UNIVERSITY OF KONSTANZ ALGORITHMICS GROUP V. Amati / J. Lerner / B. Nick Network Modeling Winter Term 2011/2012

Assignments $\mathcal{N}^{_{0}}$ 3 - part 1

released: 23.11.2011 due: 30.11.2011, 14:15h (solutions can be handed over at the beginning of the lecture)

Task 1: Hammersley Clifford Theorem10 points

Let \mathcal{G} the set of undirected, loopless graphs with n vertices and let $c: V \to \{A, B\}$ divide the set of vertices $V = \{1, \ldots, N\}$ into two disjoint subsets, $V = A \uplus B$.

Consider the class of random graph models $\mathcal{K}_c = \{(\mathcal{G}, P)\}$ containing all models, which fulfill the following independence assumption.

For all pairs of dyads d_1, d_2 it holds that d_1 and d_2 are conditionally independent, unless both of the following properties hold:

- d_1 and d_2 are incident
- all nodes incident to d_1 and d_2 belong to the same subset. More precisely, if $d_1 = \{u, v\}$ and $d_2 = \{x, y\}$, then

$$c(u) = c(v) = c(x) = c(y)$$
.

- (a) Which random graph models in \mathcal{K}_c are Markov random graphs?
- (b) Provide a set of statistics, such that the resulting class of ERGMs is exactly the class \mathcal{K}_c . (cf. corollary)
- (c) Let $V = \{1, 2, 3\} \uplus \{4\}$. Draw the dependence graph of $(\mathcal{G}, P) \in \mathcal{K}_c$.