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Statistical models for social network data.



Topic of this seminar.

Statistical models for social network data.

Social networks consist of actors and relations among them.

I actors: persons, organizations, companies, countries, . . .
I relations: friendship, asking for advice, communication,

collaboration, trade, war, . . .



Topic of this seminar.

Statistical models for social network data.

Statistics can formulate precise statements about uncertainty.

What would happen, if we measured the data again?
I at a different point in time,
I on a different set of actors,
I with different environmental factors, . . .

estimate expected outcome ± variability

⇒ to explain and predict social relations and behavior.



Network models may serve several purposes.

Explaining social relations and/or behavior
I search for rules that govern the evolution of social

networks.

Predicting social relations and/or behavior
I learn from given data and predict the data yet to come.

Random generation of networks that look like real data
I algorithm engineering; empirical estimation of average

runtime or performance;
I simulation of network processes (e. g., information

spreading, spread of disease).



Graphs.

A graph is a pair G = (V ,E), where V is a finite set of vertices
and E the set of edges.

I undirected graph: E ⊆
(V

2

)
= {{u, v} ; u, v ∈ V}

I directed graph: E ⊆ V × V = {(u, v) ; u, v ∈ V}

Interpretation:
I vertices correspond to actors
I edges form the relation among

them

Graphs can be attributed and/or time-dependent.



Random graph models.

A random graph model is a probability space (G,P), where G is
a set of graphs and

P : G → [0,1]

a probability function, satisfying∑
G∈G

P(G) = 1 .



(I) Exponential random graph models (ERGM).

The ERGM class consists of random graph models (G,Pθ)
whose probability function Pθ can be written as

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

with
I gi : G → R for i = 1, . . . , k (statistics);
I θi ∈ R for i = 1, . . . , k (parameters); θ = (θ1, . . . , θk );
I normalizing constant κ defined by

κ(θ) =
∑

G′∈G

exp

(
k∑

i=1

θi · gi(G′)

)
.



(I) Commonly used statistics.

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)
gi(G) effect

number of edges density

edges connecting same attribute homophily

number of triangles transitivity

number of `-stars

1

2

3
4

5

pref. attachment



(II) Stochastic actor-oriented models.

Models for longitudinal network data: networks observed at
M ≥ 2 points in time G1, . . . ,GM .

Specify probabilities P(Gti |Gti−1) for the network at time ti given
its state at the preceeding observation time ti−1.

Transition from Gti−1 to Gti modeled by a stochastic process:
I at a given moment one probabilistically selected actor u

has the opportunity to change;
I actor u might change one of his/her out-going ties (u, v) to

maximize a random utility function

fu(β,G(u → v)) =
K∑

k=1

βksuk (G(u → v)) + Uu



The topic of this seminar are models that extend or modify one
of these frameworks

making them applicable to more general network data.



Organizational points.



General information.

Project webpage:
http://www.inf.uni-konstanz.de/algo/lehre/ss13/seminar/

Participants independently get a published paper introducing a
model extension or model alternative.

Participants give a presentation and write a term paper where
they explain and summarize (potentially criticize) the main
contribution of that paper.
Target audience/readers: your fellow students.

http://www.inf.uni-konstanz.de/algo/lehre/ss13/seminar/


Requirements and timeline.

Credit requirements: term paper and presentation.

Approximate schedule:
I (by 24 April) topic selection;
I (3 – 7 June) individual meeting

(discuss progress made so far);
I (8 – 12 July) individual meeting

(outline of presentation and term paper);
I (15 – 19 July) depends on number of participants

presentation in a plenary session
(≈ 30 minutes plus 15 minutes discussion).

I (by 30 September) term paper



Topics / papers.



(1) Multivariate ERGM.

Pattison and Wasserman (1999) “Logit models and logistic
regression for social networks: II. Multivariate relations”
British Journal of Mathematical and Statistical Psychology 52:
169–193.

Extension of exponential random graph models to multivariate
networks (more than one relation on the same set of actors).



(2) ERGM for valued edges I.

Desmarais and Cranmer (2012) “Statistical inference for
valued-edge networks: the generalized exponential random
graph model” PLoS ONE 7(1).

Extension of exponential random graph models to valued
networks (edges have associated weights).

Compare to Krivitsky (2012).



(3) ERGM for valued edges II.

Krivitsky (2012) “Exponential-family random graph models for
valued networks” Electronic Journal of Statistics 6: 1100–1128.

Extension of exponential random graph models to valued
networks (edges have associated weights).

Compare to Desmarais and Cranmer (2012).



(4) Temporal ERGM.

Hanneke, Fu, and Xing (2010) “Discrete temporal models of
social networks” Electronic Journal of Statistics, 4: 585–605.

Extension of exponential random graph models to
time-dependent networks (a network observed at two or more
points in time).

Compare to Krivitsky and Handcock (2012).



(5) Separable temporal ERGM.

Krivitsky and Handcock (2012) “A separable model for dynamic
networks” Journal of the Royal Statistical Society, in press.

Extension of exponential random graph models to
time-dependent networks (a network observed at two or more
points in time).

Compare to Hanneke, Fu, and Xing (2010).



(6) Adjusting ERGM for network size.

Krivitsky, Handcock, and Morris (2011) “Adjusting for network
size and composition effects in exponential-family random
graph models” Statistical Methodology 8(4): 319–339.



(7) SAOM with changing node set.

Huisman and Snijders (2003) “Statistical analysis of
longitudinal network data with changing composition”
Sociological Methods & Research, 32(2): 253–287.

Extension of stochastic actor-oriented models to networks
where the set of actors (nodes) changes over time.



(8) Multivariate SAOM.

Snijders, Lomi, and Torlo (2012) “A model for the multiplex
dynamics of two-mode and one-mode networks, with an
application to employment preference, friendship, and advice”
Social Networks, in press.

Extension of stochastic actor-oriented models to multiple
networks on the same set of actors.



(9) Event networks.

Butts (2008) “A relational event framework for social action”
Sociological Methodology 38(1): 155–200.

Models networks given by dyadic, time-stamped interaction
events, such as emails or phone calls.



(10) Egocentric event network.

Vu, Asuncion, Hunter, and Smyth (2011) “Dynamic egocentric
models for citation networks”. In: Proceedings of the
International Conference on Machine Learning.

Models event networks in a different way than Butts (2008).



(11) Multilevel network model.

Zijlstra, van Duijn, and Snijders (2006) “The multilevel p2
model” Methodology: European Journal of Research Methods
for the Behavioral and Social Sciences 2(1): 42–47.

Model for collections of several networks.



(12) Algebraic constraints.

Pattison, Wasserman, Robins, and Kanfer (2000) “Statistical
evaluation of algebraic constraints for social networks” Journal
of Mathematical Psychology, 44: 536–568.

Analyzes networks with multiple relations by searching for
algebraic constraints among given or compound relations.


