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Networks are dynamic by nature: a real example

The Teenage Friends and Lifestyle Study analyzes smoking behavior and
friendship

Data (available from www.stats.ox.ac.uk/∼ snijders/siena/)
- One school year group from a Scottish secondary school starting at age

12-13 years, was monitored over 3 years;
- Data were collected using questionnaires at approximately one year interval

1. Friendship relation: each pupil can name up to six friend
2. Individual information and lifestyle elements: gender, age, substance

use, smoking of parents and siblings etc.

The dataset is depicted by the following graphs where:
arrows denote friendship relation
gender is represented by the shape of nodes (girls: circles, boys: squares)
smoking behavior is depicted by the color of nodes (non: blue, occasional: gray,
regular: black)
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- Is there any homophily in friendship formation with respect to
gender?

- Is there any homophily in friendship formation with respect to
smoking behavior?



Solution

Stochastic actor-oriented model (SAOM)

Aim
Explain network evolution as a result of

- endogenous variables: structural effects (e.g. reciprocity, transitivity, etc.)
- exogenous variables: actor and dyadic covariates (gender, age, ethnicity,

etc.)
simultaneously
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Background: continuous random variable

Definition
A random variable X is called (absolutely) continuous if there exists a function
fX (x) : R→ R+ such that

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (u)du ∀x ∈ R

FX (x) is the cumulative distribution function (c.d.f)

fX (x) is the probability density function (p.d.f)
- fX (x)≥ 0 ∀x ∈ R

- P(X ∈ R) =
∫ +∞
−∞ fX (x)dx = 1

Be careful about the word continuous!!!
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Background: continuous random variable

The p.d.f. fX (x) allows to compute all the probability statements about X . For
instance, the probability that X takes values in [a,b] is

P(a ≤ X ≤ b) =

∫ b

a
fX (x)dx

Geometrical interpretation

Intuition suggests that

P(X = x) =

∫ x

x
fX (u)du = 0

Thus, we cannot determine
a continuous random vari-
able via its “mass function”



Background: continuous random variable

The p.d.f. fX (x) allows to compute all the probability statements about X . For
instance, the probability that X takes values in [a,b] is

P(a ≤ X ≤ b) =

∫ b

a
fX (x)dx

Geometrical interpretation

Intuition suggests that

P(X = x) =

∫ x

x
fX (u)du = 0

Thus, we cannot determine
a continuous random vari-
able via its “mass function”



Background: Exponential random variable

Definition
A continuous random variable X whose p.d.f. is given by

fX (x) =

 λe−λx if x ≥ 0

0 otherwise

is said to be an Exponential random variable with rate λ > 0.



Background: Exponential random variable

The c.d.f. of X is

FX (x) =

 1− e−λx if x ≥ 0

0 otherwise

In fact

FX (x) = P(X ≤ x) =

∫ +∞

−∞
fX (x)dx =

∫ x

0
λe−λx dx = 1− e−λx



Background: Exponential random variable

The Exponential r.v. has an important property: the memoryless property

Definition
A r.v. X is memoryless if

P(X > s + t|X > t) = P(X > s) ∀s, t > 0

It is easy to prove the memoryless property for the Exponential r.v.

Proof.

P(X > s + t|X > t) = P(X>t+s ∩ X>t)
P(X>t) = P(X>t+s)

P(X>t) = 1−P(X≤t+s)
1−P(X≤t) =

= 1−1+e−λ(t+s)

1−1+e−λt = e−λs = P(X > s)
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A stochastic process is a collection {X(t), t ∈ T} of random variables
X(t) : Ω 7−→ R

∀t ∈ T 7→ X(t) : Ω→ R

T = index set (usually interpreted as time)
S = state space
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{X(t), t ∈ T} is a discrete-time stochastic process with a discrete (or finite)
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Background: stochastic process

Different stochastic process can be defined according to the nature of the state
space S, the index set T and the dependence relations existing among the
random variables X(t).

We will consider continuous-time Markov chains
continuous-time = the process evolves in continuous time
Markov = the process have the Markov property
chains = the state space is a finite set

Definition
{X(t), t ∈ T} has the Markov property if for any state x ∈ S, and for any pair
of time points ti < tj

P(X(tj ) = x(tj )|X(t) = x(t) for all t ≤ ti ) = P(X(tj ) = x(tj )|X(ti ) = x(ti ))

The future depends on the past and on the present only through the present



Background: continuous-time Markov Chains

Definition
A continuous-time Markov chain {Xt , t ≥ 0} is a finite state, continuous-time
stochastic process having the Markovian property

Example
X(t) = # of goals that a given soccer player scores by time t (time played in
official matches)

{X(t), t ≥ 0} is a continuous-time Markov chains

Why?

1. state space: S = {0,1,2, . . . ,B}, where B is the total number of goals
scored by the player during his career

2. the time is continuous: time played in official games
3. the process {X(t), t ≥ 0} has the Markov property.
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Holding times and the jump chain
1. Holding time: for each state i , the amount of time we spend in that state

is an exponentially distributed random variable, with parameter λi

2. Jump chain: is described by a jump matrix P = (pij : i , j ∈ S) which
satisfies the following properties:

pij ≥ 0
∑
j∈S

pij = 1 ∀i , j ∈ S
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Background: describing a continuous-time Markov chain

P describes the probability of going to state j when we make a jump out a
state i .

pij = P(X(t′) = j|X(t) = i ,given the opportunity to leave state i), t′ > t

Example

P =

 0.1 0 0.6 0.3
0.8 0.1 0.1 0

0.05 0.5 0.05 0.4
0.6 0.1 0.15 0.15
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Background: describing a continuous-time Markov chain

The rate matrix

The rate matrix Q = (qij : i , j ∈ S) defines the rate at which the process jump
from the state i to the state j in a short time interval.
It satisfies the following statements:

1. 0<−qii <∞ ∀i ∈ S
2. qij > 0 ∀i 6= j, i , j ∈ S
3.
∑
j∈S

qij = 0 ∀i ∈ S

The generic entry qij of this matrix gives the rate of transition from state i to
state j is strictly related to the weighting times and the jump matrix. In
particular:

qij =

{
λi pij if j 6= i

−λi ifj = i



Outline

Introduction

The Stochastic actor-oriented model
Data and model definition
Model specification
Simulating network evolution
Parameter estimation: MoM and MLE
Parameter interpretation

Extending the model: analyzing the co-evolution of networks and behavior



Background: adjacency matrix and directed relations

Social network consists of a set of actors N and the relation R existing among
them

Graph = G(N,R) Adjacency matrix=X

- 0 0 0 0
1 - 1 0 0
0 0 - 0 0
0 1 1 - 0
1 1 0 0 -

In the following network will be represented as an adjacency matrix X



Background: adjacency matrix and directed relations

Adjacency matrix X (or digraph):

- n = # of actors
- the actor index the column and the rows of the (n×n) matrix X
-

xij =

{ 1 if i is related to j (i 6= j)

0 otherwise

- Self-relations are not consider so that the diagonal values xii are
meaningless

Directed relation: the existence of a tie from i to j does not imply the existence
of a tie from j to i (and vice versa)

6=⇒
i → j j → i



Data

Longitudinal (or panel) network data = M (≥ 2) repeated observations on a
network

x(t0),x(t1), . . . ,x(tm), . . . ,x(tM−1),x(tM)

- set of actors N = {1,2, . . . ,n}
- a non reflexive and directed relation R

- actor covariates (gender, age,social status, ...)



How to model network evolution?

Stochastic actor-oriented model (SAOM)

Aim
Explain network evolution as a result of

- endogenous variables: structural effects (e.g. reciprocity, transitivity, etc.)
- exogenous variables: actor and dyadic covariates (gender, age, ethnicity,

etc.)
simultaneously



Model definition: assumptions

Network evolution can be interpreted as the outcome of a Continuous-time
Markov-Chain...but some assumptions are necessary

1. Ties are state: network ties represent a state with a tendency to endure
over time (e.g. friendship, trust, cooperation), rather than a brief event
(e.g. telephone calls, e-mail exchanges).

2. Distribution of the process: {X(t), t0 ≤ t ≤ tM} is a continuous time
Markov Chain defined on X and N.
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Model definition: assumptions

Markov property: the current state of the network determines probabilistically
its further evolution
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actor has the opportunity to change



Model definition: assumptions
3. Opportunity to change: at a given moment one probabilistically selected

actor has the opportunity to change



Model definition: assumptions
3. Opportunity to change: at a given moment one probabilistically selected

actor has the opportunity to change



Model definition: assumptions
4. Absence of co-occuRrence: no more than one tie can change at any given

moment t



Model definition: assumptions
4. Absence of co-occuRrence: no more than one tie can change at any given

moment t



Model definition: assumptions
4. Absence of co-occurrence: no more than one tie can change at any given

moment t



Model definition: assumptions
4. Absence of co-occurrence: no more than one tie can change at any given

moment t



Model definition: assumptions
4. Absence of co-occurrence: no more than one tie can change at any given

moment t



Model definition: assumptions
4. Absence of co-occurrence: no more than one tie can change at any given

moment t



Model definition: assumptions

5. Actor-oriented perspective: the actors control their outgoing ties
- change in ties are made by the actors who send the ties
- the actor decide to change one of his outgoing ties according to his

position in the network, his attributes and the characteristics of the
other actors

Aim: maximize a utility function
- actors have complete knowledge about the network and all the other

actors
- the maximization is based on immediate returns and not on long-run

rewarding (myopic actors)



Model definition: assumptions (recap)

1. Ties are state

2. The evolution process is a continuous-time Markov chain

3. At a given moment t one probabilistically selected actor has the
opportunity to change

4. No more than one tie can change at any given moment t

5. Actor-oriented perspective



Model definition

Consequences of the assumptions
The evolution process can be decomposed into micro-steps: at one randomly
determined moment t, one probabilistically selected actor i has the opportunity
to change one of his outgoing ties xij

Micro-step Continuous-time Markov chain
- the time at which i had - the waiting time until the next opportunity
the opportunity to change for a change made by an actor i

(holding time)

- the precise change i made - the probability of changing the link xij
given the opportunity for changing
(jump chain)

The distribution of the waiting time and the transition matrix of the jump
chain are modeled by the rate function and the objective function respectively.
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Model definition: rate function

How fast is the opportunity for changing?

Waiting time between opportunities of change for actor i ∼ Exp (λi )
⇒ λi is the expected frequency of changes by actor i between observations

Simple specification: all actors have the same rate of change λ

P(i has the opportunity of change) =
1
n ∀i ∈N

More complex specification:
- actors may change their ties at different frequencies λi (α,x)

- The parameter of the Exponential distribution is a function of the current
state of the network x and the vector of parameter α

P(i has the opportunity of change) =
λi (α,x)

λ(α,x)

where

λ(α,x) =

n∑
i=1

λi (α,x)



Model definition: objective function

Which tie is changed?

Change a tie means turning it into its opposite:

xij = 0 is changed into xij = 1 tie creation

xij = 1 is changed into xij = 0 tie deletion

Given that i has the opportunity to change:

Possible choices of i Possible reachable states
n−1 changes n−1 networks x(i ; j)

1 non-change 1 network equal to x



Model definition: objective function

Which tie is changed?

Change a tie means turning it into its opposite:

xij = 0 is changed into xij = 1 tie creation

xij = 1 is changed into xij = 0 tie deletion

Given that i has the opportunity to change:

Possible choices of i Possible reachable states
n−1 changes n−1 networks x(i ; j)

1 non-change 1 network equal to x



Model definition: objective function

Which tie is changed?

Change a tie means turning it into its opposite:

xij = 0 is changed into xij = 1 tie creation

xij = 1 is changed into xij = 0 tie deletion

Given that i has the opportunity to change:

Possible choices of i Possible reachable states
n−1 changes n−1 networks x(i ; j)

1 non-change 1 network equal to x



Model definition: objective function



Model definition: objective function



Model definition: objective function



Model definition: objective function

To define the non-zero transition probabilities we assume that actors change
their ties in order to maximize a utility function.

The Objective function is defined as a linear combination

fi (β,x(i ; j)) =

K∑
k=1

βk sik (x(i ; j)) + Ui (t,x , j)

- sik (x(i ; j)) are effects
- βk are statistical parameters
- Ui (t,x , j) is a random utility term

For a suitable choice of the distribution of Ui (t,x , j):

pij =

exp
( K∑

k=1
βk sik (x(i ; j))

)
n∑

h=1
exp
( K∑

k=1
βk sik (x(i ; h))

)
Observation: pii is interpreted as the probability of not changing



Objective function specification

Simplified notation: x ′ = x(i ; j).

Endogenous effects = dependent on the network structures

- Outdegree effect

si out(x ′) =
∑

j
x ′ij

- Reciprocity effect

si rec (x ′) =
∑

j
x ′ij x ′ji
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Objective function specification

Endogenous effects = dependent on the network structures

- Transitive effect

si trans(x ′) =
∑
j,h

x ′ij x ′ihx ′jh

- three cycle-effect

si cyc (x ′) =
∑
j,h

x ′ij x ′jhx ′hi
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Objective function specification

Example

βout =−1 βrec = +0.5 βtrans =−0.25

si out si rec si trans

i → j
1 → 1
1 → 2
1 → 3
1 → 4
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Example
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Objective function specification

Example

βout =−1 βrec = +0.5 βtrans =−0.25

si out si rec si trans

i → j fi
1 → 1 2 1 1 -1.75
1 → 2 1 0 0 -1
1 → 3 3 1 3 -3.25
1 → 4 1 1 0 -0.5

p11 = 0.146 p12 = 0.310 p13 = 0.033 p14 = 0.511
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Objective function specification

Exogenous effects = related to actor’s attributes

Example

- Friendship among pupils:
Smoking: non, occasional, regular

Gender: boys, girls

- Trade/Trust (Alliances) among countries:
Geographical area: Europe, Asia, North-America,...

Worlds: first, Second, Third, Fourth



Objective function specification

Exogenous effects = related to actor’s attributes

- covariate-related activity

si cact(x) =
∑

j
xij zi



Objective function specification

Exogenous effects = related to actor’s attributes

- covariate-related similarity

si csim(x) =
∑

j
xij

(
1−

∣∣zi − zj
∣∣

RZ

)
where RZ is the range of Z .



Objective function specification

Which effects must be included in the objective function

Outdegree and Reciprocity must always be included.
The choice of the other effects must be determined according to
hypotheses derived from theory

Example
Friendship: sociological theory suggests that

Theory Effect
the friend of my friend ⇒ transitive effect
is also my friend
girls trust girls ⇒ covariate-related
boys trust boys similarity
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Parameter interpretation (part 1)

It is assumed that:
1. the frequencies at which actors have the opportunity to make a change

depends on time = λ is not constant over time

M time points =⇒ we must specify M−1 rate functions

λ1, · · · ,λM−1

2. the preferences that drive the choice of the actors have the same
intensities over time

β1, · · · ,βK

are constant over time

Consequence: the number of parameters of the SAOM is equal to M−1 + K
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Parameter interpretation (part 1)

How to interpret the parameter of the SAOM?

- The parameter λ is the expected number of opportunities to
change for each actor between two consecutive time points.

- The parameter βk quantifies the role of each effect in the net-
work evolution.

βk = 0 if the corresponding effect plays no role in the net-
work dynamics

βk > 0 then there is higher probability of moving into net-
works where the corresponding effect is higher

βk < 0 there is higher probability of moving into networks
where the corresponding effect is lower
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Simulating network evolution
Reproducing a possible series of micro-steps between t0 and t1 according to
fixed parameter value and the network x(t0).
t = the time
dt = the holding time between consecutive changes

Algorithm 1: Network evolution
Input: x(t0), λ,β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x = x(i ; j)
else

x = x
t← t + dt

x sim(t1)← x
return x sim(t1)



Simulating network evolution: simulation and unconditional estimation

There are two different stopping rules for the simulations of the network
evolution:

1. Unconditional simulation:
the simulations of the network evolution in each time period carry on until
a predetermined time length has elapsed (usually until t = 1).

2. Conditional simulation on the observed number of changes:
simulations run on until the number of different entries between x(t0) and
the simulated network x sim(t1) is equal to the number of entries that differ
between x(t0) and x(t1)

n∑
i,j=1
ı6=j

∣∣∣X obs
ij (t1)−Xij (t0)

∣∣∣=

n∑
i,j=1
ı6=j

∣∣∣X sim
ij (t1)−Xij (t0)

∣∣∣
This criterion can be generalized conditioning on any other explanatory
variable.
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Background: population and sample moments

The formulation of the SAOM i depends on M−1 + K statistical parameters

θ = (λ1, · · · ,λM−1,β1, · · · ,βK )

Aim: estimate θ

Different estimation methods:
- the Method of Moments (MoM)
- the Maximum Likelihood Estimation (MLE)



Background: population and sample moments

Definition
fX (x ;θ) = probability distribution
θ ∈Θ⊂ Rp = p-dimensional parameter
X1,X2, · · · ,Xn = random sample from the probability distribution fX (x ;θ)

The k-th population moment is:

E [X k ] =
∑

x
xk fX (x) (for the discrete case)

E [X k ] =

+∞∫
−∞

xk fX (x) (for the continuous case)

The corresponding k-th sample moment is

µk =
1
n

n∑
i=1

X k
i
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Background: Method of Moments (MoM)

To estimate θ, one can observe that the theoretical moments of a certain
distribution usually depend on the statistical parameters

Definition
The method of moment estimators are found by equating the first p population
moments to the first p sample moments

E [X 1] = µ1

E [X 2] = µ2

· · ·
E [X p ] = µp

and solving the resulting equations for the unknown parameters.



Background: Method of Moments (MoM)

Example
The time to failure of an electronic module used in an automobile engine
controller is tested at an elevated temperature to accelerate the failure
mechanism.
The time to failure is exponentially distributed with parameter λ.

To estimate the rate parameter λ, eight units are randomly selected and tested,
resulting in the following failure time (in hours):

x1 = 12.1 x2 = 5.7 x3 = 17.8 x4 = 16.5

x5 = 31.6 x6 = 7.7 x7 = 11.9 x8 = 22.7

What is the estimate for λ according to the observed data and the the MoM?



Background: Method of Moments (MoM)
Example
The first population moment of the Exponential random variable is

E [X ] =
1
λ

and the corresponding sample moment is

µ1 =
1
n

n∑
i=1

Xi

According to the MoM, the estimator for the parameter λ is:

1
λ

=
1
n

n∑
i=1

Xi ⇔ λ=
n

n∑
i=1

Xi

and the corresponding estimate is

λ̂=
n

n∑
i=1

xi

=
8

126 = 0.063
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Background: Method of Moments (MoM)

The principle of the MoM can be easily generalized to any set of p functions
sk (X), k = 1, . . . ,p

Population moment

E [sk (X)] =
∑

x
sk (x)fX (x) (for the discrete case)

E [sk (X)] =

+∞∫
−∞

sk (x)fX (x) (for the continuous case)

Sample moment

γk =
1
n

n∑
i=1

sk (Xi )

sk (X) are called statistics

They must be sensitive to the parameter θ, i.e. higher values of θ lead to
higher values of s(X).



Background: Method of Moments (MoM)

Remark

- An estimator is a function of the sample, e.g. n
n∑

i=1

Xi

- An estimate is the realized value of an estimator, e.g. n
n∑

i=1

xi

- The estimate of a parameter varies according to the selected sample.
Thus, we usually associate to an estimator its standard error.



Background: Method of Moments (MoM)

Example
We assume to randomly select and test other eight electronic modules,
resulting in the following failure time (in hours):

x1 = 9.5 x2 = 7.2 x3 = 13.4 x4 = 10.2

x5 = 15.0 x6 = 16.3 x7 = 13.9 x8 = 34.5

The new estimate for the parameter λ is

λ̂=
n

n∑
i=1

xi

=
8

120 = 0.067

This value is close to the previous but it is not the same!



Estimating the parameter of the SAOM using MoM

Aim: estimate θ using the MoM

θ = (λ1, · · · ,λM−1,β1, · · · ,βK )

In practice:
- find M−1 + K statistics
- set the theoretical expected value of each statistic equal to its sample

counterpart
- solve the resulting system of equations with respect to θ.

Which statistics are suitable for estimating θ?

For simplicity, let us assume to have observed a network at two time points t0
and t1 and to condition the estimation on the first observation x(t0)
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Estimating the parameter of the SAOM using the MoM

- The rate parameter λ describes the frequencies at which changes
happen.

sλ(X(t1),X(t0)|X(t0) = x(t0)) =

n∑
i,j=1
ı 6=j

∣∣Xij (t1)−Xij (t0)
∣∣

λ= 2 λ= 3 λ= 4
sλ 94 135 171

⇒ a high value of λ leads to a high value of
sλ(X(t1),X(t0)|X(t0) = x(t0))
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Estimating the parameter of the SAOM using the MoM

- The parameter βk quantifies the role played by each effect in
the network evolution.

sk (X(t1)|X(t0) = x(t0)) =

n∑
i=1

sik (X(t1))

E.g.: let us consider the parameter βout .
The corresponding statistic is

sout(X(t1)|X(t0) = x(t0)) =

n∑
i=1

si out(X(t1)) =

n∑
i=1

n∑
j=1

xij (t1)

βout =−2.5 βout =−2 βout =−1.5
sout 195 214 234

⇒ a high value of βout leads to a high value of
sout(X(t1)|X(t0) = x(t0))
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Estimating the parameter of the SAOM using the MoM

Generalizing to M−1 periods:

- Statistics for the rate function parameters

sλ1 (X(t1),X(t0)|X(t0) = x(t0)) =
n∑

i,j=1
ı 6=j

∣∣Xij (t1)−Xij (t0)
∣∣

. . .

sλM−1 (X(tM),X(tM−1)|X(tM−1) = x(tM−1)) =
n∑

i,j=1
ı 6=j

∣∣Xij (tM)−Xij (tM−1)
∣∣

- Statistics for the objective function parameters:

M−1∑
m=1

smk (X(tm)|X(tm−1) = x(tm−1)) =

M−1∑
m=1

smk (X(tm),X(tm−1))
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Estimating the parameter of the SAOM using the MoM

The MoM estimator for θ is defined as the solution of the system of M + K −1
equations


Eθ
[
sλm (X(tm),X(tm+1)|X(tm) = x(tm))

]
= sλm (x(t1),x(t0))

Eθ
[M−1∑

m=1
smk (X(tm+1)|X(tm) = x(tm))

]
=

M−1∑
m=1

smk (x(tm+1),x(tm))

with m = 1, . . . ,M−1 and k = 1, · · · ,K



Estimating the parameter of the SAOM using the MoM

Example
Let us assume to have observed a network at M = 3 time points

and to model network evolution considering the outdegree and the reciprocity
effects.

θ = (λ1,λ2,βout ,βrec )



Estimating the parameter of the SAOM using the MoM

Example
Let us assume to have observed a network at M = 3 time points

and to model network evolution considering the outdegree and the reciprocity
effects.

θ = (λ1,λ2,βout ,βrec )



Estimating the parameter of the SAOM using the MoM

Example
Statistics:

sλ1 (X(t1),X(t0)|X(t0) = x(t0)) =
4∑

i,j=1
ı 6=j

∣∣Xij (t1)−Xij (t0)
∣∣

sλ2 (X(t2),X(t1)|X(t1) = x(t1)) =
4∑

i,j=1
ı 6=j

∣∣Xij (t2)−Xij (t1)
∣∣

2∑
m=1

sm out (X(tm)|X(tm−1) = x(tm−1)) =
2∑

m=1

4∑
i=1

4∑
j=1

Xij (tm)

2∑
m=1

sm rec (X(tm)|X(tm−1) = x(tm−1)) =
2∑

m=1

4∑
i=1

4∑
j=1

Xij (tm)Xji (tm)



Estimating the parameter of the SAOM using the MoM

Example

Observed values of the statistics:

sλ1 = 5 sλ2 = 4

2∑
m=1

sm out = 6 + 8 = 14
2∑

m=1
sm rec = 2 + 3 = 5



Estimating the parameter of the SAOM using the MoM

Example
We look for the value of θ that satisfies the system:

Eθ
[
sλ1 (X(t1),X(t0)|X(t0) = x(t0))

]
= 5

Eθ
[
sλ2 (X(t2),X(t1)|X(t1) = x(t1))

]
= 4

Eθ
[ 2∑

m=1
sm out (X(tm)|X(tm−1) = x(tm−1))

]
= 14

Eθ
[ 2∑

m=1
sm rec (X(tm)|X(tm−1) = x(tm−1))

]
= 5



Stochastic approximation method for the SAOM

Simplified notation:
- S: (M−1 + K)-dimensional vector of statistics
- s: (M−1 + K)-dimensional vector of the observed values of the statistics

Consequently, the system of moment equations can be written as

Eθ[S] = s

or equivalently as
Eθ[S− s] = 0

Problem: analytical and usual numerical procedures cannot be applied to solve
this system, but we can use a stochastic approximation method

Definition
Stochastic approximation methods are a family of iterative stochastic
optimization algorithms that attempt to find zeros or extrema of functions
which cannot be computed in an analytical way.
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Stochastic approximation method for the SAOM

1. The expected values of the statistics are approximated via Monte Carlo
methods ⇒ stochastic

2. The value of θ is iteratively updated according to the “distance” between
the approximated expected values and the observed values.

1. Approximation of the expected value Eθ[S]

1. Given x(t0) and θ, simulate the sequence of the observed networks at time
t1, . . . , tM q times. Denote these sequences by

x (1)(t1), x (1)(t2), . . . , x (1)(tM)

. . .

x (q)(t1), x (q)(t2), . . . , x (q)(tM)

2. For each sequence compute the value S(l) assumed by S
3. Approximate the expected value by

S =
1
q

q∑
l=1

S(l)→ Eθ[S]
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Stochastic approximation method for the SAOM
1. Approximation of the expected value Eθ[S]

Example

1. Given x(t0) and θ, simulate the sequence of the observed networks at time
t1, . . . , tM q times. Denote these sequences by

x (1)(t1), x (1)(t2), . . . , x (1)(tM)

. . .

x (q)(t1), x (q)(t2), . . . , x (q)(tM)

2. For each sequence compute the value assumed by the statistics

S(l)
out =

M−1∑
m=1

n∑
i=1

n∑
j=1

x (l)
ij (tm)

3. Approximate the expected value by

Sout =
1
q

q∑
i=1

S(l)
out → Eθ[Sout ]
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Stochastic approximation method for the SAOM

2. Updating the value of θ
The value of θ is updated by the Robbins-Monro step:

θ̂i+1 = θ̂i −ai D−1(S i − s)

where
- ai is a sequence of positive numbers such that:

lim
(i→∞)

ai = 0
∞∑

i=1
ai =∞

∞∑
i=1

a2
i <∞

- D denotes the diagonal matrix of the first order derivative matrix of S
with respect to θ:

D =
∂

∂θ
Eθ[S|X(t0) = x(t0)]



Stochastic approximation method for the SAOM

2. Updating the value of θ

Example
We look for the value of θ that satisfies the system:

Eθ
[
sλ1 (X(t1),X(t0)|X(t0) = x(t0))

]
= 5

Eθ
[
sλ2 (X(t2),X(t1)|X(t1) = x(t1))

]
= 4

Eθ
[ 2∑

m=1
sm out (X(tm)|X(tm−1) = x(tm−1))

]
= 14

Eθ
[ 2∑

m=1
sm rec (X(tm)|X(tm−1) = x(tm−1))

]
= 5



Stochastic approximation method for the SAOM
2. Updating the value of θ

Example

- Initial guess θ0 = (4.5,3.2,−0.2,0.9)

- Simulate the network evolution 1000 times according to θ0

- Approximation of the expected values Eθ0 [S]

Sλ1 = 6.211 Sλ2 = 4.567

Sβout = 13.806 Sβrec = 4.702

- Approximation of the moment equation

Sλ1 −5 = 1.211 Sλ2 −4 = 0.567

Sβout −14 =−0.194 Sβrec −5 =−0.298

The Robbins-Monro step

θ̂i+1 = θ̂i −ai D−1(S i − s)

suggests how to modify the parameter value to satisfy the moment equation
through the difference (S i − s)



Stochastic approximation method for the SAOM
2. Updating the value of θ

Example

- Initial guess θ0 = (4.5,3.2,−0.2,0.9)

- Simulate the network evolution 1000 times according to θ0

- Approximation of the expected values Eθ0 [S]

Sλ1 = 6.211 Sλ2 = 4.567

Sβout = 13.806 Sβrec = 4.702
- Approximation of the moment equation

Sλ1 −5 = 1.211 Sλ2 −4 = 0.567

Sβout −14 =−0.194 Sβrec −5 =−0.298

The Robbins-Monro step

θ̂i+1 = θ̂i −ai D−1(S i − s)

suggests how to modify the parameter value to satisfy the moment equation
through the difference (S i − s)



Stochastic approximation method for the SAOM
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Stochastic approximation method for the SAOM

2. Updating the value of θ

Example

- Guess θ1 = (4.1,2.9,−0.2,0.9)

- Simulate the network evolution 1000 times according to θ1

- Approximation of the expected values Eθ1 [S]

Sλ1 = 5.345 Sλ2 = 4.215

Sβout = 13.813 Sβrec = 4.759

- Approximation of the moment equation

Sλ1 −5 = 0.345 Sλ2 −4 = 0.215

Sβout −14 =−0.187 Sβrec −5 =−0.241



Stochastic approximation method for the SAOM

2. Updating the value of θ

Example

- Guess θ1 = (4.1,2.9,−0.2,0.9)

- Simulate the network evolution 1000 times according to θ1

- Approximation of the expected values Eθ1 [S]

Sλ1 = 5.345 Sλ2 = 4.215
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Sλ1 −5 = 0.345 Sλ2 −4 = 0.215

Sβout −14 =−0.187 Sβrec −5 =−0.241



Stochastic approximation method for the SAOM

2. Updating the value of θ

Example

- Guess θi = (3.87,2.56,−0.11,0.87)

- Simulate the network evolution 1000 times according to θ1

- Approximation of the expected values Eθi [S]

Sλ1 = 5.055 Sλ2 = 4.018

Sβout = 14.012 Sβrec = 4.974

- Approximation of the moment equation

Sλ1 −5 = 0.055 Sλ2 −4 = 0.018

Sβout −14 = 0.012 Sβrec −5 =−0.026



Stochastic approximation method for the SAOM

2. Updating the value of θ

Example

- Guess θi = (3.87,2.56,−0.11,0.87)

- Simulate the network evolution 1000 times according to θ1

- Approximation of the expected values Eθi [S]

Sλ1 = 5.055 Sλ2 = 4.018

Sβout = 14.012 Sβrec = 4.974
- Approximation of the moment equation

Sλ1 −5 = 0.055 Sλ2 −4 = 0.018

Sβout −14 = 0.012 Sβrec −5 =−0.026



The Robbins-Monro algorithm

Phase 1: given the network at time t0 and an initial guess θ0 for θ a small
number q1 of steps are made to estimate D.

1. Network evolution is simulated from θ0 and the values Si0 are computed

2. Network evolution is simulated from θ0 + εj ej and the values Sij are
computed where

- ej is the j-th unit vector
- 0.1< εj < 1

3. Compute dij = ε−1
j (Sij −Si0)

4. Repeat steps 1. to 3. until i = q1

5. Estimate Eθ[S] and D by the Monte Carlo method

S =
1
q1

q1∑
i=1

Si0 d̂j =
1
q1

q1∑
i=1

dij

6. A new value of θ is estimated via the Robbins-Monro step with ai = 1:

θ̂q1 = θ0− D̂−1(S− s)
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The Robbins-Monro algorithm
Phase 2: the main phase, consisting of c sub-phases. Each sub-phase h iterate
the Robbins-Monro step for at most qh step.

1. Generate the network evolution according to θ̂i and compute Sih

2. Updated θ according to the Robbins-Monro step

θ̂i+1 = θ̂i −ahD̂−1(S i − s)

3. Repeat steps 1. and 2. until i > qh or (Sih− s)(S(i−1)h− s)< 0
4. Compute

θ̂h =
1
i
∑

i
θ̂i

5. ah+1 = ah
2 is the eventual estimate for θ

θ̂c is the eventual estimate for θ

Phase 3: a number of q3 simulations is used to evaluate the convergence of
the algorithm and the accuracy of the estimator.

- Phase 3 requires the computation of D, thus it is similar to Phase 1.
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The Maximum-likelihood estimation (MLE)

The model assumptions allow to decompose the process in a series of
micro-steps:

{(Tr , ir , jr ), r = 1, . . . ,R}

where
- Tr is the time point for an opportunity for change
- ir denotes the actor who has the opportunity to change
- jr is the actor towards whom the tie is changed

We denote by R the total number of micro-steps between t0 and t1 and we
assume that the time point Tr are ordered increasingly:

t0 = T0 < T1 < .. . < TR < t1



The Maximum-likelihood estimation (MLE)

Definition
Given the sequence of micro-steps {(Tr , ir , jr ), r = 0, . . . ,R}, the likelihood
function of the network evolution process is defined by:

L(θ) =

R∏
r=1

P((Tr , ir , jr ))

Then, the estimate for θ is the vector of values θ̂ such that:

θ̂ = arg max
θ∈Θ

L(θ)

or equivalently, the vector of values θ̂ such that:

U(θ) =
∂

∂θ
log(L(θ)) = 0

where U(θ) is the score function.



Augmented data

Problem: we cannot observe the complete data and the likelihood of the
observed data (x(t1), . . . ,x(tM)) conditional on x(t0).

⇓

the parameter estimation requires finding the root of a system of equations in
which the functions cannot be computed analytically ⇒ a stochastic
approximation method must be applied.

The idea is to augment the observed data so that an
easily computable likelihood is obtained.

Note: the data augmentation can be done separately for each time period
(tm−1, tm). It is not restrictive to describe it only for two observations x(t0)
and x(t1).
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Augmented data

Definition
The augmented data (or sample path) consist of R and of the sequence of tie
changes that brings the network from x(t0) to x(t1)

(i1, j1), . . . ,(iR , jR )

Formally:
v = {(i1, j1), . . . ,(iR , jR )} ∈V

where V is the set of all sample paths connecting x(t0) and x(t1).

We can approximate the likelihood function (and then the score function) of
the observed data using the probability of v
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R!
e−nλ

R∏
r=1

1
λ

pir jr (β,x(Tr−1))



Augmented data

Definition
The augmented data (or sample path) consist of R and of the sequence of tie
changes that brings the network from x(t0) to x(t1)
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Sampling the augmented data

The augmented data are sampled through a Markov chain simulation defined
onV

Definition
The Metropolis-Hastings algorithm is defined by the following transition
probabilities:

1. Given v i = v , generate ṽ form the proposal distribution u(ṽ |v i )

2. Take

v i+1 =

{ ṽ with probability ρ(ṽ ,v)

v with probability 1−ρ(ṽ ,v)

where
ρ(ṽ ,v) = min

{
P(ṽ)u(v |ṽ )

P(v)u(ṽ |v )
,1
}

The transition probabilities of the chain generate by the Metropolis-Hastings
algorithm are given by ρ(ṽ ,v)u(ṽ |v )
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Sampling the augmented data

The proposal distribution u(ṽ |v ) assigns non-null probabilities to the following
changes:

1. Pairwise deletions: one pair of indices r1 and r2 such that
(ir1 , jr1 ) = (ir2 , jr2 ) is selected and the corresponding pairs (ir1 , jr1 ) and
(ir2 , jr2 ) are deleted from v

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (r1, r2) in {(1,7)(1,10)(2,8)}, e.g. (r1, r2) = (1,7)
- Delete the elements (2,4)

ṽ = (2,3) (1,1) (4,2) (3,2) (1,4) (2,3) (1,3) (2,4) (3,3)



Sampling the augmented data

The proposal distribution u(ṽ |v ) assigns non-null probabilities to the following
changes:

1. Pairwise deletions: one pair of indices r1 and r2 such that
(ir1 , jr1 ) = (ir2 , jr2 ) is selected and the corresponding pairs (ir1 , jr1 ) and
(ir2 , jr2 ) are deleted from v

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (r1, r2) in {(1,7)(1,10)(2,8)}, e.g. (r1, r2) = (1,7)
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Sampling the augmented data

The proposal distribution u(ṽ |v ) assigns non-null probabilities to the following
changes:

2. Pairwise insertions: one pair of (i , j) ∈N2 and two indices r1 and r2 are
randomly chosen. The element (i , j) is inserted in v immediately before r1
and r2.

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (i , j) and (r1, r2), e.g. i = 4, j = 1, r1 = 5, r2 = 7
- Insert the elements (4,1) before r1 = 5 and r2 = 7

ṽ = (2,4) (2,3) (1,1) (4,2) (4,1) (3,2) (1,4) (4,1) (2,4) (2,3) (1,3) (2,4) (3,3)
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The proposal distribution u(ṽ |v ) assigns non-null probabilities to the following
changes:

2. Pairwise insertions: one pair of (i , j) ∈N2 and two indices r1 and r2 are
randomly chosen. The element (i , j) is inserted in v immediately before r1
and r2.

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (i , j) and (r1, r2), e.g. i = 4, j = 1, r1 = 5, r2 = 7
- Insert the elements (4,1) before r1 = 5 and r2 = 7
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Sampling the augmented data

The proposal distribution u(ṽ |v ) assigns non-null probabilities to the following
changes:

3. Single deletion: one pair (ir , jr ) satisfying ir = jr is randomly selected and
deleted from v

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random r in {3,11}, e.g. r = 11
- Delet the elements (3,3)

ṽ = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4)
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The proposal distribution u(ṽ |v ) assigns non-null probabilities to the following
changes:

3. Single deletion: one pair (ir , jr ) satisfying ir = jr is randomly selected and
deleted from v

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random r in {3,11}, e.g. r = 11
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Sampling the augmented data

The proposal distribution u(ṽ |v ) assigns non-null probabilities to the following
changes:

4. Single insertion: one actor i ∈N and an index r are selected. The element
(i , i) is inserted immediately before r

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random i ∈N and r , e.g. i = 4 r = 6
- Insert the elements (4,4) before r = 6

ṽ = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (4,4) (2,4) (2,3) (1,3) (2,4) (3,3)
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Example
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Sampling the augmented data

The proposal distribution u(ṽ |v ) assigns non-null probabilities to the following
changes:

5. Permutations: for randomly chosen indices r1 < r2, the sequence
(ir1 , jr1 ), . . . ,((ir2 , jr2 )) is randomly permuted

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (r1, r2) and r , e.g. r1 = 2, r2 = 5
- Permute the sequence (i2, j2), . . . ,(i5, j5)

v = (2,4) (1,1) (2,3) (3,2) (4,2) (1,4) (4,4) (2,4) (2,3) (1,3) (2,4) (3,3)
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The proposal distribution u(ṽ |v ) assigns non-null probabilities to the following
changes:

5. Permutations: for randomly chosen indices r1 < r2, the sequence
(ir1 , jr1 ), . . . ,((ir2 , jr2 )) is randomly permuted

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (r1, r2) and r , e.g. r1 = 2, r2 = 5
- Permute the sequence (i2, j2), . . . ,(i5, j5)
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Sampling the augmented data

Theorem
The Metropolis-Hastings algorithm leads to an irreducible, aperiodic and
reversible Markov-chain.

Proof

- The Markov chain is irreducible.
Pairwise deletions and insertions and single deletion and insertion are
sufficient for all v ∈ to communicate.

- The Markov chain is aperiodic.
The graph associated to the resulting Markov-chain contains all the loops
and thus the greatest common divisor of all cycles is one.



Sampling the augmented data

- The Markov chain is reversible. The detailed balance condition:

ρ(ṽ ,v)u(ṽ |v )P(v) = ρ(v , ṽ)u(v |ṽ )P(ṽ)

is satisfied.

ρ(ṽ ,v)u(ṽ |v )P(v) = min
{

P (̃v)u(v
∣∣̃v )

P(v)u(̃v |v )
,1
}

u(ṽ |v )P(v) =

= min
{

P (̃v)u(v
∣∣̃v )

u(̃v |v )
,P(v)

}
u(ṽ |v ) =

= min
{

u(v
∣∣̃v )

u(̃v |v )
,

P(v)

P (̃v)

}
u(ṽ |v )P(ṽ) =

= min
{

1, P(v)u(̃v |v )

P (̃v)u(v
∣∣̃v )

}
u(v |ṽ )P(ṽ) =

= ρ(v , ṽ)u(v |ṽ )P(ṽ)



Sampling the augmented data

The ML estimation algorithm can be sketched in the following way:
1. For each m = 1, . . . ,M−1 makes a large number of Metropolis-Hastings

steps yielding v (i) = (v (i)
1 , . . . ,v (i)

M−1)

2. Compute the score function:

∂

∂θ
log(L(θ̂i ;x ;v (i)

m ))

3. Update the parameter estimate using the Robbins-Monro step

θi+1 = θi + ai D−1U(L(θ̂i ;x ;v (i)
m ))

The estimate θ̂ is calculated as the average of the θi+1 values generated by this
algorithm.



Parameter estimation

The Robbins-Monro algorithm and the ML estimation are implemented in the
R library RSiena (Simulation Investigation for Empirical Network Analysis)

You need to load the following libraries:
1. library(snow)
2. library(rlecuyer)
3. library(RSiena)

The R script “estimation.R” contains the R commands to implement the
estimation procedure in R and the folder “tfls.zip” includes the data files.

Example data: an excerpt from the “Teenage Friends and Lifestyle Study” data
set:

- Networks: relation = friendship
Networks: actors = 129 pupils present at all three measurement points

- Covariates: gender (1 = Male, 2 = Female)
Covariates: smoking behavior (1 = no, 2= occasional, 3 = regular)



Parameter interpretation: a very simple model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.5948 ( 0.7091 )
Rate parameter period 2 7.2115 ( 0.5751 )

Other parameters:
outdegree (density) -2.4147 ( 0.0387 ) -62.3875
reciprocity 2.7106 ( 0.0811 ) 33.4061

Rate parameter: expected frequency, between two consecutive network
observations, with which actors get the opportunity to change a network tie

- about 9 opportunities for change in the first period
- about 7 opportunities for change in the second period

The estimated rate parameters will be higher than the observed number of
changes per actor (why?)
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changes per actor (why?)



Parameter interpretation: a very simple model

Interpreting the objective function parameters:

The parameter βk quantifies the role of the effect sk in the network evolution.

βk = 0 sk plays no role in the network dynamics

βk > 0 higher probability of moving into networks where sk is higher

βk < 0 higher probability of moving into networks where sk is lower

Which βk are “significantly” different from 0?

E.g. βrec = 0.13 is “significantly” different from 0?



Parameter interpretation: a very simple model

Hypothesis test:

1. State the hypotheses.
- The null hypothesis (H0) states that the observed increase or

decrease in the number of network configurations related to a certain
effect results purely from chance.

H0 : βk = 0

- The alternative hypothesis (H1) states that the observed increase or
decrease in the number of network configurations related to a certain
effect is influenced by some non-random cause.

H1 : βk 6= 0



Parameter interpretation: a very simple model

Hypothesis test:

1. State the hypotheses.
- The null hypothesis (H0) states that the observed increase or

decrease in the number of network configurations related to a certain
effect results purely from chance.

H0 : βk = 0

- The alternative hypothesis (H1) states that the observed increase or
decrease in the number of network configurations related to a certain
effect is influenced by some non-random cause.

H1 : βk 6= 0



Parameter interpretation: a very simple model

Hypothesis test:

2. Define a decision rule
∣∣∣ βk

s.e.(βk )

∣∣∣≥ 2 reject H0∣∣∣ βk
s.e.(βk )

∣∣∣< 2 fail to reject H0

The logic behind this decision rule is based on the standard error concept.

Example

Is the value βrec = 0.13 far enough from 0?

If s.e.(βrec ) = 0.9, a more or less plausible set of values that the parameter can
assume is approximately

[0.04,0.22]∣∣∣∣ βrec
s.e.(βrec )

∣∣∣∣=
∣∣∣0.13

0.9

∣∣∣= 0.14< 2

βrec is not significantly different from 0
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Hypothesis test:
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Parameter interpretation: a very simple model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.5948 ( 0.7091 )
Rate parameter period 2 7.2115 ( 0.5751 )

Other parameters:
outdegree (density) -2.4147 ( 0.0387 ) -62.3875
reciprocity 2.7106 ( 0.0811 ) 33.4061

Objective function parameters:
- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties
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Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.5948 ( 0.7091 )
Rate parameter period 2 7.2115 ( 0.5751 )

Other parameters:
outdegree (density) -2.4147 ( 0.0387 ) -62.3875
reciprocity 2.7106 ( 0.0811 ) 33.4061

Objective function parameters:
- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties



Parameter interpretation: a very simple model

In more detail

βout

n∑
j=1

xij +βrec

n∑
j=1

xij xji =−2.4147
n∑

j=1
xij + 2.7106

n∑
j=1

xij xji

Adding a reciprocated tie (i.e., for which xji = 1) gives

−2.4147 + 2.7106 = 0.2959

while adding a non-reciprocated tie (i.e., for which xji = 0) gives

−2.4147

Conclusion: reciprocated ties are valued positively and non-reciprocated ties are
valued negatively by actors



Parameter interpretation: a more complex model

Specifying the objective function

In friendship context, sociological theory suggests that:
- friendship relations tend to be reciprocated → reciprocity effect

- the statement “the friend of my friend is also my friend” is almost always
true → transitive triplets effect
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Parameter interpretation: a more complex model

Specifying the objective function

In friendship context, sociological theory suggests that:
- pupils prefer to establish friendship relations with others that are similar to

themselves

→ covariate similarity

This effect must be controlled for the sender and receiver effects of the
covariate.

- Covariate ego effect

- Covariate alter effect
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Parameter interpretation: a more complex model

Specifying the objective function

In friendship context, sociological theory suggests that:
- pupils prefer to establish friendship relations with others that are similar to

themselves → covariate similarity

This effect must be controlled for the sender and receiver effects of the
covariate.

- Covariate ego effect

- Covariate alter effect



Parameter interpretation: a more complex model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
sex ego 0.1571 ( 0.1072 ) 1.4659
sex similarity 0.9191 ( 0.1076 ) 8.5440
smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties
- transitivity parameter: preference for being friends with friends’friends
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Parameter interpretation: a more complex model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
sex ego 0.1571 ( 0.1072 ) 1.4659
sex similarity 0.9191 ( 0.1076 ) 8.5440
smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

- sex alter: gender does not affect actor popularity
- sex ego: gender does not affect actor activity
- sex similarity: tendency to choose friends with the same gender



Parameter interpretation: a more complex model

- Gender: coded with 1 for boys and with 2 for girls.

- All actor covariates are centered: z = 1.434 is the mean of the covariate

zi − z =

{ −0.434 for boys

0.566 for girls

- The contribution of xij to the objective function is

βego(zi − z) +βalter (zj − z) +βsameI{zi = zj}=

= 0.1571(zi − z)−0.1513(zj − z) + 0.9191I{zi = zj}

where I{zi = zj} is the indicator function

I{zi = zj}
{

1 zi = zj
0 otherwise
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- All actor covariates are centered: z = 1.434 is the mean of the covariate

zi − z =

{ −0.434 for boys

0.566 for girls

- The contribution of xij to the objective function is

βego(zi − z) +βalter (zj − z) +βsameI{zi = zj}=

= 0.1571(zi − z)−0.1513(zj − z) + 0.9191I{zi = zj}

where I{zi = zj} is the indicator function

I{zi = zj}
{

1 zi = zj
0 otherwise



Parameter interpretation: a more complex model

Male Female
Male 0.9166 0.1546
Female -0.1538 0.9224

Table: Gender-related contributions to the objective function

Conclusions:
- preference for similar alters
- the negative value associated to the the single tie form a girl to a boy,

suggests that girls seem not to like male friends.



Parameter interpretation: a more complex model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
sex ego 0.1571 ( 0.1072 ) 1.4659
sex similarity 0.9191 ( 0.1076 ) 8.5440
smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

- smoke alter: smoking behavior does not affect actor popularity
- smoke ego: smoking behavior not affect actor activity
- smoke similarity: tendency to choose friends with the same smoking

behavior



Parameter interpretation: a more complex model

- Smoking behavior: coded with 1 for “no”, 2 for “occasional”, and 3 for
“regular” smokers.

- The smoking covariate is centered: z = 1.310 is the mean of the covariate

zi − z =


−0.310 for no smokers

0.690 for occasional smokers

1.690 for regular smokers

- The contribution of xij to the objective function is

βego(zi − z) +βalter (zj − z) +βsame
(

1− |zi−zj |
Rz
− simz

)
=

= 0.0714(zi − z) + 0.1055(zj − z) + 0.3724
(

1− |zi−zj |
2 −0.7415

)
where Rz = zmax − zmin
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zi − z =
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Parameter interpretation: a more complex model

no occasional regular
no 0.0414 -0.0734 -0.1882
occasional -0.0393 0.2183 0.1035
regular -0.1200 0.1376 0.3952

Table: Smoking-related contributions to the objective function

Conclusions:
- preference for similar alters
- this tendency is strongest for high values on smoking behavior
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Motivation

1. Social network dynamics can depend on actors’characteristics.

Selection process: relationship partners are selected according to their
characteristics

Example
Homophily: the formation of relations based on the similarity of two actors

E.g. smoking behavior
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Motivation

2. Changeable actors’characteristics can depend on the social network

E.g.: opinions, attitudes, intentions, etc. - we use the word behavior for all of
these!

Influence process: actors adjust their characteristics according to the
characteristics of other actors to whom they are tied

Example
Assimilation/contagion: connected actors become increasingly similar over time

E.g. smoking behavior



Motivation

2. Changeable actors’characteristics can depend on the social network

E.g.: opinions, attitudes, intentions, etc. - we use the word behavior for all of
these!

Influence process: actors adjust their characteristics according to the
characteristics of other actors to whom they are tied

Example
Assimilation/contagion: connected actors become increasingly similar over time

E.g. smoking behavior



Competing explanatory stories

Homophily and assimilation give rise to the same outcome (similarity of
connected individuals)

⇓

study of influence requires the consideration of selection and vice versa.

Fundamental question: is this similarity caused mainly by influence or mainly by
selection?

Extending the SAOM for the co-evolution of networks and behaviors
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Competing explanatory stories

Example
Similarity in smoking:

Selection: “a smoker may tend to have smoking friends because, once
somebody is a smoker, he or she is likely to meet other smokers in smoking
areas and thus has more opportunities to form friendship ties with them”

Influence: “a smoker may have been the friendship with a smoker that made
him or her start smoking in the first place”



Competing explanatory stories

Example
Similarity in smoking:

Selection: “a smoker may tend to have smoking friends because, once
somebody is a smoker, he or she is likely to meet other smokers in smoking
areas and thus has more opportunities to form friendship ties with them”

Influence: “a smoker may have been the friendship with a smoker that made
him or her start smoking in the first place”



Longitudinal network-behavior panel data

1. a network x represented by its adjacency matrix
2. a series of actors’ attributes:

- H constant covariates V1, · · · ,VH
- L behavior covariates Z1(t), · · · ,ZL(t)

Behavior variables are ordinal categorical variables.

Longitudinal network-behavior panel data: networks and behaviors observed at
M ≥ 2 time points t1, · · · , tM

(x ,z)(t1), (x ,z)(t2), · · · , (x ,z)(tM)

and the constant covariates V1, · · · ,VH .



Longitudinal network-behavior panel data

1. a network x represented by its adjacency matrix
2. a series of actors’ attributes:

- H constant covariates V1, · · · ,VH
- L behavior covariates Z1(t), · · · ,ZL(t)

Behavior variables are ordinal categorical variables.

Longitudinal network-behavior panel data: networks and behaviors observed at
M ≥ 2 time points t1, · · · , tM

(x ,z)(t1), (x ,z)(t2), · · · , (x ,z)(tM)

and the constant covariates V1, · · · ,VH .



Assumptions

1. Distribution of the process.
Changes between observational time points are modeled according to a
continuous-time Markov chain.

- State space C: all the possible configurations arising from the
combination of network and behaviors

|C |= 2n(n−1)×Bn

where B is the number of categories for the behavior variable.

- Markovian assumption: changes actors make are assumed to depend
only on the current state of the network

- Continuous-time:
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2. Opportunity to change.

At any given moment one probabilistically selected actor has the
opportunity to change one of his outgoing tie or his behavior.
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Assumptions

2. Opportunity to change.
At any given moment one probabilistically selected actor has the
opportunity to change one of his outgoing tie or his behavior.

The moments at which an actor has the opportunity for a tie change or a
behavior change are modeled by two distinct rate functions.



Assumptions

3. Absence of co-occurrence.
At each instant t, only one actor has the opportunity to change (one of his
outgoing ties or his behavior)

4. Actor-oriented perspective.
Actors control their outgoing ties as well as their own behavior.

- the actor decide to change one of his outgoing ties or his behavior
according to his position in the network, his attributes and the
characteristics of the other actors

Aim: maximize a utility function
- two distinct objective functions: one for the network and one for the

behavior change
- actors have complete knowledge about the network and the behaviors

of all the the other actors
- the maximization is based on immediate returns and not on long-run

rewarding (myopic actors)



Model definition

According to the previous assumptions, the network-behavior co-evolution
process is decomposed into a series of micro-steps:

- the opportunity of changing one network tie and the corresponding tie
changed

- the opportunity of changing a behavior and the corresponding unit
changed in behavior

⇓

every micro-step requires the identification of a focal actor who gets the
opportunity to make a change and the identification of the change outcome

Occurrence Preference
Network changes Network rate function Network objective function
Behavioral changes Behavioral rate function Behavioral objective function
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The rate functions

The frequency by which actors have the opportunity to make a change is
modeled by the rate functions, one for each type of change.

Why must we specify two different rate functions?

Practically always, one type of decision will be made more frequently than the
other

Example
In the joint study of friendship and smoking behavior at high school, we would
expect more frequent changes in the network than in behavior
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The rate functions
Network rate function
T net

i = the waiting time until i gets the opportunity to make a network change

T net
i ∼ Exp(λnet

i )

Behavior rate function
T beh

i = the waiting time until i gets the opportunity to make a behavior change

T beh
i ∼ Exp(λbeh

i )

The waiting time until the occurrence of the next micro step of either kind by
any actor is exponentially distributed with parameter:

λtot =
∑

i
(λnet

i +λbeh
i )

Probabilities

P(i has the opportunity to change one of his tie) =
λnet

i
λtot

P(i has the opportunity to change his behavior) =
λbeh

i
λtot
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The rate functions (simplest specification)

Network rate function
T net

i = the waiting time until i gets the opportunity to make a network change

T net
i ∼ Exp(λnet)

Behavior rate function
T beh

i = the waiting time until i gets the opportunity to make a behavior change

T beh
i ∼ Exp(λbeh)

The waiting time until the occurrence of the next micro step of either kind by
any actor is exponentially distributed with parameter:

λtot = n(λnet +λbeh)

Probabilities

P(network micro-step) =
nλnet

λtot

P(behavioral micro-step) =
nλbeh

λtot
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The objective functions

The probability of going from one state to another state of the co-evolution
Markov chain is defined by the objective functions.

Why must we specify two different objective functions?

- The network objective function represents how likely it is for i to change
one of its outgoing tie

- The behavioral objective function represents how likely it is for the actor i
the current level of his behavior

Network objective function

f net
i (β,x(i ; j),z) =

K∑
k=1

βk snet
ik (x ,z) + Ui (t,x , j)

already described for the SAOM
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The objective functions

Behavioral objective function

f beh
i (γ,z(l ; l ′),x) =

W∑
w=1

γw sbeh
iw (x ,z(l ; l ′)) + εi (t,z, l , l ′)

where
- sbeh

w (x ,z) are effects
- γw are statistical parameters
- εi (t,z, l , l ′) is a random term

The probability that an actor i changes his own behavior by one unit is:

pll′(γ;z(l ; l ′);x) =

exp
( W∑

w=1
γw sbeh

iw (x ,z(l ; l ′))

)
∑

l′′∈{l+1,l−1,l}
exp
( W∑

w=1
γw sbeh

iw (x ,z(l ; l ′′))

)
pll is the probability that i does not change his behavior



The objective functions
The specification of the behavioral objective function

- Basic shape effects
The linear shape effect sbeh

i linear (x ,z) and the quadratic shape effect
sbeh
i quadratic (x ,z) are defined by

sbeh
i linear (x ,z) = zi sbeh

i quadratic (x ,z) = z2
i

The basic shape effects must be always included in the model specification.
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The objective functions
The specification of the behavioral objective function

- Classical influence effects
1. The average similarity effect sbeh

i avsim(x ,z) expressing the preference of
actors to be similar in behavior to their alters, in such a way that the
total influence of the alters is the same regardless ego’s outdegree

sbeh
i avsim(x ,z) =

1
xi+

n∑
j=1

xij (simz (ij)− simz )

where

simz (ij) = 1−

∣∣zi − zj
∣∣

Rz

Rz is the range of the behavior z and simz is the mean similarity
value.

2. The total similarity effect sbeh
i totsim(x ,z), expressing the preference of

actors to be similar in behavior to their alters, in such a way that the
total influence of the alters is proportional to the number of alters:

sbeh
i totsim(x ,z) =

n∑
j=1

xij (simz (ij)− simz )



The objective functions
The specification of the behavioral objective function

- Classical influence effects
1. The average similarity effect sbeh

i avsim(x ,z) expressing the preference of
actors to be similar in behavior to their alters, in such a way that the
total influence of the alters is the same regardless ego’s outdegree

sbeh
i avsim(x ,z) =

1
xi+

n∑
j=1

xij (simz (ij)− simz )

where

simz (ij) = 1−

∣∣zi − zj
∣∣

Rz

Rz is the range of the behavior z and simz is the mean similarity
value.

2. The total similarity effect sbeh
i totsim(x ,z), expressing the preference of

actors to be similar in behavior to their alters, in such a way that the
total influence of the alters is proportional to the number of alters:

sbeh
i totsim(x ,z) =

n∑
j=1

xij (simz (ij)− simz )



The objective functions

The specification of the behavioral objective function
- Position-dependent influence effects

Network position could also have an effect on the behavior of dynamics.
1. outdegree effect

sbeh
i out(x ,z) = zi

n∑
j=1

xij

2. indegree effect

sbeh
i ind (x ,z) = zi

n∑
j=1

xji

- Effects of other actor variables.
For each actor’s attribute a main effect on the behavior can be included in
the model.



Simulating the co-evolution of networks and behavior

The algorithm consists in reproducing a possible series of micro-steps between
two observation moments t0 and t1 according to fixed parameter value.

1. Set the time t = 0, x = x(t0) and z = z(t0)

2. Generate T net according to an exponential distribution with parameter
λnet

3. Generate T beh according to an exponential distribution with parameter
λbeh



Simulating the co-evolution of networks and behavior

4. If min
{

T net ,T beh}= T net a network micro-step is implemented:

- Select the actor i ∈N, who makes the changes, with probability

P(i has the opportunity to change | network micro-steps) =
λnet

λtot

- Select the actor j ∈N, to whom i changes his outgoing tie, with
probability:

pij =

exp
( K∑

k=1
βk sik (x(i ; j),z)

)
n∑

h=1
exp
( K∑

k=1
βk sik (x(i ; h),z)

)

- If i 6= j then x = x(i ; j). If i = j then x = x
- Set t = t + T net



Simulating the co-evolution of networks and behavior

4. If min
{

T net ,T beh}= T beh a behavioral micro-step is implemented:

- Select the actor i ∈N, who makes the changes, with probability

P(i has the opportunity to change|behavioral micro-steps) =
λbeh

λtot

- Determine the behavioral change l ′ ∈ {l + 1, l−1, l} with probability:

pll′(γ;z(l ; l ′);x) =

exp
( W∑

w=1
γw sbeh

iw (x ,z(l ; l ′))

)
∑

l′′∈{l+1,l−1,l}
exp
( W∑

w=1
γw sbeh

iw (x ,z(l ; l ′′))

)

- If l 6= l ′ then z = z(l ; l ′). If l = l ′ then z = z
- Set t = t + T beh

5. Repeat step 2. to 4. until the stopping criterion is satisfied.



Simulating the co-evolution of networks and behavior

1. Unconditional simulation:
the simulations in each time period carry on until a predetermined time
length has elapsed (usually until t = 1).

2. Conditional simulation on the observed number of changes:
- simulations run on until the number of different entries between x(t0)

and the simulated network x sim(t1) is equal to the number of entries
that differ between x(t0) and x(t1)

n∑
i,j=1
ı 6=j

∣∣∣X obs
ij (t1)−Xij (t0)

∣∣∣=

n∑
i,j=1
ı6=j

∣∣∣X sim
ij (t1)−Xij (t0)

∣∣∣
- simulations run on until the number of different entries between z(t0)

and the simulated behavior zsim(t1) is equal to the number of entries
that differ between z(t0) and z(t1)

n∑
i=1

∣∣∣zobs
i (t1)− zi (t0)

∣∣∣=

n∑∣∣∣zsim
i (t1)− zi (t0)

∣∣∣
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The parameter estimation (MoM)

Aim: estimate θ, the 2(M-1)+K+W dimensional vector of parameters of the
co-evolution model

Statistics:
- Network rate parameters for the period m

snet
λm (X(tm),X(tm−1)|X(tm−1) = x(tm−1)) =

n∑
i,j=1
ı 6=j

∣∣Xij (tm)−Xij (tm−1)
∣∣

- Behavior rate parameters for the period m

sbeh
λm (Z(tm),Z(tm−1)|Z(tm−1) = z(tm−1)) =

n∑
i=1

|Zi (tm)−Zi (tm−1)|



The parameter estimation (MoM)

Aim: estimate θ, the 2(M-1)+K+W dimensional vector of parameters of the
co-evolution model

Statistics:
- Network objective function effects

M−1∑
m=1

snet
mk (X(tm)|X(tm−1) = x(tm−1)) =

M−1∑
m=1

snet
mk (X(tm),X(tm−1))

- Behavior objective function effects

M−1∑
m=1

sbeh
mw (X(tm)|X(tm−1) = x(tm−1)) =

M−1∑
m=1

sbeh
mw (X(tm),X(tm−1))



The parameter estimation (MoM)

Consequently the MoM estimator for θ is provided by the solution of the
system of equations:

Eθ
[
sλm (X(tm),X(tm−1)|X(tm−1) = x(tm−1))

]
= sλm (x(tm),x(tm−1))

Eθ
[
sλm (Z(tm),Z(tm−1)|Z(tm−1) = z(tm−1))

]
= sλm (z(tm),z(tm−1))

Eθ
[M−1∑

m=1
snet
mk (X(tm)|X(tm−1) = x(tm−1))

]
=

M−1∑
m=1

snet
mk (x(tm),x(tm−1))

Eθ
[M−1∑

m=1
sbeh
mw (X(tm)|X(tm−1) = x(tm−1))

]
=

M−1∑
m=1

sbeh
mw (x(tm),x(tm−1))



The parameter estimation (MoM)

Remarks

- The system of equation cannot be solved analytically =⇒ Robbins-Monro
algorithm

- The Maximum likelihood estimation is under construction. At the moment
is too slow



Example

Example data: excerpt from the “Teenage Friends and Lifestyle Study” data set

We will use the SAOM for the co-evolution of networks and behaviors to
disentangle influence and selection processes.

1. Do pupils select friends based on similar smoking behavior?
2. Are pupils influenced by friends to adjust to their smoking behavior?

Dependent variables: friendship networks and smoking behavior

Covariate: gender



Precondition of the analysis

To find out whether it makes sense to analyze the data with a co-evolution
model one should check whether:

1. the data are sufficiently informative to allow for identification of effects

J =
N11

N11 + N01 + N10
> 0.3 Jaccard index



Precondition of the analysis

2. there is interdependence between networks and behavioral variables

I =− d(δ)

(n−1)d
Moran index

where
-

d(δ) =

∑
ij

xij (zi − z)(zj − z)∑
ij

xij

is the mean of the cross products of the centered behavioral variable
for connected actors

-

d =

∑
ij

(zi − z)(zj − z)

n(n−1)

is the overall mean of the cross products of the centered behavioral
variable for all the possible pairs of actors in the network



Precondition of the analysis: understanding the Moran index

∑
ij

xij (zi − z)(zj − z)∑
ij

xij

∑
ij

(zi − z)(zj − z)

n(n−1)

If two connected actors i and j are sim-
ilar in their behaviors we expect that

- zi > z and zj > z
- zi < z and zj < z

⇓
Positive interdependence

0< I < 1
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Negative interdependence

−1< I < 0
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Precondition of the analysis: understanding the Moran index

∑
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xij (zi − z)(zj − z)∑
ij

xij
<

∑
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(zi − z)(zj − z)

n(n−1)

If two connected actors i and j are ex-
tremely different in their behaviors we
expect that

- zi > z and zj < z
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⇓
Negative interdependence

−1< I < 0



Precondition of the analysis: understanding the Moran index

If:∑
ij

xij (zi − z)(zj − z)∑
ij

xij
≈

∑
ij

(zi − z)(zj − z)

n(n−1)

the local distribution of the behavioral vari-
able follows the global distribution of the be-
havioral variable

⇓
Absence of interdependence

I ≈− 1
n−1



Precondition of the analysis: understanding the Moran index

If:∑
ij

xij (zi − z)(zj − z)∑
ij

xij
≈

∑
ij

(zi − z)(zj − z)

n(n−1)

the local distribution of the behavioral vari-
able follows the global distribution of the be-
havioral variable

⇓
Absence of interdependence

I ≈− 1
n−1



Precondition of the analysis

In theory −1≤ I ≤+1
- values close to zero indicates independence between networks and

behaviors (i.e.absence of interdependence)
- value +1 indicates perfect identity of the behaviors of two friends (i.e.

very strong positive interdependence)
- value -1 indicates perfect complementarity of the behaviors of two friends

(i.e. very strong negative interdependence).

The computation of the Moran index for the friendship networks and smoking
behaviors leads to

0.244 0.258 0.341

Conclusion: there is considerable dependence between networks and behaviors.
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Parameter interpretation: a baseline model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 8.6287 ( 0.6666 )
constant friendship rate (period 2) 7.2489 ( 0.5466 )

outdegree (density) -2.4084 ( 0.0407 ) -59.12676
reciprocity 2.7024 ( 0.0823 ) 32.8337

Behavior Dynamics
rate smokebeh (period 1) 3.8922 ( 1.9689 )
rate smokebeh (period 2) 4.4813 ( 2.3679 )

behavior smokebeh linear shap -3.5464 ( 0.4394 ) -8.0712
behavior smokebeh quadratic shape 2.8464 ( 0.3628 ) 7.8447

Network rate parameters:
- about 9 opportunities for change in the first period
- about 7 opportunities for change in the second period
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Parameter interpretation: a baseline model

- Smoking behavior: coded with 1 for “no”, 2 for “occasional”, and 3 for
“regular” smokers.

- The smoking covariate is centered: z = 1.377 is the mean of the covariate

zi − z =


−0.377 for no smokers

0.623 for occasional smokers

1.623 for regular smokers

- The contribution to the behavioral objective function is

γlinear (zi − z) +γquadratic (zi − z)2 =

=−3.5464linear (zi − z) + 2.8464quadratic (zi − z)2
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Parameter interpretation: a baseline model

- Smoking behavior: coded with 1 for “no”, 2 for “occasional”, and 3 for
“regular” smokers.

- The smoking covariate is centered: z = 1.377 is the mean of the covariate

zi − z =


−0.377 for no smokers

0.623 for occasional smokers

1.623 for regular smokers

- The contribution to the behavioral objective function is

γlinear (zi − z) +γquadratic (zi − z)2 =

=−3.5464linear (zi − z) + 2.8464quadratic (zi − z)2



Parameter interpretation: a baseline model

U-shaped changes in the behavior are drawn to the extreme of the range



A more complex model

The baseline model does not provide any information about selection and
influence processes:

- the network dynamics are explained by the preference towards creating and
reciprocating ties

- the behavior dynamic are described only by the distribution of the behavior
in the population

If we want to disentangle the selection and influence effects we should include
in the objective functions specification:

- the effects that capture the dependence of social network dynamics on
actor’s characteristic

- the effects that capture the dependence of behavior dynamics on social
network
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A more complex model

Effects that capture the dependence of social network dynamics on actor’s
characteristic

- pupils prefer to establish friendship relations with others that are similar to
themselves

→ covariate similarity

This effect must be controlled for the sender and receiver effects of the
covariate.

- Covariate ego effect

- Covariate alter effect
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A more complex model

Effects that capture the dependence of behavior dynamics on social
network

- pupils tend to adjust their smoking behavior according to the behaviors of
their friends

→ average similarity effect

This effect must be controlled for the indegree and the outdegree effects
- Indegree effect

- Outdegree effect
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A more complex model

Effects that capture the dependence of behavior dynamics on social
network

- pupils tend to adjust their smoking behavior according to the behaviors of
their friends → average similarity effect

This effect must be controlled for the indegree and the outdegree effects
- Indegree effect

- Outdegree effect



A more complex model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 10.7166 ( 1.4036 )
constant friendship rate (period 2) 9.0005 ( 0.7709 )

outdegree (density) -2.8435 ( 0.0572 ) -49.6776
reciprocity 1.9683 ( 0.0933 ) 21.1077
transitive triplets 0.4447 ( 0.0322 ) 13.7964
sex ego 0.1612 ( 0.1206 ) 1.3368
sex alter -0.1476 ( 0.1064 ) -1.3871
sex similarity 0.9104 ( 0.0882 ) 10.3244
smoke ego 0.0665 ( 0.0846 ) 0.7857
smoke alter 0.1121 ( 0.0761 ) 1.4719
smokebeh similarity 0.5114 ( 0.1735 ) 2.9479

Rate parameters: the speed at which tie change occur is higher than the speed
at which behavioral change occur
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Network objective function parameters: tendency towards reciprocity,
transitivity and homophily with respect to gender



A more complex model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 10.7166 ( 1.4036 )
constant friendship rate (period 2) 9.0005 ( 0.7709 )

outdegree (density) -2.8435 ( 0.0572 ) -49.6776
reciprocity 1.9683 ( 0.0933 ) 21.1077
transitive triplets 0.4447 ( 0.0322 ) 13.7964
sex ego 0.1612 ( 0.1206 ) 1.3368
sex alter -0.1476 ( 0.1064 ) -1.3871
sex similarity 0.9104 ( 0.0882 ) 10.3244
smoke ego 0.0665 ( 0.0846 ) 0.7857
smoke alter 0.1121 ( 0.0761 ) 1.4719
smokebeh similarity 0.5114 ( 0.1735 ) 2.9479

Network objective function parameters: pupils selected others with similar
smoking behavior as friends → evidence for selection process



A more complex model

Estimates s.e. t-score
Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )

behavior smokebeh linear shap -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Behavioral objective function parameters: U-shaped distribution of the smoking
behavior



A more complex model

Estimates s.e. t-score
Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )

behavior smokebeh linear shap -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Behavioral objective function parameters: indegree and outdegree effects are
not significant



A more complex model

Estimates s.e. t-score
Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )

behavior smokebeh linear shap -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Behavioral objective function parameters: pupils are influenced by the smoking
behavior of the others → evidence for influence process



A more complex model
The contribution to the behavioral objective function is given by:

γlinear (zi − z) +γquadratic (zi − z)2 +γavsim
1

xi+

n∑
j=1

xij (simz (ij)− simz ) =

=−3.3573linear (zi − z) + 2.8406quadratic (zi − z)2 + 3.4361 1
xi+

n∑
j=1

xij (simz (ij)−0.7415)

Since the behavioral objective function depends not generally on the average
behavior of the actor’s friends, here we present a table only for the special case
of actors all whose friend have the same behavior zj .

zj / zi no occasional regular
1 2.56 -1.82 -0.51
2 0.84 -0.10 1.20
3 -0.88 -1.82 2.92

- The row maximum is assumed at the diagonal for the non-smokers and for
the regular smokers → the focal actor prefers to have the same behavior
as all these friends.

- In the case where the friends do not smoke at all, the preference toward
imitating their behavior is less strong than in the case where all the friends
smoke a lot.



Recent, current and near future

- Distinction among creating and deleting ties

- Estimation procedures (MLE and bayesian estimation)

- Goodness of fit of the model

- Model selection

- Non-directed relations

- Time-heterogeneity tests

- ...
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