Assignment 8

Post Date: 13 June 2014 Due Date: 20 June 2014 Tutorial: 25 June 2014 You are permitted and encouraged to work in groups of two.

Problem 1: Successive Shortest-Paths

Consider successive shortest path on the equivalent min-cost max-flow network. Always perform a single source shortest path in the residual network regarding the reduced costs from the global source s. Always augment on a path with minimum costs in the residual network from s to the global sink t.

Show that the following holds after each update of the potentials and before the following augmentation of the flow:

The vertex potentials always correspond to the shortest path distances from s in the residual network regarding the original costs.

Problem 2: Matchings on Bipartite Graphs

A minimum vertex cover of a graph G = (V, E) is a set of nodes $C \subseteq V$ of minimal size, such that every edge $e \in E$ is incident to one of the nodes in C. Formally: $\forall (v, v') \in E :$ $C \cap \{v, v'\} \neq \emptyset$.

- (a) Show that a cardinality maximum matching on a bipartite graph has the same size as a minimum vertex cover. (Hint: Argument via the dual LP.)
- (b) How about non-bipartite graphs?

Combinatorial Optimization Summer 2014

7 Points

5 Points

Problem 3: Perfect Matchings

Let T be a tree and G = ((A, B), E) be a bipartite graph.

- (a) Show that T has at most one perfect matching.
- (b) Show that if |A| = |B| = n and |E| > (k-1)n then there exists a matching M on G with $|M| \ge k$.

Let now M be a matching on G. We transform G in a directed network D by directing an edge from A to B if it does not belong to M and from B to A if it does belong to M.

(c) Show that there exists an augmenting path in G with respect to M if and only if there exists a directed path in D between an unmatched vertex in A and an unmatched vertex in B.