Assignment 3

Post Date: 9 May 2014 Due Date: 16 May 2014 Tutorial: 21 May 2014 You are permitted and encouraged to work in groups of two.

Problem 1: Simplex

Solve the following linear program with the Simplex-Algorithm. (Note that you have to find a feasible solution with an auxiliary linear program first.)

maximize	x_1	+	$3x_2$		
subject to	x_1	_	x_2	\leq	8
	$-x_1$	_	x_2	\leq	-3
	$-x_1$	+	$4x_2$	\leq	2
		x_1, x_2		\geq	0

Problem 2: Single Variable Linear Program

For $a, b, c, x \in \mathbb{R}$ consider the following simple linear program P.

maximize cx

subject to

 $ax \le b$ and $x \ge 0$.

Let further D be the dual of P.

(a) State for which values of a, b, and c, the linear programs P and D, respectively,

- are infeasible
- are unbounded
- have an optimal solution with finite objective value

Relate the cases.

(b) Prove or disprove that in general the dual of an unbounded linear program is infeasible.

7 Points

8 Points

Problem 3: Complementary Slackness

Let \overline{x} be a feasible solution to the primal linear program

maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, i = 1, \dots, m \quad \text{and} \quad x_j \ge 0, j = 1, \dots, n$$

and let \overline{y} be a feasible solution to the corresponding dual linear program. Prove that \overline{x} and \overline{y} are optimal if and only if

$$\sum_{i=1}^{m} a_{ij} \overline{y}_i = c_j \text{ or } \overline{x}_j = 0 \quad \text{ for } j = 1, \dots, n$$

and

$$\sum_{j=1}^{n} a_{ij}\overline{x}_j = b_i \text{ or } \overline{y}_i = 0 \quad \text{ for } i = 1, \dots, m.$$