UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Sabine Cornelsen / Julian Müller

Assignment 1

Post Date: 24 April 2017 Due Date: 08 May 2017 Tutorial: 10 May 2017

Problem 1: Different Embeddings

Let G be a planar graph with a planar embedding with f faces. The *degree* of a face f_i is the number a_i of edges that are incident to f_i (counting bridges twice). Assume that the faces f_1, \ldots, f_f are ordered such that their degrees are non descending. Consider the face-degree-sequence (a_1, \ldots, a_f) .

Can a planar graph have two embeddings with different face-degree-sequences?

Problem 2: Euler's Formula

Let n be the number of vertices, m the number of edges, f the number of faces and k the number of connected components of a planarly embedded simple graph G.

- (a) Prove by induction on m that f m + n k = 1.
- (b) Conclude that $m \leq 2n 4$ and $f \leq n 2$ if G is bipartite and $n \geq 3$.

Problem 3: Vertex Coloring

Give a linear time algorithm that colors the vertices of a planar graph with at most six colors such that no two adjacent vertices have the same color.

Algorithms for Planar Graphs Summer 2017

4 Points

3 Points

3 Points