Assignment 1

Post Date: 25 April 2014 Due Date: 2 May 2014 Tutorial: 7 May 2014 You are permitted and encouraged to work in groups of two.

Problem 1: Linear Programming Example

Solve the following linear program graphically.

subject to

$-x_1$	+	x_2	\leq	2
		x_2	\leq	3
x_1	_	x_2	\leq	3
x_1	+	x_2	\leq	5
x_1	+	x_2	\geq	-1

 $x_1 + 2x_2$

Problem 2: Equivalent Forms

Transform the following linear program

$\operatorname{minimize}$	$2x_1 - 6x_3$

maximize

subject to

x_1	+	x_2	_	x_3	\leq	7
$3x_1$	—	x_2			=	8
$-x_1$	+	$2x_2$	+	$2x_3$	\geq	0
			x	x_1, x_3	\geq	0

- (a) into standard form.
- (b) into slack form.

Problem 3: Shortest Path as Linear Program

In Assignment 0, you learned about Dijkstra's Algorithm to calculate shortest paths in a directed graph G = (V, E) with non-negative edge-weights. Formulate a linear program that solves the problem.

5 Points

Combinatorial Optimization

Summer 2014

7 Points

8 Points