UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Sabine Cornelsen / Julian Müller Algorithms for Planar Graphs Summer 2017

Assignment 2

Post Date: 08 May 2017 Due Date: 15 May 2017 Tutorial: 24 May 2017

Problem 1: Subdivisions of K_5 and $K_{3,3}$

Let e = (x, y) be an edge in a graph G and G/e be the graph G in which e has been contracted to a vertex z.

Show that if G/e contains a subdivision of K_5 or $K_{3,3}$, then G also contains a subdivision of K_5 or $K_{3,3}$.

Hint: Reverse the contraction and show that, no matter how the edges connecting to z in G/e are distributed among x and y in G, you will always end up with a subdivision of K_5 or $K_{3,3}$.

Problem 2: Skewness

The *skewness* of a graph is the minimum number of edges that have to be deleted such that the graph becomes planar.

- (a) Can the skewness of a graph with m edges and n vertices be smaller than m 3n + 6?
- (b) Compute the skewness of the graphs K_3 , K_5 , $K_{3,3}$, and K_6 .
- (c) What is the skewness of the complete graph $K_n, n \ge 3$?

5 Points

5 Points