accounts Where AccountType='checking';
Chapter 8: Concurrency Control on Relational Databases

- 8.2 Predicate-Oriented Concurrency Control
- 8.3 Relational Update Transactions
- 8.4 Exploiting Transaction-Program Knowledge
- 8.5 Lessons Learned
Lessons Learned

• Predicate locking is an elegant method for concurrency control on relational databases, but has non-negligible overhead → record locking (plus index key locking) for 2-level schedules remains the practical method of choice
• Concurrency control may exploit additional knowledge about limited operation types, integrity constraints, and program structure
• Transaction chopping is an interesting tuning technique that aims to exploit such knowledge