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1 Motivation

The latent space model specifically attempts to model two properties of directed
networks frequently observed in social networks, namely transitivity and reci-
procity [2]. These are understood probabilistically, that is, reciprocity describes
the situation that, if an edge (u,v) exists, then with high probability, there also
exists a reciprocal edge (v,u) — that is, the existence of (u,v) implies, with
high probability, the existence of (v,u). Likewise, transitivity demands that if
the network contains the edges (u,v) and (v, w), then with high probability it
also contains an edge (u, w).

Unlike for example the Attract and Introduce model [3], which has per-node
parameters controlling the indegree (“attract”) and the probability of forming
transitive relations (“introduce”), the latent space model models its target prop-
erties of transitivity and reciprocity indirectly as a by-product of the way edges
are formed.

Another model with this property is the stochastic blockmodel [9], which as-
sumes that the nodes belong to observed “blocks” formed by the (discrete) values
of the observed characteristics. Two nodes are then considered more likely to
form an edge if they are in the same block than if they are in different blocks, in
addition to the per-node probabilities of forming incoming and outgoing edges.
This can also be adapted to unobserved block structures [8]. In contrast to these
models however, the latent space model does not divide the nodes into groups,
but instead places them into an unobserved (latent) space, with the probability
of an edge depending on the distance its endnodes have in the latent space.

2 The Latent Space Models

2.1 Basic Principle: The Latent Space

The latent space model associates a position z; in the k-dimensional latent space
with each node i of the network. The distance of the positions of the endnodes
of an edge then controls the probability of the existence of that edge.
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Figure 1: Example of the distance of an edge’s endnodes in the latent space
controlling the probability that this edge is part of the network.



Assuming conditional independence, the probability of an edge (¢, j) depends
only on the positions z;, z; of its endnodes, a parameter vector © global to the
network, and a vector x;; of observed node characteristics, which in the general
case is dependent on both ¢ and j. In particular, it is assumed that the existence
of an edge (i,7) is independent of the existence of any other edge (k,1):

Ve, leV: k£iNl#j = P(aij:1|ak1:1):P(aij:1|ak1:0) R

where V is the set of nodes (vertices) of the network represented by the adjacency
matrix A = (ajj); jev. Note that A is a random variable dependent on various
model parameters.!

Because of the assumption of conditional independence, the probability of
the network represented by a specific adjacency matrix A, given the positions
Z = (%i)iev, the covariate information X = (z;;); jev, and the parameters ©,
is

P(A1Z,X,0) = [[ P(aij|zi, 2, i, ©) - (1)
i#j

2.2 A Generalized Model

Hoff et al. [6] present two very similar models, both of which weight the ob-
served covariate information z;; with a vector 3, and use different measures
of “distance” between two nodes. Furthermore, there is a “bias term” « which
controls the base probability of an edge, and thus both the number of edges m
and the average degree 6 = 27>. Using a distance function d : V2 = R, the
parameter vector © in (1) consists of «, 3, and d:

P(A|Z7X7avﬂad):Hp(aij‘zivzjaxiﬁavﬂvd) . (2)
i#£]
The probability of an edge (i, j), defined as
Pij = P(aij = 1|Zi,Zj,fﬂij704,ﬂ, d) ,
can then be written in a general form for both proposed models, as

1
- 1+ e% . ed(zi,25) =B

Dij
This is the logistic function, so its logit n;; = logit p;; is just

ni; = log odds(ai; = 1|z, 2;, 5, v, 3)
=logitp;; = a+ G-z —d(z;, z5) .

(4)

B - x;; denotes the dot product of 3 and x;;, that is, the weighted sum of the
covariate information.

1The notation X is used for a random variable named X, while specific realizations are
denoted as X. Consequently, if X is a matrix, its elements are termed x;j.



2.3 Geometric Distance

The most obvious choice for the distance function d is the Euclidean distance

Az, 25) = NIz = 2l = \J (2 = 23) - (= 25)

However, any other norm could be used instead, such as one of the p-norms, for
example the Manhattan norm

d(zi, 2;) = ll2i = 2]l -
In the case of a p-norm, (4) would be written as
i = o+ Bz — |z = zllp -

If a norm is used, the model is inherently transitive and reciprocal: If there
are edges (i,7) and (4, k), they were most likely created because the nodes ¢
and j, as well as j and k are relatively close. Due to the triangle inequality,
d(zi, z;) can be no larger than d(z;,z;) + d(2;, z), thus the probability of the
transitive edge (4, k) must also be relatively high. Reciprocity is given because
the norm must fulfill d(z;, z;) = d(z;, 2;), so the probability of reciprocal edges
is equal. For “short” edges (the ones between nodes that have a small distance
to each other, that is, the ones that are most likely), this translates to a high
probability of the reciprocal edge.

2.4 Angular (Dis-)Similarity
Another distance metric of two nodes’ position is the angular distance

Zi 25

()

d'(2i, ) = cos £(z, 2j) = R
2 J

In this case, the “positions” of the nodes are interpreted as feature vectors
representing each node’s “preferences” for various characteristics. As can be seen
from (5), the vectors z; should in fact be normalized to unit length, as their
length does not play any role in the equation.
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Figure 2: Graphical illustration of the cos Z(z;, z;) distance metric: The more
the feature vectors of two nodes “point in the same direction,” (that is, the
smaller the angle between them), the more similar the nodes are considered.



If all z, are unit length, then (5) can be simplified to just the dot product:
d' (2, 25) = cos L(zi,25) = zi - 25 - (6)

It might be desirable to model a node-specific degree of homophily, such that
different nodes with otherwise similar characteristics can have different levels of
attraction by similar and repulsion of dissimilar nodes. Doing this requires an
additional parameter, because with the cosine distance metric, the “distances”
would otherwise be confined to a range of +1 for all nodes.

This extra parameter is best added as a scaling factor of the distance, so
that a homophile node “sees” larger distances to dissimilar nodes, and shorter
distances to more similar nodes. Equation (6) then becomes

d,(Zi,Zj) = )\z . COSZ(Zi,Zj) = )\1(21 . Zj) = ()\zzz) CZj . (7)

Thus it is possible to simply use the length of the feature vector z; of the node i
which is about to develop an outgoing edge, instead of actually adding another
parameter.” By substituting ||z;|| for \;, (7) becomes

Zi "z - ZitZj

il M1zl 1]

d'(2i, 2;) = [|zill - cos £(z, 25) = ||l - (8)
As this is the projection of the vector z; onto z;, this model is called a projection
model by Hoff et al. [6].

As can be seen from (8), the direction of the vectors encodes the feature
preferences of a node, and its length encodes the node’s homophily when de-
veloping outgoing edges. In cases where it is more adequate to model a node’s
homophily when it is about to develop an incoming edge, (8) can obviously be

rewritten as
Zi - Zj

d (zi,2;) =
7 ]

In a situation where the product of the involved nodes’ homophily is useful, (6)

would be used directly.

To fit the generalized equation, the sign of the distance metric presented so
far has to be flipped: The distance function d’ returns larger values for more

similar nodes, which is against the intuitive meaning of distances, the one used
in (4). Thus:

Zi . Z,
Ao z) = =) = 90

2.5 Less Restrictive Similarity Metrics

In fact, one might want to do away with the distance function entirely, and
instead use a full n x n matrix of distances between each pair of the n nodes,
without enforcing the axioms required for a norm. This, however, is not very
desirable — not just because of the more difficult visualization and interpre-
tation, but because of severe overfitting concerns: For any given network with

2Tt is worth pointing out that by forcing the vector’s length to be unity, one degree of
freedom was removed, so in fact one parameter was unnecessary. It is this redundant parameter
which is recycled. As it could have just been removed, there is in fact a new parameter that
is added.



an adjacency matrix A’ = (a;j), it is possible to define a model which fits this
network arbitrarily well, but fits no other networks at all. This is done simply
by setting a =, 8 = 0 (the zero vector) and

0 ifa;, =1
. ) — 1]
dlzi,25) = { 2y ifal; =0

That way, (4) becomes

v o ifal=1
i = o —d(2;, 25 :{ o
Y (2i, 25) — 1fa;j:()
By letting v approach infinity, on an undirected network, one can then get the
probability expressed by (3) arbitrarily close to a perfect (over-)fit:

{ 1 ifaj; =1

pij = f !l O

0 i a;; =

In addition to this overfitting problem, there is also a risk of losing the two

inherent properties of transitivity and reciprocity, both of which are normally
guaranteed by the axioms of a norm.

3 Parameter Estimation

3.1 Parameter Estimation Basics

In general, the model parameters will not be known. While this model could
be used to generate networks by choosing the parameters randomly, normally
there will be a given network A’ = (aj;) to which the model is to be fitted.
In order to do this, it is assumed that the given network was generated by a
latent space model using a k-dimensional space. The dimensionality k& and the
distance metric d must be chosen arbitrarily, but all other parameters can then
be found by optimizing the model in such a way that the probability of the
model generating the observed network is maximized.
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Figure 3: Parameter estimation example. The optimization algorithm tries to
find the positions that have the highest probability of generating the observed
network.



Given the observed network A’ and the covariate information X generated
from observed characteristics, this optimization is accomplished by maximizing
the probability P(A = A'|Z, X, «, 3, d).

3.2 Derivation of the Optimization Goal

Using the conditional independence expressed in (2), the probability P(A =
A'lZ, X, «, 8,d) can be written as

P(A = A|Z,X,a,0,d) = || Play = a2, 2, w55, @, B, d)
i#£]

As the logarithm is a monotonic, strictly increasing function, it is possible to
instead maximize the logarithm of P(A = A'|Z, X, «,3,d). A much simpler
optimization goal can then be derived.

li
Y _ Dij a;; =1
log P(A = A'|Z, X, o, 3,d) = logH{ b d =0
i#) s
li
Dij a;; =1
= log{ J P
; 1-— Dij a;j =0
1 ro_
- Zlog{ e,
i#j l—=5 ai; =0
Because of 1 — = = 141?;521 = 15;;:5 = (1fr;f§j;e¢ = 575, this can be
rewritten as follows.
= a,, =1
log P(A = A'|Z,X,a,3,d) = Y logq +e ™ 7
i#j Tretms i
/
= Zlog{ PRI
Py T+eis i =0
3 Lte®—1 o —
= log 11»87” ()
oy e ;=0

e"ij l
Z _ =1
frng log { 1+?"7‘7 a;‘j _ 0

Tremis  Qij

Because (e"9)? = 1 and (e”4)! = e"i, this can also be written without condi-
tional expressions.

Mij a;'
log P(A = A|Z,X,a,,d) = Y log (em)™

1 Mij
i#i te
= E nija;; — log(1 4 e"7) (9)
i£j



3.3 Parameter Estimation Algorithm

Using a n x n matrix of distances as described in section 2.5, distances maximiz-
ing log P(A = A'|Z, X, «, 8,d) are easily found with any suitable optimization
algorithm. Unfortunately, these are pairwise distances that do not necessarily
represent the distances in any space with a reasonable number of dimensions,
such as the desired k-dimensional space. In fact, the parameter space for dis-
tances in the k-dimensional space is too complex for linear optimization, and
must be approached with nonlinear optimization strategies such as genetic al-
gorithms or Markov chains Monte Carlo methods.

One possible solution is to first determine pairwise distances between the
nodes. For these distances, an approximation can then be found in the k-
dimensional space by applying multidimensional scaling [4]. These initial posi-
tions are then further optimized using a Metropolis-Hastings algorithm [7].

During this last optimization step, there is a precaution that should be
taken to avoid one possible problem: If the distance-based model presented in
section 2.3 is used, the generated positions can be rotated, mirrored and trans-
lated arbitrarily without affecting the resulting distances, and thus, the model.
Likewise, for the angular dissimilarity metric presented in section 2.4, while the
space cannot be translated anymore, it can still be rotated and mirrored at will
without any changes to the edge probabilities. Thus there are infinitely many
sets of parameters that are equivalent with respect to the edge probabilities they
generate.

To prevent the algorithm from failing to converge simply because it keeps
performing these irrelevant transformations, it is therefore necessary to repre-
sent, each of these equivalent classes with a unique representative. To obtain
this, if the Metropolis-Hastings algorithm has just accepted a new set of param-
eters, then before starting the next iteration, the positions are canonicalized
using a Procrustes transformation [5], so that the positions are closest to a
set of defined reference positions, such as the initial positions generated using
multidimensional scaling.

Hoff et al. [6] also suggest obtaining the initial set of distances using two
alternative, simpler, graph-theoretical methods from Wassermann et al. [10].
The first approach interprets the rows or columns of the adjacency matrix as
vectors, and calculates the distance between nodes as the Euclidean distance
of their entries in the adjacency matrix, whereas the second method uses the
shortest-path distance of the nodes in question, that is, the length of the shortest
path between these nodes.

The algorithm can thus be summarized as follows:
1. generate initial pairwise distances between the nodes, using either

e the distances maximizing (9)

e ad-hoc distances between the nodes
2. convert, the distances to positions Z; using multidimensional scaling
3. maximize (9) using a Metropolis-Hastings algorithm:

(a) generate new candidate positions Zs11



: . P(Z, P(A=A'|Z.11,X,0,8.d
(b) accept them with a probability of 1(3("2:)1) : I(J(A:X/"ijﬁaixﬁyﬂd)),

otherwise let Z,41 = Z;

(c) if the new positions were accepted, use Procrustes transformation to
move them as close as possible to Zj

(d) update « and [ by generating candidates and probabilistically ac-
cepting them

4. repeat step 3 until the algorithm converges

Instead of waiting for convergence, one may also use a predefined number
of iterations, provided that this number is sufficiently large that convergence is
likely reached.

optimal distances shortest path, or other
(most likely non-Euclidean) graph theoretical distances

chosen as needed

MDS
1 (multidimensional scaling)

.

reference .*

positions initial | positions
e
oo v Metropolis-
P update Z < Hastings
v v o
: Procrustes transformation of Z repeat until :
: (rotation, mirroring, possibly translation) convergence -,
: i i is achieved !
5 \ 4 :
: update a, B E
b e e L. '
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Figure 4: Flowchart of the parameter estimation algorithm. The initial distances
are converted to positions using multidimensional scaling, and then optimized
using an equivalence-aware Metropolis-Hastings algorithm.



4 A Related Model: The Social Space

4.1 A Feature Comparison

The latent space model is quite similar to a related, but newer, model, the Social
Space Model by Boguiia et al. [1]. Both models place the nodes of the network
in some unobserved space, with the distance of two nodes determining the the
probability of an edge between them.

However, while with the latent space model, there is no direct relation be-
tween the dimensions of the latent space and the features of the nodes, the social
space model, at least conceptually, uses one subspace for every feature of the
nodes. Each such subspace features its own distance metric, which is potentially
unique to this subspace only. The distance in all these subspaces are then com-
bined to form an global distance by a weighted sum of the individual subspace
distances. The latent space model, in contrast, only has a single distance metric
for the entire, undivided latent space, so different weights for different dimen-
sions — there is, in the general case, no such thing as a feature’s dimension —
can only be modeled by scaling that entire dimension, which, fortunately, is an
unproblematic option.

The edge probability equation of the social space model, corresponding to
(3) for the latent space model, is

o 1
bij = an N\ %n (10)
n=1 1+ (d”(i:zy))

where v is the number of subspaces, each of which potentially consists of multiple
dimensions; wy, is a weight factor for this subspace’s distances, that is, it controls
the importance of this subspace; «,, is a homophily parameter, b,, controls the
average degree and d,, is a subspace-specific distance metric.

While there is no explicit support for observed characteristics, it is of course
trivial to use one or more subspaces for them, fixing the nodes’ positions in
this space, but not, for example, its weight scale and homophily parameter. So
in fact, there is simply no distinction between observed and unobserved node
features.

Last but not least, the distances in the social space model are scaled polyno-
mially, by taking them to the «,-th power, while the latent space model scales

them exponentially as e®(#:%7),

4.2 Similarities Between Simplified Versions

Despite the distances between the latent space model and the social space model,
there is a striking similarity between the two models. This is most readily seen
in a simplified version of the two models, by omitting the covariate information
from the latent space model and thus assuming that nothing is known about
the nodes, and, on the other hand, restricting the social space model to a single
subspace (v = 1). Because this single subspace can still consist of several
dimensions, restricting the social space model this way does not reduce the
model to the one-dimensional case, which would have been a very unrealistic
assumption.

10



Simplifying (10) for a single feature yields:

1
N 1+ b%-d(zi,zj)o‘ '

DPij

This is already very similar to (3) of the latent space model, which, with the
covariate information omitted, reads

1
pij = —1+ e% .ed(zi,zj-) .
The similarity can be shown even more clearly by showing the logit of these
probabilities. Substituting b = logb®, the simplified social space model is
described by

ni; = logit p;; = alogb — alog d(z;, 2;)
=V — alogd(z;,z;) . (11)

For comparison, the corresponding logit for the latent space model without
covariate information is
7]1']' = — d(Zi,Zj) .

It can be seen that b’ (and thus b) in the social space model plays the same role
as « does in the latent space model, namely that of a bias term describing the
base probability of edges. Nevertheless, the difference between exponential and
polynomial scaling of the distances remains in the form of the logarithm in (11).

11
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