UNIVERSITY OF KONSTANZ ALGORITHMICS GROUP V. Amati / J. Lerner / B. Nick Network Modeling Winter Term 2011/2012

Assignments $\mathcal{N}^{\underline{\circ}}$ 2 - part i

released: 09.11.2011 due: 16.11.2011, 14:15h (solutions can be handed over at the beginning of the lecture)

Task 1: $\mathcal{G}(n, c, p_1, p_2)$ as ERGM

4 points

Reconsider the $\mathcal{G}(n, c, p_1, p_2)$ random graph model from the last assignments:

- Show that $\mathcal{G}(n, c, p_1, p_2)$ belongs to the ERGM class.
- How do the parameters p_1, p_2 of the $\mathcal{G}(n, c, p_1, p_2)$ model translate into the parameters of your ERG model?

Task 2: Dyad Dependency in ERGMs6 points

Let \mathcal{G} the set of undirected, loopless graphs with n = 3 vertices and consider an exponential random graph model (\mathcal{G}, P) with only one statistic, namely

- (a) the number of triangles statistic t(G) with associated parameter value $\ln 2$.
- (b) the the number of edges connecting actors with the same attribute value statistic $m_a(G)$ with associated parameter value ln 2. Let a divide the node set $\{1, 2, 3\}$ into even and odd numbers.

For each case, a) triangle statistic and b) homophily statistic, proof whether edge probabilities are dependent or independent. [note: in case b) there are different types of edges]