Assignment 10

Post Date: 03 July 2017 Due Date: 10 July 2017 Tutorial: 19 July 2017

Problem 1: Venkatesan's Approach

6 Points

Let (D = (V, E), s, t, c) be a planar bidirected flow network. Choose a directed *s*-*t*-path Pof D. For $(v, w) \in V \times V$, set $\pi(v, w) = 1$ if $(v, w) \in P$, $\pi(v, w) = -1$ if $(w, v) \in P$, and $\pi(v, w) = 0$ otherwise. Let $\lambda \in \mathbb{R}_0^+$ be such that the directed dual graph D^* with edge length $\ell_{\lambda}(e^*) = c(e) - \lambda \pi(e), e^* \in E^*$ does not contain a negative directed cycle, i.e., such that the shortest path distances $d_{\lambda}(v^*, w^*)$ in D^* with respect to ℓ_{λ} are well defined. Choose an arbitrary vertex s^* of D^* . Prove that

$$\phi_{\lambda}(e) = max(0, d_{\lambda}(s^*, \operatorname{right}(e)) - d_{\lambda}(s^*, \operatorname{left}(e)) + \lambda \pi(e))$$

is a flow in D with value λ , i.e. show that the following properties are fulfilled:

- (a) capacity constraint
- (b) flow conservation, and
- (c) $w(\phi_{\lambda}(e)) = \lambda$.

Problem 2: Separators of Trees

Let T be a tree with non-negative weights on the vertices that sum to one. A weighted vertex separator of T is a partition of the vertex set into two sets A and B of weight at most 2/3 and a vertex v such that there is no edge between A and B.

- (a) Show how to compute a weighted vertex separator of a tree in linear time.
- (b) Can the vertex set of any tree with non-negative weights on the vertices summing to one be partitioned into two sets A and B of weight at most 1/2 and a vertex v such that there is no edge between A and B?

4 Points