UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Sabine Cornelsen / Jan Christoph Athenstädt

Assignment 11

Post Date: 4 July 2014 Due Date: 11 July 2014 Tutorial: 18 July 2014 You are permitted and encouraged to work in groups of two.

Problem 1: Independent Vertex Sets

Let G = (V, E) be a graph. Let $\mathcal{I} = \{V' \subseteq V; \{u, v\} \notin E \text{ for } u, v \in V'\}.$

- (a) Show that (V, \mathcal{I}) is an independence system.
- (b) Is (V, \mathcal{I}) also a matroid?

Problem 2: Matching Matroid

Let G = (V, E) be a graph. Let

 $\mathcal{I} = \{ V' \subseteq V; \text{ there is a matching } M \text{ of } G \text{ s.t. no vertex in } V' \text{ is free} \}.$

Show that (V, \mathcal{I}) is a matroid.

Problem 3: Weight Sequence

Let (X, \mathcal{I}) be a matroid and let $\omega : X \longrightarrow \mathbb{R}$ be a weight function. The weight sequence of a basis $B = \{x_1, \ldots, x_d\}$ of (X, \mathcal{I}) is the sequence $\langle \omega(x_1), \ldots, \omega(x_k) \rangle$ of weights of the elements of B ordered such that $\omega(x_1) \leq \cdots \leq \omega(x_k)$.

Show that any two minimum weight bases of a matroid have the same weight sequence.

Summer 2014

Combinatorial Optimization

6 Points

4 Points

4 Points

Problem 4: Fundamental Cycle Basis

Let G = (V, E) be an undirected, connected graph with m edges. Let $T = (V, E_T)$ be a spanning tree of G. For each non-tree edge $e = \{v, w\} \in E \setminus E_T$ we define a fundamental cycle $C_e = \{e\} \cup P_e$ where P_e is the set of edges on the unique path in T between v and w. Show that the fundamental cycle basis $\mathcal{B}_T = \{C_e \mid e \in E \setminus E_T\}$ with respect to T is indeed a cycle basis of the cycle space C:

- (a) Show that \mathcal{B}_T is linearly independent.
- (b) Show that \mathcal{B}_T is a generating system of \mathcal{C} by describing how an arbitrary simple cycle can be written as a linear combination of elements of \mathcal{B}_T .

Hint: Consider the cuts of G induced by the connected components of T minus one edge. Observe that a cycle crosses a cut an even number of times.