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1. Statement of the Problem

The P versus NP problem is to determine whether every language accepted
by some nondeterministic algorithm in polynomial time is also accepted by
some (deterministic) algorithm in polynomial time. To define the problem
precisely it is necessary to give a formal model of a computer. The standard
computer model in computability theory is the Turing machine, introduced
by Alan Turing in 1936 [Tur36]. Although the model was introduced before
physical computers were built, it nevertheless continues to be accepted as the
proper computer model for the purpose of defining the notion of computable
function.

Informally the class P is the class of decision problems solvable by some
algorithm within a number of steps bounded by some fixed polynomial in
the length of the input. Turing was not concerned with the efficiency of his
machines, but rather his concern was whether they can simulate arbitrary
algorithms given sufficient time. However it turns out Turing machines can
generally simulate more efficient computer models (for example machines
equipped with many tapes or an unbounded random access memory) by at
most squaring or cubing the computation time. Thus P is a robust class,
and has equivalent definitions over a large class of computer models. Here we
follow standard practice and define the class P in terms of Turing machines.

Formally the elements of the class P are languages. Let Σ be a finite alphabet
(that is, a finite nonempty set) with at least two elements, and let Σ∗ be the
set of finite strings over Σ. Then a language over Σ is a subset L of Σ∗. Each
Turing machine M has an associated input alphabet Σ. For each string w in
Σ∗ there is a computation associated with M with input w. (The notions of
Turing machine and computation are defined formally in the appendix.) We
say that M accepts w if this computation terminates in the accepting state.
Note thatM fails to accept w either if this computation ends in the rejecting
state, or if the computation fails to terminate. The language accepted by M ,
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denoted L(M), has associated alphabet Σ and is defined by

L(M) = {w ∈ Σ∗ | M accepts w}
We denote by tM(w) the number of steps in the computation of M on input
w (see the Appendix). If this computation never halts, then tM(w) = ∞.
For n ∈ N we denote by TM(n) the worst case run time of M ; that is

TM(n) = max{tM(w) | w ∈ Σn}
where Σn is the set of all strings over Σ of length n. We say that M runs in
polynomial time if there exists k such that for all n, TM(n) ≤ nk + k. Now
we define the class P of languages by

P = {L | L = L(M) for some Turing machine M which runs in polynomial time}
The notation NP stands for “nondeterministic polynomial time”, since orig-
inally NP was defined in terms of nondeterministic machines (that is, ma-
chines that have more than one possible move from a given configuration).
However now it is customary to give an equivalent definition using the no-
tion of a checking relation, which is simply a binary relation R ⊆ Σ∗ × Σ∗
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for some finite alphabets Σ and Σ1. We associate with each such relation R
a language LR over Σ ∪ Σ1 ∪ {#} defined by

LR = {w#y | R(w, y)}
where the symbol # is not in Σ. We say that R is polynomial-time iff LR ∈ P.
Now we define the class NP of languages by the condition that a language
L over Σ is in NP iff there is k ∈ N and a polynomial-time checking relation
R such that for all w ∈ Σ∗,

w ∈ L ⇐⇒ ∃y(|y| ≤ |w|k and R(w, y))

where |w| and |y| denote the lengths of w and y, respectively.

Problem Statement: Does P = NP?

It is easy to see that the answer is independent of the size of the alphabet Σ
(we assume |Σ| ≥ 2), since strings over an alphabet of any fixed size can be
efficiently coded by strings over a binary alphabet. (For |Σ| = 1 the problem
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is still open, although it is possible that P = NP in this case but not in the
general case.)

It is trivial to show that P ⊆ NP, since for each language L over Σ, if L ∈ P
then we can define the polynomial-time checking relation R ⊆ Σ∗ ∪ Σ∗ by

R(w, y)⇐⇒ w ∈ L

for all w, y ∈ Σ∗.

Here are two simple examples, using decimal notation to code natural num-
bers: The set of perfect squares is in P and the set of composite numbers is
in NP (and not known to be in P). For the latter, the associated polynomial
time checking relation R is given by

R(a, b)⇐⇒ 1 < b < a and b|a (1)

In general the decimal notation for a natural number c is denoted by c.

2. History and Importance

The importance of the P vs NP questions stems from the successful theo-
ries of NP-completeness and complexity-based cryptography, as well as the
potentially stunning practical consequences of a constructive proof of P =
NP.

The theory of NP-completeness has its roots in computability theory, which
originated in the work of Turing, Church, Gödel, and others in the 1930’s.
The computability precursors of the classes P and NP are the classes of
decidable and c.e. (computably enumerable) languages, respectively. We
say that a language L is c.e. (or semi-decidable) iff L = L(M) for some
Turing machineM . We say that L is decidable iff L = L(M) for some Turing
machine M which satisfies the condition that M halts on all input strings
w. There is an equivalent definition of c.e. which brings out its analogy with
NP, namely L is c.e. iff there is a computable “checking relation” R(x, y)
such that L = {x | ∃yR(x, y)}.
Using the notation 〈M〉 to denote a string describing a Turing machine M ,
we define the Halting Problem HP as follows:

HP = {〈M〉 | M is a Turing machine which halts on input 〈M〉}
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Turing used a simple diagonal argument to show that HP is not decidable.
On the other hand, it is not hard to show that HP is c.e.

Of central importance in computability theory is the notion of reducibility,
which Turing defined roughly as follows: A language L1 is Turing reducible
to a language L2 iff there is an oracle Turing machine M which accepts L1,
where M is allowed to make membership queries of the form x ∈ L2? which
are correctly answered by an “oracle” for L2. Later the more restricted notion
of many-one reducibility (≤m) was introduced and defined as follows.

Definition 1: Suppose that Li is a language over Σi, i = 1, 2. Then L1 ≤m

L2 iff there is a (total) computable function f : Σ∗
1 → Σ∗

2 such that x ∈
L1 ⇐⇒ f(x) ∈ L2, for all x ∈ Σ∗

1.

It is easy to see that if L1 ≤m L2 and L2 is decidable, then L1 is decidable.
This fact provides an important tool for showing undecidability; for example
if HP ≤m L then L is undecidable.

The notion ofNP-complete is based on the following notion from computabil-
ity theory:

Definition 2: A language L is c.e.-complete iff L is c.e., and L′ ≤m L for
every c.e. language L′.

It is easy to show that HP is c.e.-complete. It turns out that most “natural”
undecidable c.e. languages are in fact c.e.-complete. Since ≤m is transitive,
to show that a c.e. language L is c.e. complete is suffices to show that
HP ≤m L.

The notion of polynomial-time computation was introduced in the 1960’s by
Cobham [Cob64] and Edmonds [Edm65] as part of the early development
of computational complexity theory (although earlier von Neumann [vN53]
in 1953 distinguished between polynomial time and exponential-time algo-
rithms). Edmonds called polynomial-time algorithms “good algorithms”,
and linked them to tractable algorithms.

It has now become standard in complexity theory to identify polynomial-time
with feasible, and here we digress to discuss this point. It is of course not
literally true that every polynomial-time algorithm can be feasibly executed
on small inputs; for example a computer program requiring n100 steps could
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never be executed on an input even as small as n = 10. Here is a more
defensible statement (see [Coo91]):

Feasibility Thesis: A natural problem has a feasible algorithm iff it has a
polynomial-time algorithm.

Examples of natural problems that have both feasible and polynomial-time
algorithms abound: Integer arithmetic, linear algebra, network flow, linear
programming, many graph problems (connectivity, shortest path, minimum
spanning tree, bipartite matching) etc. On the other hand the deep results of
Robertson and Seymour [RS95] provide a potential source of counterexamples
to the thesis: They prove that every minor-closed family of graphs can be
recognized in polynomial time (in fact in time O(n3)), but the algorithms
supplied by their method have such huge constants that they are not feasible.
However each potential counter example can be removed by finding a feasible
algorithm for it. For example a feasible recognition algorithm is known for
the class of planar graphs, but none is currently known for the class of graphs
embeddable in R

3 with no two cycles linked. (Both examples are minor-closed
families.) Of course the words “natural” and “feasible”in the thesis above
should be explained; generally we do not consider a class with a parameter
as natural, such as the set of graphs embeddable on a surface of genus k,
k > 1.

We mention two concerns related to the “only if” direction of the thesis. The
first comes from randomized algorithms. We discuss at the end of section 3
the possibility that a source of random bits might be used to greatly reduce
the recognition time required for some language. Note however that it is not
clear whether a truly random source exists in nature. The second concern
comes from Quantum computers. This computer model incorporates the idea
of superposition of states from quantum mechanics, and allows a potential
exponential speed-up of some computations over Turing machines. For ex-
ample, Shor [Sho97] has shown that some quantum computer algorithm is
able to factor integers in polynomial time, but no polynomial-time integer
factoring algorithm is known for Turing machines. However physicists have
so far been unable to build a quantum computer that can handle more than
a half-dozen bits, so this threat to the feasibility thesis is hypothetical at
present.

Returning to the historical treatment of complexity theory, in 1971 the
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present author [Coo71] introduced a notion ofNP-completeness as a polynomial-
time analog of c.e. completeness, except that the reduction used was a
polynomial- time analog of Turing reducibility rather than of many-one re-
ducibility. The main results in [Coo71] are that several natural problems, in-
cluding Satisfiability and 3-SAT (defined below) and subgraph isomorphism
are NP-complete. A year later Karp [Kar72] used these completeness re-
sults to show that 20 other natural problems are NP-complete, thus force-
fully demonstrating the importance of the subject. Karp also introduced the
now standard notation P and NP and redefined NP-completeness using the
polynomial-time analog of many-one reducibility, a definition which has be-
come standard. Meanwhile Levin [Lev73] independently of Cook and Karp
defined the notion of “universal search problem”, similar to NP-complete
problem, and gave six examples, including Satisfiability.

The standard definitions concerning NP-completeness are close analogs of
Definitions 1 and 2 above.

Definition 3: Suppose that Li is a language over Σi, i = 1, 2. Then L1 ≤p L2

(L1 is p-reducible to L2) iff there is a polynomial-time computable function
f : Σ∗

1 → Σ∗
2 such that x ∈ L1 ⇐⇒ f(x) ∈ L2, for all x ∈ Σ∗

1.

Definition 4: A language L is NP-complete iff L is in NP, and L′ ≤p L for
every language L′ in NP.

The following proposition is easy to prove: Part (b) uses the transitivity of
≤p, and part (c) follows from part (a).

Proposition 1: (a) If L1 ≤p L2 and L2 ∈ P then L1 ∈ P.
(b) If L1 is NP-complete, L2 ∈ NP, and L1 ≤p L2 then L2 is NP-complete.

(c) If L is NP-complete and L ∈ P, then P=NP.
Notice that parts (a) and (b) have close analogs in computability theory. The
analog of part (c) is simply that if L is c.e.-complete then L is undecidable.
Part (b) is the basic method for showing new problems areNP-complete, and
part (c) explains why it is probably a waste of time looking for a polynomial-
time algorithm for an NP-complete problem.

In practice a member of NP is expressed as a decision problem, and the
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corresponding language is understood to mean the set of strings coding YES
instances to the decision problem using standard coding methods. Thus the
problem Satisfiability is: Given a propositional formula F , determine whether
F is satisfiable. To show that this is in NP we define the polynomial-time
checking relation R(x, y), which holds iff x codes a propositional formula
F and y codes a truth assignment to the variables of F which makes F
true. This problem was shown to be NP-complete in [Coo71] essentially by
showing that for each polynomial-time Turing machine M which recognizes
a checking relation R(x, y) for an NP language L, there is a polynomial-
time algorithm which takes as input a string x and produces a propositional
formula Fx (describing the computation of M on input (x, y), with variables
representing the unknown string y) such that Fx is satisfiable iff M accepts
the input (x, y) for some y with |y| ≤ |x|O(1).

An important special case of Satisfiability is 3-SAT, which was also shown to
be NP-complete in [Coo71]. Instances of 3-SAT are restricted to formulas
in conjunctive normal form with three literals per clause. For example, the
formula

(P ∨Q ∨R) ∧ (P̄ ∨Q ∨ R̄) ∧ (P ∨ Q̄ ∨ S) ∧ (P̄ ∨ R̄ ∨ S̄) (2)

is a YES instance to 3-SAT since the truth assignment τ satisfies the formula,
where τ(P ) = τ(Q) = True and τ(R) = τ(S) = False.

Many hundreds of NP-complete problems have been identified, including
SubsetSum (given a set of positive integers presented in decimal notation,
and a target T, is there a subset summing to T?), many graph problems
(given a graph G, does G have a Hamiltonian cycle? Does G have a clique
consisting of half of the vertices? Can the vertices of G be colored with three
colors with distinct colors for adjacent vertices?). These problems give rise to
many scheduling and routing problems with industrial importance. The book
[GJ79] provides an excellent reference to the subject, with 300 NP-complete
problems listed in the appendix.

Associated with each decision problem in NP there is a search problem,
which is, given a string x, find a string y satisfying the checking relation
R(x, y) for the problem (or determine that x is a NO instance to the problem).
Such a y is said to be a certificate for x. In the case of an NP-complete
problem it is easy to see that the search problem can be efficiently reduced
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to the corresponding decision problem. In fact if P =NP then the associated
search problem for every NP problem has a polynomial-time algorithm. For
example, an algorithm for the decision problem Satisfiability can be used to
find a truth assignment τ satisfying a given satisfiable formula F by, for each
variable P in F in turn, setting P to True in F or False in F , which ever
case keeps F satisfiable.

The set of complements of NP languages is denoted coNP. The comple-
ment of an NP-complete language is thought not to be in NP; otherwise
NP = coNP. The set TAUT of tautologies (propositional formulas true
under all assignments) is the standard example of a coNP-complete lan-
guage. The conjecture NP �= coNP is equivalent to the assertion that no
formal proof system (suitably defined) for tautologies has short (polynomial-
bounded) proofs for all tautologies [CR79]. This fact has motivated the
development of a rich theory of proportional proof complexity [Kra95], one
of whose goals is to prove superpolynomial lower bounds on the lengths of
proofs for standard propositional proof systems.

There are interesting examples of NP problems not known to be either in P
orNP-complete. One example is the set of composite numbers, mentioned in
the first section, with checking relation (1). Here it is conjectured that there
is no polynomial-time Turing reduction from the search problem (integer
factoring) to the decision problem. Specifically, Miller [Mil76] showed how to
determine in polynomial time whether a given number is composite, assuming
the Extended Riemann Hypothesis, but a polynomial-time integer factoring
algorithm is thought unlikely to exist. In fact an efficient factoring algorithm
would break the RSA public key encryption scheme [ARS78] commonly used
to allow (presumably) secure financial transactions over the internet.

The complement of the set of composite numbers (essentially the set of
primes) was proved to be in NP by an interesting argument due to Pratt
[Pra75], and hence is unlikely to be NP-complete.

There is an NP decision problem with complexity equivalent to that of in-
teger factoring, namely

Lfact = {〈a, b〉 | ∃d(1 < d < a and d|b)}
Given an integer b > 1, the smallest prime divisor of b can be found with
about log2 b queries to Lfact, using binary search. Using Pratt’s theorem, it is
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easy to see that the complement of Lfact is also in NP: a certificate showing
〈a, b〉 is a non-instance of Lfact could be the complete prime decomposition
of b, together with Pratt certificates proving that each of the prime factors
is indeed prime. Thus it is considered unlikely that Lfact is NP-complete.

Computational complexity theory plays an important role in modern cryp-
tography [Gol00]. The security of the internet, including most financial trans-
actions, depend on complexity-theoretic assumptions such as the difficulty of
integer factoring or of breaking DES (the Data Encryption Standard). If P=
NP these assumptions are all false. Specifically, an algorithm solving 3-SAT
in n2 steps could be used to factor 200-digit numbers in a few minutes.

Although a practical algorithm for solving an NP-complete problem (show-
ingP=NP) would have devastating consequences for cryptography, it would
also have stunning practical consequences of a more positive nature, and not
just because of the efficient solutions to the many NP-hard problems impor-
tant to industry. For example, it would transform mathematics by allowing
a computer to find a formal proof of any theorem which has a proof of rea-
sonable length, since formal proofs can easily be recognized in polynomial
time. Example theorems may well include all of the CMI prize problems.
Although the formal proofs may not be initially intelligible to humans, the
problem of finding intelligible proofs would be reduced to that of finding a
recognition algorithm for intelligible proofs. Similar remarks apply to diverse
creative human endeavors, such as designing airplane wings, creating physi-
cal theories, or even composing music. The question in each case is to what
extent an efficient algorithm for recognizing a good result can be found. This
is a fundamental problem in artificial intelligence, and one whose solution it-
self would be aided by the NP-solver by allowing easy testing of recognition
theories.

Even if P �= NP it may still happen that every NP problem is susceptible
to a polynomial-time algorithm which works on “most” inputs. This could
render cryptography impossible and bring about most of the benefits of a
world in which P = NP. This also motivates Levin’s theory [Lev86, Imp95]
of average case completeness, in which the P = NP question is replaced by
the question of whether every NP problem with any reasonable probability
distribution on its inputs can be solved in time polynomial on average.

In [Sma98] Smale lists the P vs NP question as problem 3 of mathematical
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problems for the next century. However Smale is interested not just in the
classical version of the question, but also a version expressed in terms of
the field of complex numbers. Here Turing machines must be replaced by a
machine model that is capable of doing exact arithmetic and zero tests on
arbitrary complex numbers. The P vs NP question is replaced by a question
related to Hilbert’s Nullstellensatz: Is there a polynomial-time algorithm
which, given a set of k multivariate polynomials over C, determines whether
they have a common zero? See [BCSS98] for a development of complexity
theory in this setting, including the intriguing result that the Mandelbrot set
is undecidable.

The books by Papadimitriou [Pap94] and Sipser [Sip97] provide good intro-
ductions to mainstream complexity theory.

3. The Conjecture and Attempts to Prove it

Most complexity theorists believe that P�= NP. Perhaps this can be partly
explained by the potentially stunning consequences of P = NP mentioned
above, but there are better reasons. We explain these by considering the two
possibilities in turn: P= NP and P �= NP.

Suppose first that P =NP and consider how one might prove it. The obvious
way is to exhibit a polynomial-time algorithm for 3-SAT or one of the other
1000 or so known NP-complete problems, and indeed many false proofs have
been presented in this form. There is a standard toolkit available [CLR90]
for devising polynomial-time algorithms, including the greedy method, dy-
namic programming, reduction to linear programming, etc. These are the
subjects of a course on algorithms, typical in undergraduate computer sci-
ence curriculums. Because of their importance in industry, a vast number
of programmers and engineers have attempted to find efficient algorithms
for NP-complete problems over the past 30 years, without success. There
is similar strong motivation for breaking the cryptographic schemes which
assume P �= NP for their security.

Of course it is possible that some nonconstructive argument, such as the
Roberton/Seymour proofs mentioned earlier in conjunction with the Feasibil-
ity Thesis, could show that P = NP without yielding any feasible algorithm
for the standardNP-complete problems. However at present the best proven
upper bound on an algorithm for solving 3-SAT is approximately 1.5n, where
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n is the number of variables in the input formula.

Suppose on the other hand that P �= NP, and consider how one might
prove it. There are two general methods that have been tried: diagonaliza-
tion/reduction and Boolean circuit lower bounds.

The method of diaonalization with reduction has been used very successfully
in computability theory to prove a host of problems undecidable, beginning
with the Halting Problem. It has also been used successfully in complexity
theory to prove super-exponential lower bounds for very hard decidable prob-
lems. For example, Presburger arithmetic, the first-order theory of integers
under addition, is a decidable theory for which Fischer and Rabin [FR74]
proved that any Turing machine deciding the theory must use at least 22cn

steps in the worst case, for some c > 0. In general, lower bounds using diago-
nalization and reduction relativize; that is they continue to apply in a setting
in which both the problem instance and the solving Turing machine can make
membership queries to an arbitrary oracle set A. However in [BGS75] it was
shown that there is an oracle set A relative to which P = NP, suggesting
that diagonalization/reduction cannot be used to separate these two classes.
(There are nonrelativizing results in complexity theory, as will be mentioned
below.) It is interesting to note that relative to a generic oracle, P �= NP
[BI87, SCY97].

A Boolean circuit is a finite acyclic graph in which each non-input node, or
gate, is labelled with a Boolean connective; typically from {AND,OR,NOT}.
The input nodes are labeled with variables x1, ..., xn, and for each assignment
of 0 or 1 to each variable the circuit computes a bit value at each gate, in-
cluding the output gate, in the obvious way. It is not hard to see that if L is
a language over {0, 1} that is in P, then there is a polynomial-size family of
Boolean circuits 〈Bn〉 such that Bn has n inputs, and for each bit string w
of length n, when w is applied to the n input nodes of Bn, then the output
bit of Bn is 1 iff w ∈ L. In this case we say that 〈Bn〉 computes L.
Thus to prove P �=NP it suffices to prove a super-polynomial lower bound on
the size of any family of Boolean circuits solving some specific NP-complete
problem, such as 3-SAT. Back in 1949 Shannon [Sha49] proved that for almost
all Boolean functions f : {0, 1}n → {0, 1}, any Boolean circuit computing f
requires at least 2n/n gates. Unfortunately his counting argument gives no
clue as to how to prove lower bounds for problems in NP. Exponential lower
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bounds for NP problems have been proved for restricted circuit models, in-
cluding monotone circuits [Raz85, AB87] and bounded depth circuits with
unbounded fan-in gates [Has89, Smo87] (see [BS90]). However all attempts
to find even super-linear lower bounds for unrestricted Boolean circuits for
“explicitly given” Boolean functions have met with total failure; the best such
lower bound proved so far is about 4n. Razborov and Rudich [RR97] explain
this failure by pointing out that all methods used so far can be classified
as “Natural Proofs”, and Natural Proofs for general circuit lower bounds
are doomed to failure, assuming a certain complexity-theoretic conjecture
asserting that strong pseudo-random number generators exist. Since such
generators have been constructed assuming the hardness of integer factor-
ization, we can infer the surprising result that a Natural Proof for a general
circuit lower bound would give rise to a more efficient factoring algorithm
than is currently known.

The failure of complexity theory to prove interesting lower bounds on a gen-
eral model of computation is much more pervasive than the failure to prove
P �= NP. It is consistent with present knowledge that not only could Satis-
fiability have a polynomial-time algorithm, it could have a linear time algo-
rithm on a multitape Turing machine. The same applies for all 21 problems
mentioned in Karp’s original paper [Kar72]. There are complexity class sep-
arations which we know exist but cannnot prove. For example, consider the
sequence of complexity class inclusions

LOGSPACE ⊆ P⊆ NP⊆ PSPACE

A simple diagonal arugment shows that the first is a proper subset of the
last, but we cannot prove any particular adjacent inclusion is proper.

As another example, let LINEAR-SIZE be the class of languages over {0, 1}
which can be computed by a family 〈Bn〉 of Boolean circuits of size O(n).
It is not known whether either P or NP is a subset of LINEAR-SIZE,
although Kannan [Kan82] proved that there are languages in the polynomial
hierarchy (a generalization of NP) not in LINEAR-SIZE. Since if P = NP
then the polynomial hierarchy collapses to P, we have

Proposition 2: If P ⊆ LINEAR-SIZE, then P �= NP.

This proposition could be interpreted as a method of proving P �= NP, but
a more usual belief is that the hypothesis is false.
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A fundamental question in complexity theory is whether a source of random
bits can be used to substantially speed up the recognition of some languages,
provided one is willing to accept a small probability of error. The class
BPP consists of all languages L which can be recognized by a randomized
polynomial-time algorithm, with at most an exponentially small error prob-
ability on every input. Of course P ⊆ BPP, but it is not known whether
the inclusion is proper. The set of prime numbers is in BPP [SS77], but
it is not known to be in P. A reason for thinking that BPP = P is that
randomized algorithms are often successfully executed using a deterministic
pseudo-random number generator as a source of “random” bits.

There is an indirect but intriguing connection between the two questions
P = BPP and P = NP. Let E be the class of languages recognizable in
exponential time; that is the class of languages L such that L = L(M) for
some Turing machine M with TM(n) = O(2cn) for some c > 0. Let A be the
assertion that some language in E requires exponential circuit complexity.
That is

Assertion A: There is L ∈ E and ε > 0 such that for every circuit family
〈Bn〉 computing L and for all sufficiently large n, Bn has at least 2

εn gates.

Proposition 3: If A then BPP = P. If not A then P �= NP.

The first implication is a lovely theorem by Impagliazzo and Wigderson
[IW97] and the second is an intriguing observation by V. Kabanets which
strengthens Proposition 2. In fact Kabanets concludes P �= NP from a
weaker assumption than not A; namely that every language in E can be
computed by a Boolean circuit family 〈Bn〉 such that for at least one n, Bn

has fewer gates than the maximum needed to compute any Boolean function
f : {0, 1}n → {0, 1}. But there is no consensus on whether this hypothesis
is true.

We should point out that Proposition 3 relativizes, and in particular relative
to any PSPACE-complete oracle Assertion A holds and BPP = P = NP.
Thus a nonrelativizing construction will be needed if one is to prove P �=
NP by giving small circuits for languages in E. However nonrelativizing
constructions have been used successfully before, for example in showing IP
(Interactive Polynomial time) contains all of PSPSACE [Sha92]. In this and
other such constructions a key technique is to represent Boolean functions
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by multivariate polynomials over finite fields.

Appendix: Definition of Turing machine

A Turing machine M consists of a finite state control (i.e. a finite program)
attached to read/write head moving on an infinite tape. The tape is divided
into squares, each capable of storing one symbol from a finite alphabet Γ
which includes the blank symbol b. Each machine M has a specified input
alphabet Σ, which is a subset of Γ, not including the blank symbol b. At
each step in a computation M is in some state q in a specified finite set Q
of possible states. Initially a finite input string over Σ is written on adjacent
squares of the tape, all other squares are blank (contain b), the head scans
the left-most symbol of the input string, and M is in the initial state q0.
At each step M is in some state q and the head is scanning a tape square
containing some tape symbol s, and the action performed depends on the
pair (q, s) and is specified by the machine’s transition function (or program)
δ. The action consists of printing a symbol on the scanned square, moving
the head left or right one square, and assuming a new state.

Formally a Turing machine M is a tuple 〈Σ,Γ, Q, δ〉 where Σ,Γ, Q are finite
nonempty sets with Σ ⊆ Γ and b ∈ Γ − Σ. The state set Q contains three
special states q0, qaccept, qreject. The transition function δ satisfies

δ : (Q− {qaccept, qreject})× Γ→ Q× Γ× {−1, 1}
If δ(q, s) = (q′, s′, h) the interpretation is that if M is in state q scanning the
symbol s then q′ is the new state, s′ is the symbol printed, and the tape head
moves left or right one square depending on whether h is -1 or 1.

We assume that the sets Q and Γ are disjoint.

A configuration of M is a string xqy with x, y ∈ Γ∗, y not the empty string,
and q ∈ Q.

The interpretation of the configuration xqy is that M is in state q with xy
on its tape, with its head scanning the left-most symbol of y.

If C and C ′ are configurations, then C
M→ C ′ if C = xqsy and δ(q, s) =

(q′, s′, h) and one of the following holds:

C ′ = xs′q′y and h = 1 and y is nonempty.
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C ′ = xs′q′b and h = 1 and y is empty.
C ′ = x′q′as′y and h = −1 and x = x′a for some a ∈ Γ.
C ′ = q′bs′y and h = −1 and x is empty.

A configuration xqy is halting if q ∈ {qaccept, qreject}. Note that for each non-
halting configuration C there is a unique configuration C ′ such that C M→ C ′.

The computation of M on input w ∈ Σ∗ is the unique sequence C0, C1, ... of

configurations such that C0 = q0w (or C0 = q0b if w is empty) and Ci
M→ Ci+1

for each i with Ci+1 in the computation, and either the sequence is infinite
or it ends in a halting configuration. If the computation is finite, then the
number of steps is one less than the number of configurations; otherwise the
number of steps is infinite. We say that M accepts w iff the computation is
finite and the final configuration contains the state qaccept.
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