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Chapter 1

Introduction

To fully understand the models presented in the following pages some statistical concepts are
necessary. These are briefly defined and recalled in this chapter.

1 Continuous random variable

Definition 1.1. Let (Ω,P) be a probability space. A (real-valued) random variable (r.v.) is a
function X : Ω → R. A random variable X is called (absolutely) continuous if there exists a
function fX(x) : R→ R+ such that

FX(x) = P(X ≤ x) =
∫ x

−∞

fX(u)du ∀x ∈ R (1.1)

If X is a continuous random variable, the function fX(x) in equation (1.1) is called the probability
density function (p.d.f.). It is assumed that

- fX(x)≥ 0 ∀x ∈ R

- P(X ∈ R) =
∫ +∞

−∞
fX(x)dx = 1

The function FX(x) in equation (1.1) is called the cumulative distribution function (c.d.f.). Its
domain is the real line and its codomain is the interval [0,1]. This function describes the probability
that X takes value less than or equal to a real number x∈R and is uniquely defined for each random
variable. The cumulative distribution function has the following properties:

- lim
x→−∞

= 0

- lim
x→+∞

= 1

- FX(x) is a monotone nondecreasing function of x, i.e. FX(a)≤ FX(b) for a < b

- FX(x) is continuous from the right, i.e. lim
h→0

FX(x+h) = FX(x)

A note on notation: a random variable will always be denoted with an uppercase letter and its
realized value by the corresponding lower case letter. Thus, the random variable X can take value
x.

From the definition above, it follows that if X is a continuous random variable with density fX(x),
then its probability distribution function is given by

FX(x) = P(X ≤ x) =
∫ x

−∞

fX(u)du ∀x ∈ R
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CHAPTER 1. BACKGROUND

Conversely, if X is an absolutely continuous random variable with distribution function FX(x),
then its probability density function is given by

fX(x) =
∂

∂x
FX(x)

at those points x where FX(x) is differentiable and fX(x) = 0 at those points x where FX(x) is not
differentiable.
The density function fX(x) allows to compute all the probability statements about X . For instance,
the probability that X takes values between a and b, with a < b is computed by

P(a≤ X ≤ b) =
∫ b

a
fX(x)dx

Recalling the geometric interpretation of a definite integral, the probability that a continuous ran-
dom variable X takes value in any interval [a,b] is equivalent to the area under the density function
fX(x) on the interval [a,b] (Figure 1.1).

Figure 1.1

Thus, intuition suggests that if we let b = a then

P(X = a) =
∫ a

a
fX(x)dx = 0

In words, the probability that a continuous random variable will assume any particular value x ∈R
is zero. This explains why we cannot define the probability mass function in the continuous case
but we have to generalize this notion using the probability density function.
The probability density function is also useful to define the expectation (E) of a continuous random
variable X :

E(X) =
∫ +∞

−∞

x fX(x)dx

At the end of this section, we should point out that the word “continuous” in “continuous random
variable” is not used in its usual sense. Although a random variable is a function and the notion
of continuous function is fairly well established in mathematics, “continuous” here is not used in
that usual mathematical sense. The justification for the adjective “continuous” comes from the
absolute continuity of the cumulative distribution function FX(x). Roughly speaking, a function
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1. CONTINUOUS RANDOM VARIABLE

is called absolutely continuous if it can be written as the integral of its derivative. Thus, the
absolute continuity of the cumulative distribution function FX(x) is the regular definition of an
absolute continuous function and the “continuous” could be considered just as an abbreviation of
“absolutely continuous”.
A second reason that leads to the use of the adjective continuous, relies on the range of values
that a random variable can take. In contrasting discrete random variable with continuous random
variable it turns out that a discrete random variable takes values on a countable set (finite or
infinite) of values, whereas a continuous random variable takes values on an uncountable set.
The connection between uncountable and the continuum justifies the use of the word continuous.
Random variables are used to describe the outcomes and the related probabilities of some random
experiments. Different experiments have different characteristics, so that they are described by
different random variables. Let us consider a random variable that will play a key role in the
following.

1.1 The Exponential random variable

Definition 1.2. A continuous random variable X whose probability density function (Figure 1.2)
is given by

fX(x) =


λe−λx if x≥ 0

0 if x < 0

is said to be an Exponential random variable with parameter λ > 0.

Figure 1.2

The cumulative distribution function of X is

P(X ≤ x) =
∫ +∞

−∞

fX(x)dx =
∫ x

0
λe−λxdx = 1− e−λx

The Exponential distribution is widely used in applications since it models the lifetime of a com-
ponent. For instance, it describes the amount of time that a light bulb works before burning itself
out, or of a processor before breaking itself. In this context the parameter λ can be interpreted
as the speed at which an outcome occurs (e.g. the light bulb burns out, the engine breaks, the
processor stops working,...) and it is called the rate of the random variable X . Formally an event
is said to happen at rate λ , if the probability that it happens in a very short interval (t +∆t) is
approximately equal to λ∆t:
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CHAPTER 1. BACKGROUND

Proof.
lim

∆t→0

P(t<X<t+∆t)
∆t = lim

∆t→0

P(X<t+∆t)−P(X<t)
∆t = lim

∆t→0
1−e−(t+∆t)λ−1+e−tλ

∆t =

= lim
∆t→0

e−tλ−e−(t+∆t)λ

∆t =− ∂

∂ t e−tλ
∣∣∣
t=0

Then, we can write
P(t < X < t +∆t) = λ∆t +o(∆t)

where o(∆t) is an infinitesimal of higher order than ∆t (i.e. a function of ∆t that goes to zero more
quickly than ∆t does).

The inverse 1
λ

is the mean of the Exponential distribution and it is interpreted as the expected
waiting time until an outcome occurs.
The Exponential random variable is also the only continuous random variable that has the memo-
ryless property.

Definition 1.3. A random variable X is memoryless if

P(X > s+ t|X > t) = P(X > s) ∀s, t > 0

It is easy to prove the memoryless property for the Exponential random variable

Proof.
P(X > s+ t|X > t) = P(X>t+s ∩ X>t)

P(X>t) = P(X>t+s)
P(X>t) = 1−P(X≤t+s)

1−P(X≤t) =

= 1−1+e−λ (t+s)

1−1+e−λ t = e−λ s = P(X > s)

Intuitively, if we think of X as being the lifetime of a processor, the memoryless property states
that the probability that the processor “lives” for at least s+ t hours given that it “has survived”
t hours is the same as the initial probability that it lives for at least s hours. In other words, if
the instrument is “alive” at time t , then the distribution of the remaining amount of time that it
survives is the same as the original lifetime distribution; that is, the processor does not remember
that it has already been in use for a time t.

2 Stochastic processes

Definition 2.1. A stochastic process {X(t), t ∈ T} is a collection of random variables. Formally, a
random process can be defined as a mapping that associates to each index t ∈ T a random variable
X(t) defined on a probability space (Ω,P) and taking value in the set R:

∀t ∈ T 7→ X(t) : Ω→ R

Let S be the space in which the possible values of each X(t) lie. S is called the (space state) of
the process. The index t is often interpreted as time and, as a consequence, X(t) is the state of
the process at time t. For example X(t) can be the number of telephone calls that have arrived at
a switchboard of a company at time t, the amount of money that a Gambler has after each cards
game, and so on.
The realization of a stochastic process {X(t), t ∈ T} is an assignment to each t ∈ T of a possible
value of X(t) (Figure 1.3).
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2. STOCHASTIC PROCESSES

Figure 1.3

The main elements distinguishing stochastic process are related to the nature of the state space
S, the index set1 T and the dependence relations among the random variables X(t) . In the follow-
ing pages we will consider continuous-time Markov chains, i.e. finite state processes evolving in
continuous time and which have the Markov property.

Definition 2.2. A stochastic process {X(t), t ∈ T} has the Markov property if for any ti ∈ T the
conditional distribution of the future, {X(t)|t > ti}, given the present and the past {X(t)|t ≤ ti}, is
a function only of the present X(ti). This implies that for any state x ∈ S, and for any pair of time
points ti < t j

P(X(t j) = x(t j)|X(t) = x(t) for all t ≤ ti) = P(X(t j) = x(t j)|X(ti) = x(ti))

Roughly speaking, the Markov property states that the probability of any particular future be-
havior of the process, when its present state is known exactly, is not altered by additional knowl-
edge concerning his past behavior. In other words the process retains no memory of where it has
been in the past. Thus, only the current state of the process can influence where it goes next.
As we have seen a stochastic process is just a collection of random variables. Thus, we have to
ask: what quantities characterize a random variable? The answer is obviously its distribution.
However, here we are working with a lot of variables. Depending on the number of elements in
the index set T , the stochastic process may have a finite or infinite number of components. In
either case we will be concerned with the joint distribution of a finite sample taken from the pro-
cess since Kolmogorov in the 1930s proved that if we can describe these finite dimensional joint
distributions we completely characterized the stochastic process.
There is also a second way of describing the process. It consists in “building” the process speci-
fying the “rules” that allow to go from a state to another. Since this way is more intuitive, we will
refer to it in the following.

2.1 Continuous-time Markov chains

Definition 2.3. A Continuous-time Markov chain {X(t), t ≥ 0} is a finite state, continuous-time
stochastic process having the Markovian property.

1If S is a countable set (e.g. S= {0,1, . . .}), we refer to the process as “finite state” process. If S is an uncountable
set (e.g. S= R), we refer to the process as “continuous state” process.
When T is a countable set, the stochastic process is said to be a discrete-time process. If T is an interval of the real line
then the stochastic process is said to be a continuous-time process. For instance, the process {X(t), t = 0,1, . . .} indexed
by the nonnegative integers is a discrete-time process, while the process {X(t), t ≥ 0} indexed by the nonnegative real
numbers is a continuous-time process.
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CHAPTER 1. BACKGROUND

Figure 1.4

Example 2.4. Let X(t) equals the number of goals that a given soccer player scores by time t ∈ T .
Let assume that T = [0,∞) interpret the time that the soccer player played in official matches.
Then {X(t), t ≥ 0} is a continuous- time Markov chain.

It is not difficult to understand why.

1. The state space of the process {X(t), t ≥ 0} is a finite set since at the end of his career the
soccer player will have scored a certain number of goals B. The state space of the process
is then described by the set

S= {0,1,2, . . . ,B}

2. The time is continuous since we are taking into account the time played in official games
and the player can score at any time.

3. The process {X(t), t ≥ 0} has the Markov property. To see this let us consider one of the
possible realization of the process (Figure 1.4). If we want to determine the probability
that the player will score the fifth goal at 269’ (future), the only information we need is the
number of goals that the player has scored till the 268’ 59” (present, red circle) and it is not
relevant to know the time at which each of the previous four goals was scored (past, blue
box).

There are two basic ways we can describe continuous-time Markov chains. The first approach
uses holding times and the jump chain. The second approach directly models the Markov chain in
terms of the rate matrix (or infinitesimal generator).
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2. STOCHASTIC PROCESSES

Figure 1.5

Holding times and the jump chain

The idea behind the definition of holding times and the jump chain is that if we want to describe
the process, we should characterize its realizations. In Figure 1.5 one realization of a continuous-
time Markov chain is depicted. To describe it, we can list the times at which a change in the state
happens and the corresponding state taken by the chain: the process starts in state 1 at time t = 0,
then it jumps from 1 to 3 at time t = 3, from 3 to 2 at time t = 12, from 2 to 1 at time 20, and so
on. In order to probabilistically describe this series of changes we should model the probability of
staying in a state for a certain amount of time (e.g. the probability of remaining in state 1) and the
probability of jumping from a state to another (e.g. the probability of jumping from state 1 to state
3).
Regarding the former, intuition suggests that for each state i, the amount of time we spend in that
state (i.e. the holding time) is an exponentially2 distributed random variable, with parameter λi.
This can be motivated by the fact that the Markov property is a “forgetting” property, suggesting
memorylessness in the distribution of the time a continuous-time Markov chain spends in any
state. This amount of time can depend on the state, thus the parameter λ is indexed by the state.
We can observe that if λi = 0 we never leave the state i once we enter.
The probability of jumping from a state to another is described by a jump matrix P = (pi j : i, j ∈ S)
which satisfies the following properties:

1. pi j ≥ 0 ∀i, j ∈ S

2. ∑
j∈S

pi j = 1 ∀i ∈ S

P is a stochastic matrix (i.e., a matrix where each row sums to one) on the state space S, which
describes the next state we will go to when we leave a state i. In particular, pi j gives the probability
of going to state j when we make a jump out a state i. Formally:

pi j = P(X(t ′) = j|X(t) = i,given the opportunity to leave state i), t ′ > t

2The exponential random variable models the time before something happen. Here the outcome is leaving the state
“i”.
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The following matrix is an example of transition matrix for the process whose trajectory is repre-
sented by Figure 1.5

P =


0.1 0 0.6 0.3
0.8 0.1 0.1 0
0.05 0.5 0.05 0.4
0.6 0.1 0.15 0.15


The rows of P sum to 1 and each cell gives the probability of going from a state to another. For
instance, the probability of going from state 1 to state 3 is equal to 0.6, while it is not possible to
go directly from state 1 to state 2 (p12 = 0), but we can reach 2 from 1 through 3. When each state
of a chain is reachable (directly or indirectly) from any other state of the chain, the chain is said to
be irreducible.

The rate matrix

The other way to model a continuous-time Markov chain consists in specifying the rate matrix
Q of the process. A rate matrix Q = (qi j : i, j ∈ S) satisfies the following condition:

1. 0 <−qii < ∞ ∀i ∈ S

2. qi j > 0 ∀i 6= j, i, j ∈ S

3. ∑
j∈S

qi j = 0 ∀i ∈ S

The generic entry qi j of this matrix gives the rate of transition3 from state i to state j and is strictly
related to the waiting times and the jump matrix. In particular:

qi j =


λi pi j if j 6= i

−λi if j = i

Thus, given the holding times and the jump matrix we can calculate the rate matrix. It can be
proven that, given the rate matrix, we can compute the distribution of the holding times and
the jump matrix. Thus, the rate matrix contains the same modeling information as the holding
time/jump chain specification and the two methods of specifying a continuous-time Markov chain
are equivalent.

3Q is called the rate of the process since it can be proved that:

qii = lim
∆t→0

P(X(t +∆t) = i|X(t) = i)
∆t

=−λi

qi j = lim
∆t→0

P(X(t +∆t) = j|X(t) = i)
∆t

= λi pi j

8



Chapter 2

The Stochastic actor-oriented model

Networks are dynamic by nature. Ties may change over time: they can be established or they
can be broken. These changes can be explained by the position of the actors within the network, as
well as by their individual or dyadic characteristics. The stochastic actor-oriented model (SAOM)
has the purpose to describe network evolution over time according to these potential explanatory
sources.

1 Notations and data

Let us focus the attention on a set N = {1, · · · ,n} of actors over which a relation R is defined.
We assume that the relations are non reflexive (i.e. i 9 i ∀i ∈ N ) and directed (i.e. i→ j does
not imply that j→ i ) The two sets N and R define a network which is described by its adjacency
matrix x = (xi j, i, j ∈N), where

xi j =


1 if i→ j

0 otherwise

We observed the network at M ≥ 2 time points t1, · · · , tM. The corresponding networks will be
denoted by x(t1), · · · ,x(tM). Furthermore, some actors’characteristics can be collected, such as
gender, seniority rank, and so forth. These characteristics are called actors’attributes or covariates
and will be denoted by Z1, · · · , ZH where H is the number of collected attributes. The network
observations x(t1), · · · ,x(tM) and the covariates Z1, · · · ,ZH constitutes the longitudinal panel data
that we want to analyze to determine the leading forces which govern the network evolution.
In more detail, the network evolution is the dependent variable and we want to describe it as a
function of structural effects, explanatory random variables and explanatory dyadic variables.

2 Assumptions

To statistically define the model some assumptions concerning the evolving process should be
formulated.

1. Ties are state. Network ties represent a state with a tendency to endure over time, rather
than a brief event. For instance, if we consider ties determined by friendship, trust or co-
operation, they can change but they endure over time. On the contrary, telephone calls or
e-mail exchanges among a group of actors at any given time point are brief events, which
start and finish in a short time.

9



CHAPTER 2. SAOM

2. Distribution of the process. The changing network is the outcome of a continuous - time
Markov chain. The state space X of the model is the set of all possible adjacency matrices
(digraphs) defined on the set of actors N. Since each dyad can take value 0 or 1 and the
number of possible ties in a network is n(n−1) (we are considering directed relations!), the
cardinality of X is 2n(n−1) and X is a finite set.
The continuous-time assumption means that the network evolves in continuous time, even
if we observed it only at discrete time points t1, · · · , tM. Formally we will say that there is a
“latent process” (i.e. not observable) going on between network observation.
The Markovian property suggests that for any point in time, the current state of the network
determines probabilistically its further evolution, and there are no additional effects of the
earlier past (Markov property). This hypothesis allows us to consider the dependencies
between network ties as the result of processes where one tie is formed as a reaction to the
existence of other ties.

3. Opportunity to change. At a given moment one probabilistically selected actor has the
opportunity to change one of his outgoing tie or not to change.

4. Absence of co-occurrence. It is assumed that no more than one tie can change at any given
moment t, i.e. only one actor has the opportunity to change one of his outgoing ties at t. This
implies that tie changes are not coordinated, and depend on each other only sequentially, via
the changing configuration of the whole network.

5. Actor-oriented perspective. We assume that the actors control their outgoing ties, i.e. they
decide to change one of their outgoing ties according to their position in the network, their
attributes and the characteristics of the other actors. This means that the actors do not
change their ties at will but they want to maximize a utility function under the structural
configuration of the network (i.e. actors are looking for the best rewarding in changing
their outgoing ties given the current configuration of the network). This explains the “actor-
based” nature of the model. Moreover it is assumed that actors have complete knowledge
about the network and all the other actors, so that they can maximize the utility function.
This maximization is based on immediate returns and not on long-run rewarding.

3 The formulation of the model

According to the previous assumptions, the evolution process can be decomposed into its
smallest possible components, which are called micro-steps. At each micro-step one probabilis-
tically selected actor might have the opportunity to change one of his outgoing ties, so that the
utility function is maximized. Formally we can describe each micro-step as a pair of elements: the
time at which one actor has the opportunity to change and the precise change which he made. The
sequence of all micro-steps represents the complete data of the process.
The network evolution process can be then decomposed into two sub-processes: the change oppor-
tunity process, which describes how fast are the opportunities for change and the change determi-
nation process, which describes the precise tie that is changed when an actor has the opportunity to
make a change. This two sub-processes should remind the definition of a continuous-time Markov
chain according to the holding times and the jump chain (i.e. the waiting time until the next op-
portunity for a change made by an actor i corresponds to holding time, while the probability of
changing the link xi j given the opportunity for changing can be described by the transition matrix).
The distribution of the waiting time and the transition matrix of the jump chain are modeled by
the rate function and the objective function respectively.

10



3. THE FORMULATION OF THE MODEL

3.1 The rate function

The waiting time between one opportunity of change for actor i and another is modeled by
an exponential distribution with parameter given by the rate function. This function describes the
average frequency at which each actor has the opportunity to change and its simplest specification
is obtained assuming that all actors have the same rate of change λ between two consecutive
observation moments. Then, the probability that an actor i has the opportunity to make a change
is equal to 1/n.1

P(i has the opportunity of change) =
1
n
∀i ∈N

The rate parameter λ can assume nonnegative values and we can interpret it as the speed at which
the opportunity to change occurs. In particular the higher its value is, the greater the number of
changes between two observation moments is.
A more complex (and realistic) specification of the rate function takes into account that actors may
change their ties at different frequencies, according to the position they have in the network and
their covariates. For instance, we can imagine that “younger individuals might change their ties
more frequently than older individuals, or that more central actors might change their ties more
frequently than peripheral actors”. In order to take into account this distinct aptitude we denote
by λi(α,x) the rate of changes of the actor i, where x is the current state of the network, and α is
a vector of parameter. This notation expresses the dependence of the rate function from structural
effects and actor covariates. The waiting times until the next opportunity for change by any actors
follows an exponential distribution with parameter:

λ (α,x) =
n

∑
i=1

λi(α,x)

Thus, given that an opportunity for change occurs, the probability π(α,x) that it is the actor i who
has the opportunity to change is given by:

P(i has the opportunity of change) =
λi(α,x)
λ (α,x)

3.2 The objective function

To define the transition matrix and the jump chain we should spend some words on the choice
that an actor i must face once he has the opportunity to change. Given the current state of the
network x, i can decide not to change anything or to change one of his outgoing ties, for instance
the tie xi j directed to an actor j, into its opposite. In the following we will denote the network in
which the tie from i to j is turned into its opposite by x(i ; j). Since we are considering simple
digraphs, and a tie can assume values 1 or 0, according to the fact that it is present or it is absent,
changing a tie into its opposite means that the tie variable changes from 1 to 0 or from 0 to 1. In
the first case the tie is terminated, while in the second the tie is created. Thus, if a relation between
i and j exists in the current state of the network (xi j = 1) and i decides to change it, the considered
tie is deleted (xi j = 0). Vice versa the tie is created.
This suggests that the set of admissible choices has cardinality equal to n: n− 1 changes and 1
non-change. Consequently, the set of possible reachable states for the considered network, given
the current state, contains n elements: n−1 networks which are equal to that of the current state
except for the value assumed by the changed tie xi j and 1 equal to the current state. It turns out that
each actor can choose between a discrete finite set of alternatives, which are mutually exclusive

1Intuitively, since the actor has the same rate of changing, it is reasonable to assume that at each time point t each
actor has the same probability to be selected to change one of his outgoing tie.
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CHAPTER 2. SAOM

(the selected actor can make only one change) and exhaustive (the actor can decide among all the
other actors).
Just to clarify, we can consider Figure 2.1. Let us assume that actor 1 has the opportunity of
changing. He can change his outgoing tie towards actor 2 (a)), or actor 3 (b)) or actor 4 (c)) or
do nothing (d)). Then the corresponding Markov chain can jump from x to x(1 ; 2), x(1 ; 3),
x(1; 4) or stay in x, respectively. This are the only four possible states that the chain can reach. In
fact, if we consider for example the two adjacency matrices depicted in situations e) it immediately
appears that they are not admissible. On one hand the first matrix does not respect the “opportunity
to change” assumption (actor 1 changed two of his outgoing ties) the second is against the “absence
of co-occurrence assumption” (even actor 3 changed one of his outgoing ties). It follows that the
transition matrix must assign probability 0 to the states represented by matrices differing in more
than one element and positive probabilities to the states represented by situations from a) to d). At
this point we need a rule on how to determine this nonzero probabilities.

Figure 2.1

The idea is to use a random utility model, usually applied in situations where there are decision
makers who face a choice between n alternatives. Each decision maker choose the alternative that
assure him the highest pay-off. The reward of an actor i facing the choice j is quantified by the
utility function

Ui j =Vi j + εi j (2.1)

where Vi j is the part of utility that a researcher can capture while εi j is a random term. For a
suitable choice of the distribution2 of εi j the probability that an actor i faces the choice j can be
expressed by

pi j =
eVi j

n
∑
j=1

eVi j

(2.2)

2It is assumed that εi j is distributed as a Type I Extreme (or Gumbel) distribution:

fε (x) = exp(−x− exp−x), x ∈ R

The choice of this distribution is mainly related to the mathematical tractability of the model.
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3. THE FORMULATION OF THE MODEL

In network context, the utility function corresponds to objective function. Informally speaking, the
objective function expresses the degree of satisfaction of an actor towards the current state of the
network and how likely it is for the actor to change the current state in a particular way.
Formally, we will denote the objective function by fi(β ,x(i; j)), where the subscript i underlines
that this is the utility function for the focal actor i, while the two quantities between parentheses
express the idea that the objective function is a function of the state of the network obtained when
i changes his outgoing tie towards j, x(i ; j), and of statistical parameters β . The objective
function is defined as the linear combination

fi(β ,x(i ; j)) =
K

∑
k=1

βksik(x(i ; j))+Ui(t,x, j) (2.3)

where βk are statistical parameters, sik(x(i ; j)) are the effects and Ui(t,x, j) is a random util-
ity term. The effects sik(x(i ; j)) are relevant functions of the digraph which are supposed to
play a key role in the network evolution. In other words they represent the leading forces of the
underlying process that governs network changes from an observation moment to another. It is
fundamental to specify that network effects are aspects of the network as perceived by the focal
actor i.
The strength of each effect is represented by the corresponding parameter βk, which should be
estimated on the basis of the longitudinal network data observed. βk can assume any real value
and can be interpreted as follows. If βk is equal to 0, it means that the corresponding effect plays
no role in the network dynamics. If it assumes a positive value, then there is higher probability of
moving into networks where the corresponding effect is higher. Vice versa if the parameter takes a
negative value there is higher probability of moving into networks where the corresponding effect
is lower.
The last term Ui(t,x, j) of the objective function is the random term, distributed as a Gumbel dis-
tribution. Thus, according to equation (2.2), the probability that an actor i changes his outgoing
ties towards j or leaves his outgoing tie variables unchanged is:

pi j =

exp
(

K
∑

k=1
βksik(x(i ; j))

)
n
∑

h=1
exp
(

K
∑

k=1
βksik(x(i ; h))

) (2.4)

If i = j, then equation (2.4) represents the probability of not changing anything.

The objective function effects

Several effects are proposed in order to specify the objective function. They can be determined
endogenously or exogenously, according to the fact that they regard the structure of the network
or actor attributes, i.e. covariates. A complete list of effects can be found in [1], but here only the
basic ones are considered.
Each effect is characterized by a subscript i to remind that these network aspects are determined
from the point of view of the actor i, who has the opportunity to change. Furthermore, we use a
more compact notation, denoting by x′ the resulting network instead of x(i ; j).
Let us start considering endogenous effects which depend on network structure.

Endogenous effects
In this paragraph a short description of the main endogenous effect is given.

- The outdegree effect corresponds to the number of outgoing ties of actor i and is defined as:

si out(x′) = ∑
j

x′i j

13



CHAPTER 2. SAOM

The corresponding parameter βout reflects the preference of activity for actor i. It takes
negative values if the network is sparse (very low density).

- The reciprocity effect represents the number of mutual dyads in which the actor i is involved:

si rec(x′) = ∑
j

x′i jx
′
ji

Denoting by β rec the associated parameter, βrec reflects the preference of reciprocal re-
lations. It often assumes positive values, since a lot of social relations show a tendency
towards reciprocation.

- The transitive effect can be modeled according to different effects. Each of them interprets
a different situation. The more common structure is represented by the transitive triads,
whose related effect counts the number of transitive patterns in which an actor i is involved:

si trans(x′) = ∑
j,h

x′i jx
′
ihx′jh

The corresponding parameter βtrans reflects the preference of having relations to others who
are related among themselves.

- The three cycle-effect is a sort of a generalized reciprocity which involves three actors i, j
and h. It expresses the idea that it is not important if j reciprocates the tie from i, but it is
important that he sends a tie to an actor h, who has an outgoing tie towards i.

si cyc(x′) = ∑
j,h

x′i jx
′
jhx′hi

The corresponding parameter βcyc reflects the preference of having reciprocated in an indi-
rect way through actor h.

- The in-degree related popularity effect is defined as the sum of the in-degrees of whom i is
related to:

si pop(x′) = ∑
j

x′i j

√
∑
h

x′h j

and the related parameter βpop expresses the idea that a very popular actor is more chosen.
This means that popularity reinforce itself.

- The out-degree related activity effect represents the sum of the out-degrees of the others to
whom i is related:

si act(x′) = ∑
j

x′i j

√
∑
h

x′jh

The interpretation of these effects is similar to the previous one but it regards the out-degree.
In particular, the related parameter β act expresses the idea that an actor is more active since
the more popular. In this case popularity reinforces expansivity.

- The indirect ties effect is the number of actors j to whom i is indirectly tied to, through at
least one intermediary:

si ind(x′) = #{ j : x′i j = 0,max
h

(x′ih,x
′
h j)> 0}

14



3. THE FORMULATION OF THE MODEL

- The balance effect may also be called structural equivalence with respect to outgoing ties.
It expresses a preference of actors to have ties to those other actors who have a similar set of
outgoing ties as they have. It is defined by the similarity between the outgoing ties of actor
i and the outgoing ties of the other actors j to whom i is tied, to

si bel(x′) =
n

∑
j=1

x′i j ∑
h6=i, j

(
b0− | xih− x jh |

)
where b0 is a constant included to reduce the correlation between this effect and the density
effect.

There are many other effects that are not considered here which regard very specific structural
network properties. One can wonder how to choose among them. From a practical point of view,
the choice of effects that should be included in the model is guided by theory. In fact, according to
the kind of network in analysis, different hypotheses about the leading forces of network dynamics
can be formulated. In order to test them one should include the related effects in the objective
function.
For instance, if we consider “friendship”, we know that transitivity (“the friend of my friend is
also my friend”) is a well-established network structure, and so we should include it in the model.
Instead, if we are studying an advice network, we can imagine that people to whom a lot of other
people ask advice are chosen the most. Maybe because if many people ask this actor for advice,
it means that he is reliable and one can trust him. Thus, other people decide to ask to him. In this
case, the in-degree related popularity effect plays a key role and should be tested.
Like all the other statistical models each effect is controlled for all the other effects included in the
model. For this reason, one practical suggestion is to always include the density effect, since all
the structural effects are related to the presence or absence of ties. Reciprocity is also fundamental
in social relationships, and for this reason it should not be forgotten.

Exogenous effects
Let us now consider some effects related to actor attributes. Let Z be a covariate, such as gender,
ethnicity, seniority rank, etc. We denote by zi and z j the values or the categories assumed by the
covariate on the actor i and on the actor j, respectively. Some interesting effects are represented
by:

- the covariate-related popularity that is defined by the sum of the covariate over all actors to
whom i has a relation:

si cpop(x) = ∑
j

xi jz j

The corresponding parameter βcpop reflects the aspiration of the actor to have relations with
others who score high on Z.

- the covariate-related activity that is defined by i’s outdegree weighted by his covariate val-
ues

si cact(x) = ∑
j

xi jzi

The corresponding parameter βcact reflects the aspiration of actors with attribute zi to have
relations.

- the covariate-related similarity that is the sum of measure of covariate similarity between i
and j:

si csim(x) = ∑
j

xi j

(
1−

∣∣zi− z j
∣∣

RZ

)
where RZ is the range of Z.
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Again, the choice of exogenous covariates to be included in the objective function should be
determined according to hypotheses derived from theory. If we consider friendship network data
gathered in adolescent groups, sociological theory suggests that girls trust girls and boys trust
boys, showing evidence towards homophily with respect to this attribute. Thus, covariate-related
similarity effect plays a key role and should be included in the objective function.
A positive parameter βk, associated to popularity or activity effects will lead to association between
the covariate and the receiver and sender tendency of an actor, respectively. In the same way a
positive parameter related to the covariate- related similarity will lead to relations being formed
particularly between actors who have similar values on the covariate.

3.3 An alternative formulation of the model

At this point we can specify the rate matrix Q for the network evolution process, whose generic
element is the rate of change from one network configuration to another.
The continuous time stochastic process is defined on the set X of all digraphs, or adjacency ma-
trices. We denoted by x the initial state of the network. At a certain time point an actor i has
the opportunity to change his outgoing ties towards an actor j. If he decides to change, the next
state of the network is x(i ; j), where the link xi j between i and j is changed into its opposite.
Thus, we can denote the rate of change from a state x to x′ = x(i ; j) using the following no-
tation q(x;x(i ; j)). Since we assume that at each time point only one actor may change, all
transition rates for matrices belonging to X and differing in more than one element are equal to 0.
Consequently, the rate of change between two states, denoted by the networks x and x′, is given
by:

q(x,x′) =


λi(x)pi j(x) if x and x′ differ in the tie (i, j)

−λi if x = x′

0 if x and x′ differ in more than one tie

If all the actors have the same opportunity to change then λi(x) = λ , and a simplest notation can
be used.

3.4 Remark

1. It is assumed that the frequencies at which actors have the opportunity to make a change
depends on time. To model the different speed of the change opportunities we should spec-
ify as many rate functions as the number of periods between two consecutive observation
moments. Thus, if we observed a network at M time points, we must specify M− 1 rate
functions. In other words, the parameter λ is not constant over time, so there are M− 1
parameters λ1, · · · ,λM−1.

2. It is assumed that the preferences that drive actors action have the same intensities over time,
i.e. the parameters β1, · · · ,βk that are involved in the objective function are constant over
time.

4 Simulating network evolution

This section presents a probabilistic algorithm to simulate network evolution for fixed param-
eter values. Simulating network evolution is meaningful, e.g., for the estimation of the parameter,
for theoretical exploration of the model, for goodness of fit assessment, and for studying the sen-
sitivity of the model to parameters.

16



4. SIMULATING NETWORK EVOLUTION

The simulation is done exploiting the continuous-time Markov chain that defines the evolution pro-
cess. Roughly speaking, it consists in reproducing a possible series of micro-steps between two
observation moments t0 and t1 according to fixed parameter value and the network x(t0). Thus,
it is convenient to construct the continuous-time Markov chain as the combination of its holding
times and its jump process. We will assume that all actors have the same rate of change λ .
The simulation algorithm is as follows; t indexes the time and dt is the holding time between
consecutive changes.

1. Set the time t = 0 and x = x(t0)

2. Generate dt according to an exponential distribution with parameter nλ

The n actors are acting independently given the current state of the network3. Assuming
that each actor has the same individual change rate λ , the time until the next change by any
actor has the exponential distribution with parameter nλ .

3. Select randomly the actor i ∈N, who makes the changes, with probability

P(i has the opportunity of change) =
1
n
∀i ∈N

4. Select randomly the actor j ∈N, to whom i changes his outgoing tie, with probability given
by:

pi j =

exp
(

K
∑

k=1
βksik(x(i ; j))

)
n
∑

h=1
exp
(

K
∑

k=1
βksik(x(i ; h))

)

5. Set the time t = t +dt and if i 6= j then x = x(i ; j). If i 6= j then x = x .

6. Repeat step 2. to 5. until the stopping criterion is satisfied.

There are two different stopping rules for the simulations of the network evolution.
In the unconditional simulation, the simulations of the network evolution in each time period carry
on until the predetermined time length (chosen as 1 for each time period between consecutive
observation moments) has elapsed.
In the conditional simulation, in each period the simulations run on until a stopping criterion
is reached that is calculated from the observed data. Conditioning is possible for each of the
dependent variables, where conditional means conditional on the observed number of changes on
this dependent variable. Conditioning on the network variable means running simulations until the
number of different entries between the initially observed network of this period and the simulated
network is equal to the number of entries in the adjacency matrix that differ between the initially
and the finally observed networks of this period.
The algorithm for the unconditional estimation is summed up in Algorithm 1. The symbol ∼
should be interpreted as “is randomly generated from”. For instance dt ∼ Exp(λ ) means that the
value taken by dt is randomly drawn from an Exponential distribution of parameter λ .

3This is another way of interpreting the Markov property.
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Algorithm 1: Network evolution
Input: x(t0), λ ,β , n
Output: xsim(t1)
t← 0
x← x(t0)
while t < 1 do

dt ∼ Exp(nλ )
i ∼Uni f orm(1, . . . ,n)
j ∼ Multinomial(pi1, . . . , pin)
if i 6= j then

x = x(i ; j)

else
x = x

t← t +dt
xsim(t1)← x
return xsim(t1)

5 The parameter estimation

The formulation of the SAOM is based on the rate and on the objective functions and depends
on M−1+K statistical parameters. The aim of this section is to provide a description of the avail-
able estimation methods for completely specifying the model that interprets the network evolution
process. Roughly speaking, estimating a parameter means determining its plausible value on the
basis of the information deriving by the data collected by observation. In some situations finding
an estimate is an easy and intuitive task, but this is not always the case. For this reason we need
methods to properly assign a value to a parameter. In the following we will consider the Method
of Moments and the Maximum Likelihood Estimation.

5.1 The Method of Moments

The logic of the Method of Moments (MoM) is quite straightforward. Let X be a random
variable with distribution fX(x;θ), which depends on a p-dimensional vector of parameters θ =
(θ1, . . . ,θp).

Definition 5.1. Let X1,X2, . . . ,Xn be a random sample from the probability distribution fX(x;θ),
where fX(x;θ) can be a discrete probability mass function or a continuous probability density
function. The k-th population moment (k = 1,2,. . . ) is given by

E[Xk] = ∑
x

xk fX(x;θ) (for the discrete case)

E[Xk] =

+∞∫
−∞

xk fX(x;θ) (for the continuous case)

The corresponding k-th sample moment is

µk =
1
n

n

∑
i=1

Xk
i

To estimate θ , one can observe that the theoretical moments of a certain distribution usually
depend on the statistical parameters θ = (θ1, . . . ,θp) which fully specify the distribution. Thus,
the idea of the MoM is to estimate the parameter θ with the values that assure that the theoretical
expected values are equal to their sample counterparts.
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Definition 5.2. Let X1, . . . ,Xn a random sample from either a probability mass function or a prob-
ability density function fX(x;θ) with p unknown parameters. The method of moment estimators
for θ = (θ1, . . . ,θp) are found by equating the first p population moments to the first p sample
moments:

E[X1] = µ1

E[X2] = µ2

· · ·
E[X p] = µp

and solving the resulting equations for the unknown parameters.

Example 5.3. The time to failure of an electronic module used in an automobile engine controller
is tested at an elevated temperature to accelerate the failure mechanism. The time to failure is
exponentially distributed with parameter λ . To estimate the rate parameter λ , eight units are
randomly selected and tested, resulting in the following failure time (in hours):

x1 = 12.1 x2 = 5.7 x3 = 17.8 x4 = 16.5 x5 = 31.6 x6 = 7.7 x7 = 11.9 x8 = 22.7

What is the estimate for λ according to the observed data and the the MoM?

The first population moment of the Exponential random variable is

E[X ] =
1
λ

and the corresponding sample moment is

µ1 =
1
n

n

∑
i=1

Xi

According to the MoM, the estimator for the parameter λ is:

1
λ
= 1

n

n
∑

i=1
Xi

λ = n
n
∑

i=1
Xi

and the corresponding estimate is

λ̂ =
n

n
∑

i=1
xi

=
8

126
= 0.063

The principle of the MoM can be easily generalized. Instead of using a set of powers of the
random variable X to estimate the unknown vector of parameters θ , one can select a set of p
functions sk(X), k = 1, . . . , p ,and proceed in the same way. The population moment is computed
as

E[sk(X)] = ∑
x

sk(x) fX(x) (for the discrete case)

E[sk(X)] =

+∞∫
−∞

sk(x) fX(x)dx (for the continuous case)
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and the corresponding sample moment is

γk =
1
n

n

∑
i=1

sk(Xi)

The functions sk(X) are usually called statistics4. Of course, they cannot be chosen at random, but
they must be sensitive to the parameter θ in the sense that higher values of θ lead to higher values
of s(X).

There is one distinction that must be made clear, the difference between an estimate and an es-
timator. An estimator is a function of the sample, while an estimate is the realized value of an
estimator (i.e. a number) that is obtained when a sample is actually taken. Notationally, when a
sample is taken, an estimator is a function of the random variables X1,X2, . . . ,Xn, while an estimate
is a function of the realized values x1,x2, . . . ,xn. For instance, in Example 5.3 n

n
∑

i=1
Xi

is the estimator,

while n
n
∑

i=1
xi

is the estimate.

It is easy to imagine that the estimate of the parameter can vary according to the selected sam-
ple. Looking again at Example 5.3, we can assume to randomly select and test other eight units,
resulting in the following failure time (in hours):

x1 = 9.5 x2 = 7.2 x3 = 13.4 x4 = 10.2 x5 = 15.0 x6 = 16.3 x7 = 13.9 x8 = 34.5

The new estimate for the parameter λ is now

λ̂ =
n

n
∑

i=1
xi

=
8

120
= 0.067

This value is close to that obtained in Example 5.3 but it is not the same. For this reason, we usually
associate to an estimator its standard error, which is a measure of the variation of the estimates
with respect to the different selected samples. We will consider the role and the interpretation of
the standard error later on, when we will provide the parameter interpretation.

The MoM for estimating the parameter of the SAOM

Let

θ = (λ1, · · · ,λM−1,β1, · · · ,βK)

be the M−1+K-dimensional parameter vector of the SAO model. From the previous paragraph
it follows that, if we want to estimate θ , we must find M− 1+K statistics, set the theoretical
expected value of each statistic equal to its sample counterpart, and solve the resulting system of
equations with respect to θ .
Since each parameter is related to a specific effect, the logic is to determine the statistics as func-
tions of the corresponding effects. For simplicity, let us assume to have observed a network at two
time points t0 and t1. Estimation is done conditional on the first observation x(t0). This has the ad-
vantage that no model assumptions need to be invoked concerning the probability distribution that
may have led to the first observed network x(t0), and the estimated parameters refer exclusively to
the dynamics of the network.

4Formally a statistic is a real-value function of the random sample X1,X2, . . . ,Xn .
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- The rate parameter λ describes the frequencies at which changes happen. Thus, a suitable
statistic for the MoM is the total amount of changes between t0 and t1 and can be computed
as follows:

sλ (X(t1),X(t0)|X(t0) = x(t0)) =
n

∑
i, j=1
ı 6= j

∣∣Xi j(t1)−Xi j(t0)
∣∣ (2.5)

- The rate parameter βk quantifies the role played by each effect in the network evolution.
As already mentioned, if βk is positive, there is higher probability of moving into networks
where the corresponding effect is higher (and vice versa if βk is negative). Thus, a suitable
statistic for the parameter βk of the objective function is the number of the corresponding
effect sik(X(t1)):

sk(X(t1)|X(t0) = x(t0)) =
n

∑
i=1

sik(X(t1)) (2.6)

This statistic will be sensitive to βk because a high value of βk will lead to a high value of Sk

Having determined the statistics for two time points, it is easy to derive the corresponding statistics
for more than two network observations. In order to do this, one should keep in mind that the rate
parameter λ is assumed to be constant within each time period, so that one should specify M−1
statistics sλm for the M− 1 rate parameters λm. Then, we can generalize Equation (2.5) in the
following way:

sλm(X(tm),X(tm−1)|X(tm−1) = x(tm−1)) =
n

∑
i, j=1
ı 6= j

∣∣Xi j(tm)−Xi j(tm−1)
∣∣ , m = 1, . . . ,M−1 (2.7)

Regarding the parameters βk of the objective function, it is assumed that they are constant over the
whole observation period. Thus, a general statistic for βk is the sum over all the observation time
points of the corresponding configurations5 sk(X(tm)):

M−1

∑
m=1

smk (X(tm)|X(tm−1) = x(tm−1)) =
M−1

∑
m=1

smk(X(tm),X(tm−1)) (2.8)

Consequently, the MoM estimator for θ is defined as the solution of the system of equations:
Eθ

[
sλm (X(tm),X(tm+1)|X(tm) = x(tm))

]
= sλm(x(t1),x(t0)) m = 1, · · · ,M−1

Eθ

[
M−1
∑

m=1
smk (X(tm+1)|X(tm) = x(tm))

]
=

M−1
∑

m=1
smk(x(tm+1),x(tm)) k = 1, · · · ,K

(2.9)

where a small x denotes the observed networks, and thus the second term of in (2.9) are the
observed values of the statistics.
In the following, we will use a more compact notation. Let S be the (M− 1+K)-dimensional
vector of statistics involved in the estimation process and s be its sample counterpart (i.e. the
(M− 1+K)-dimensional vector of the observed values of the statistics). Then, the system of
equations (2.9) can be written in the following way:

Eθ [S] = s

or equivalently as
Eθ [S− s] = 0 (2.10)

5A note on notation: the two indexes in (2.8) refer respectively to the observation period (m) and the effects (k),
wheresk(X(tm)) is defined by (2.6). The definition in (2.6) allows the use of a straightforward notation.
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At this point, the problem is how to solve the system (2.10) with respect to the parameter θ .
Analytical and usual numerical procedures cannot be applied, since the theoretical expected values
of the statistics cannot be calculated explicitly. However, it is rather straightforward to simulate
random digraphs with the desired distributions. Therefore, stochastic approximation methods can
be used to approximate the estimates.

Definition 5.4. Stochastic approximation methods are a family of iterative simulations-based (i.e.
stochastic) algorithms that attempt to find zeros or extrema of functions which cannot be computed
in an analytical way.

In the context of the parameter estimation of the SAOM, the stochastic approximation method
consists in iteratively approximate the moment equations for fixed values of the parameter θ and
updating the value of θ step by step, according to the “distance” between the approximated ex-
pected values and the corresponding observed values.

The Monte Carlo Method

The expected values of the statistics are approximated via Monte Carlo methods.

Definition 5.5. Let X be a random variable with distribution function fx(x) and let us assume to
be interested in estimating the expected value:

E[s(X)] =

+∞∫
−∞

s(x) fX(x)dx

where s is a real valued function. The Monte Carlo methods requires generating a sample (X1, · · · ,Xq)
from the distribution function fX(x) and to approximating the expected value with the empirical
average, i.e.:

S =
1
q

q

∑
l=1

s(xl)

It can be proved that S converge to the true value of E[s(X)] as q→ ∞.

Therefore, we can approximate the expected value of the vector of statistics S simulating
the network evolution q time,s given a fixed value for θ , and computing the mean of the values
assumed by the statistics during each simulation.
For instance, the Monte Carlo approximation of the expected value for the rate parameter βout can
be obtained in the following way:

1. Given x(t0) and θ , simulate the sequence of the observed networks at time t1, . . . , tM q times.
Denote these sequences by

x(1)(t1), x(1)(t2), . . . , x(1)(tM)

. . .

x(q)(t1), x(q)(t2), . . . , x(q)(tM)

2. For each sequence compute the value assumed by the statistics S(i)out =
M−1
∑

m=1

n
∑

i=1

n
∑
j=1

x(l)i j (tm):

3. Approximate the expected value by

Sout =
1
q

q

∑
l=1

S(l)out
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The Robbins-Monro step

The iterative step for updating the value of θ is based on the Robbins-Monro step.

Definition 5.6. Let θ ∈Θp be a p-dimensional vector of parameters and g(θ ;x)∈Rp some vector-
valued function which depends on θ . The focus is to find the root θ̂ ∈Θp of the equation

g(θ ;x) = 0 (2.11)

Let θ1 be an initial guess of θ . Then the Robbins-Monro algorithm to solve equation (2.11) is
based on a sequence θi generated by the recursion:

θi+1 = θi−aig(θ ;x)

where the gain ai is a sequence of positive numbers such that:

lim
(i→∞)

ai = 0
∞

∑
i=1

ai = ∞

∞

∑
i=1

a2
i < ∞

Remarks

1. The conditions related to the sequence of gain provide a careful balance in having the gain
ai decay neither too fast nor too slow. In particular, the gain should approach zero suffi-

ciently fast
(

lim
(i→∞)

ai = 0,
∞

∑
i=1

a2
i < ∞

)
, but should also approach it at a sufficiently slow

rate
(

∞

∑
i=1

ai = ∞

)
to avoid premature (false) convergence of the algorithm.

2. The sequence {θi} converges (almost sure) to the true value of θ as i→∞. It can be proved
that optimal convergence of the Robbins-Monro algorithm can be achieved including in the
iterative step a positive diagonal matrix D:

θi+1 = θi−aiD−1g(θi;x)

and estimating the value of the parameter θ not by the last value θi, but by the average of
the consecutively generated θi values6.
Usually D is the diagonal matrix of the first order derivative of g(θ ;x). Different methods
can be used to estimate the diagonal elements of D. One possibility is the finite difference
method, which estimates the j− th diagonal element by

∂g(θ ;x)
∂θ j

= lim
ε j→0

g(θ + e jε j;x)−g(θ ;x)
ε j

where e j is the j-th unit vector in p-dimension and ε j is a suitable constant.

We can use the Robbins-Monro step to find the root of the system of equations represented by
(2.10). In the estimation algorithm D denotes the diagonal matrix of the first order derivative
matrix of S with respect to θ :

D =
∂

∂θ
Eθ [S|X(t0) = x(t0)]

6The choice of averaging over the generated θi values relies on a work by Ruppert [3]. In his technical report,
Ruppert proved that the optimal convergence rate of the algorithm can be achieved when D is a diagonal matrix and
the sequence ai is a sequence of positive numbers converging to zero at the rate i−c, 0.5 < c < 1. To obtain this
optimal convergence rate, the solution to (2.10) must be estimated not by the last value θi, but by the average of the
consecutively generated θi values
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and the general step of the Robbins-Monro algorithm by:

θ̂i+1 = θ̂i−aiD−1(Si− s)

At the end of the estimation procedure, the standard error associated to the estimates is computed.
The standard error will play a key role in the interpretation of the results provided by the model.
The algorithm is divided into three phases.

1. Phase 1. A small number q1 = 7+3∗ (M−1+K) of steps are made to estimate D, using
the Monte Carlo method, and to provide a first update to the parameter θ .
Let e j be the j-th unit vector in (M− 1+K) dimensions (thus, j = 1, . . . ,M− 1+K) and
ε a constant vector in (M−1+K) dimensions whose components take values between 0.1
and 1 (but often are equal to 1).
In step i (i = 1,2, . . . ,q1), given the network at time t0, the network evolution is simulated
from the initial value θ0 and from the values θ j = θ0+ε je j and the (M−1+K)-dimensional
vectors of statistics are computed according to the simulated networks. We denote by Si0
and Si j such vectors, where the first index (i) refers to the step and the second index (0 or j)
to the value of θ used for the simulation. Then, the difference quotients di j = ε

−1
j (Si j−Si0)

are computed. di j is the approximation of the derivative of the statistics S j at step i (i.e. the
approximation of the j-th element on the diagonal of D) using the finite difference method.
At the end of this phase the expected value S and the j− th diagonal element d̂ j of D are
estimated using the following formulas:

S =
1
q1

q1

∑
i=1

Si0 d̂ j =
1
q1

q1

∑
i=1

di j

Finally a new value of θ is estimated via the Robbins-Monro step with ai = 1:

θ̂q1 = θ0− D̂−1(S− s)

Phase 1 is summed up by Algorithm 2. The symbol ∼ means “generated from”.

Algorithm 2: Robbins-Monro algorithm - Phase 1
Input: θ0, s, q1,ε j

Output: θ̂q1 , D̂

i← 0
d← 0
S0← 0
while i < n1 do

i← i+1
Si0 ∼ θ0
S0← S0 +Si0
for j=1, . . . (M+K-1) do

Si j ∼ θ1 + ε j ∗ e j

di j← ε
−1
j (Si j−Si0)

d← d +di je j

S← 1
q1

S0

d̂← 1
q1

d

D̂← diag(d̂)
θ̂q1 ← θ0− D̂−1(S− s)
return θ̂q1 , D̂
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2. Phase 2. This is the main phase, consisting of c sub-phases. The number of iteration per
sub-phase is determined by a stopping rule but bounded for sub-phase h between q−h =
24((M−1+K)−1)/3(7+(M−1+K)) and q+h = q−h +200. In each sub-phase ai is constant and
equal to ah. The only difference between the sub-phases is ai.
Each sub-phase is ended after less than q+h steps, as soon as the number of steps in this sub-
phase exceeds q−h while, for each coordinate Sih, the sum within this sub-phase of successive
products (Sih− s)(S(i−1)h− s) is negative. It can be proved that as long as (Sih− s)(S(i−1)h−
s) is positive, it must be assumed that the sequence θi is still drifting toward the limit point
rather then wandering around the limiting point, so that is not desirable decrease the gain ai.
If the upper bound q+h is reached, then the sub-phase is terminated anyway. In each iteration
step within each sub-phase h, Sih is generated according to the current parameter value θ̂i .
After each step, this value is updated according to the formula

θ̂i+1 = θ̂i−ahD̂−1(Si− s)

At the end of each sub-phase, the average of θ̂i over this sub-phase is used as the initial
value θ̂h of the parameter for the next sub-phase. The value of ah is divided by 2 when a
new sub-phase is entered.
The average of θ̂i over the last sub-phase is the eventual estimate for θ .
Phase 2 is summed up by Algorithm 3.

Algorithm 3: Robbins-Monro algorithm - Phase2

Input: θ̂1 = θ̂q1 , D̂, s
Output: θ̂

θ ← 0
for h = 1 to c do

i← 0
if i >= q+h OR (i > q−h AND (Sih− s)(S(i−1)h− s)< 0) then

i← i+1
Si ∼ θ̂i

θ̂i+1← θ̂i−ahD̂−1(Si− s)
θ ← θ̂i+1 +θ

θ̂h← 1
i−1 θ

ah+1← ah/2;

θ̂ ← θc

return θ̂

3. Phase 3. A number q3 = 500 is used to estimate the variance-covariance matrix Σθ of the
estimator of θ .The standard error is the square root of the diagonal elements of the variance-
covariance matrix Σθ . We will denote by Σ̂θ the estimate of Σθ . It can be proved that the
estimate of Σθ is given by

Σ̂θ = D̂−1
[

1
q3

(Si−S)′(Si−S)
]

D̂−1

and the squared root of the diagonal matrix The square root of the diagonal value of Σθ are
the standard errors associate to the estimates obtained through the Phase 2. The value θ̂ is
left unchanged during Phase 3 and it is equal to the value obtained after the last subphase
of Phase 2. It is used to provide the new estimate D̂ of D and of the expected value of the
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statistics S. Therefore, Phase 3 is similar to Phase 1.
Phase 3 is summed up by Algorithm 4.

Algorithm 4: Robbins-Monro algorithm - Phase 3

Input: θ̂ , s, n3,ε j

Output: Σ̂θ

i← 0
d← 0
S0← 0
while i < n3 do

i← i+1
Si0 ∼ θ̂

S0← S0 +Si0
for j=1, . . . M+K-1 do

Si j ∼ θ̂ + ε j ∗ e j

di j← ε
−1
j (Si j−Si0)

d← d +di je j

S = 1
q3

S0

d̂ = 1
q3

d

D̂ = diag(D)

Σ̂θ = D̂−1
[

1
q3
(Si0−S)(Si0−S)

]
D̂−1

return Σ̂θ

5.2 The Maximum likelihood estimation

The Maximum likelihood (ML) estimation for the parameter of the SAOM is quite complex
and requires advanced statistical concepts. For this reason, the aim of this paragraph is to provide
only an intuitive idea of the algorithm.
The model assumptions allow us to decompose the process in a series of micro-steps. Each micro-
step can be described by the sequence {(Tr, ir, jr),r = 1, . . . ,R}, where Tr is the time point for an
opportunity for change, ir denotes the actor who has the opportunity to change and jr is the actor
towards whom the tie is changed. We denote by R the total number of micro-steps between t0 and
t1 and we assume that the time point Tr are ordered increasingly, i.e. t0 = T0 < T1 < .. . < TR < t1.
If we knew the complete data of the network evolution process, then we could write down the
likelihood of the network evolution process and compute the maximum likelihood estimation for
θ .

Definition 5.7. Given the sequence of micro-steps {(Tr, ir, jr),r = 0, . . . ,R}, the likelihood func-
tion of the network evolution process is defined by:

L(θ) =
R

∏
r=1

P((Tr, ir, jr))

Then, the estimate for θ is the vector of values θ̂ such that:

θ̂ = argmax
θ∈Θ

L(θ)

26



5. THE PARAMETER ESTIMATION

or equivalently, the vector of values θ̂ such that:

U(θ) =
∂

∂θ
log(L(θ)) = 0 (2.12)

where ∂

∂θ
log(L(θ)) is the score function.

Since we cannot observe the complete data, the likelihood of the observed data (x(t1), . . . ,x(tM))
conditional on x(t0) cannot generally be computed. Again, the parameter estimation requires find-
ing the root of a system of equations represented by (2.12) in which the functions that are set equal
to 0 cannot be computed analytically. Thus, a stochastic approximation method must be applied.
In order to approximate the score-function, the general data augmentation principle is employed.
The idea is to augment the observed data so that an easily computable likelihood is obtained. Since
the data augmentation can be done separately for each time period (tm−1, tm) it is not restrictive to
describe it only for two observations x(t0) and x(t1).

Definition 5.8. The augmented data (or sample path) consists of R and the sequence (i1, j1), . . . ,(iR, jR),
without the time points Tr, that specifies the sequence of tie changes that brings the network from
x(t0) to x(t1) . Formally we will denote the augmented data by

v = {(i1, j1), . . . ,(iR, jR)}

and the set of all sample paths connecting x(t0) and x(t1) is denoted by V.

The probability of the augmented data v conditional on X(t0) = x(t0) and X(t1) = x(t1) is
proportional to

P(v|x(t0),x(t1)) ∝
(nλ )R

R!
e−nλ

R

∏
r=1

1
λ

pir jr(β ,x(Tr−1)) (2.13)

and can be used to approximate the likelihood of the network evolution process (and then the score
function). Thus, we need a method to properly sample the augmented data from the distribution
in (2.13). This is done through a Markov chain simulation defined on the state space V. Roughly
speaking the Markov chain defines the transition probabilities from a sample path v ∈ V to an-
other, so that the long-run distribution of the Markov-chain is equal to the distribution in (2.13).
The transition probability from a sample path to another is defined by the Metropolis-Hastings
algorithm.

Definition 5.9. The Metropolis-Hastings algorithm is defined by the following transition proba-
bilities:

1. Given vi = v, generate ṽ form the proposal distribution u(ṽ |vi )

2. Take

vi+1 =


ṽ with probability ρ(ṽ,v)

v with probability 1−ρ(ṽ,v)

where

ρ(ṽ,v) = min
{

P(ṽ)u(v |̃v)
P(v)u(ṽ |v)

,1
}

Then, the transition probabilities of the chain generate by the Metropolis-Hastings algorithm
are given by ρ(ṽ,v)u(ṽ |v).

The proposal distribution u(ṽ |v) is defined so that the admitted changes from a state to another are
the following:
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- Pairwise deletions: one pair of indices r1 and r2 such that (ir1 , jr1) = (ir2 , jr2) is selected and
the corresponding pairs (ir1 , jr1) and (ir2 , jr2) are deleted from v

- Pairwise insertions: one pair of (i, j) ∈N2 and two indices r1 and r2 are randomly chosen.
The element (i, j) is inserted in v immediately before r1 and r2

- Single deletion: one pair (ir, jr) satisfying ir = jr is randomly selected and deleted from v

- Single insertion: one actor i ∈ N and an index r are selected. The element (i, i) is inserted
immediately before r

- Permutations: for randomly chosen indices r1 < r2, the sequence (ir1 , jr1), . . . ,((ir2 , jr2)) is
randomly permuted

Theorem 5.10. The Metropolis-Hastings algorithm leads to an irreducible, aperiodic and re-
versible Markov-chain whose stationary distribution is given by (2.13).

Proof. bla

- The Markov chain is irreducible.
Pairwise deletions and insertions and single deletion and insertion are sufficient for all v ∈
to communicate.

- The Markov chain is aperiodic.
The graph associated to the resulting Markov-chain contains all the loops and thus the great-
est common divisor of all cycles is one.

- The Markov chain is reversible. The detailed balance condition:

ρ(ṽ,v)u(ṽ |v)P(v) = ρ(v, ṽ)u(v |̃v)P(ṽ)

is satisfied.
ρ(ṽ,v)u(ṽ |v)P(v) = min

{
P(ṽ)u(v|̃v )
P(v)u(ṽ|v ) ,1

}
u(ṽ |v)P(v) =

= min
{

P(ṽ)u(v|̃v )
u(ṽ|v ) ,P(v)

}
u(ṽ |v) =

= min
{

u(v|̃v )
u(ṽ|v ) ,

P(v)
P(ṽ)

}
u(ṽ |v)P(ṽ) =

= min
{

1, P(v)u(ṽ|v )
P(ṽ)u(v|̃v )

}
u(v |̃v)P(ṽ) =

= ρ(v, ṽ)u(v |̃v)P(ṽ)

The ML estimation algorithm then can be sketched in the following way:

1. For each m = 1, . . . ,M− 1 makes a large number of Metropolis-Hastings steps yielding
v(i) = (v(i)1 , . . . ,v(i)M−1)

2. Compute the score function:
∂

∂θ
log(L(θ̂i;x;v(i)m ))
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3. Update the parameter estimate using the Robbins-Monro step

θi+1 = θi +aiD−1U(L(θ̂i;x;v(i)m ))

The estimate θ̂ is calculated as the average of the θi+1 values generated by this algorithm.

The Robbins-Monro algorithm and the ML estimation are implemented in the R library RSiena
(Simulation Investigation for Empirical Network Analysis) program, now also available as an
R library called RSiena (see the Rscript “estimation.R” for the practical implementation of the
estimation procedure).

6 The parameter interpretation

To explain how to interpret the parameters of the SAOM model, we consider the results deriv-
ing from the Rscript “estimation.R”. The analyzed data are an excerpt from the “Teenage Friends
and Lifestyle Study” data set. The network is defined by friendship relations among pupils in a
school in the West of Scotland. Only the 129 actors present at all three measurement points are
considered in the analysis.
To find out whether it makes sense to analyze the data with the SAOM we need to check if the
data are sufficiently informative to allow for the identification of the effects. In general, the total
number of changes between consecutive observations should be large enough to provide the in-
formation for estimating parameters. To express quantitatively whether the data contain enough
information, we can use the Jaccard index. The Jaccard index J is defined by the following ratio:

J =
N11

N11 +N01 +N10

where N11 is the number of ties present at both wave, N01 is the number of newly created ties and
N10 is the number of ties terminated. Based on experience with the method, the Jaccard values
between consecutive waves should preferably be higher than 0.3. In our case the Jaccard indexes
take value 0.304 for the first period and values 0.351 for the second period, thus data provide
enough information for estimating parameters.
For illustrative purposes, we start considering a very simple model. Since the network was ob-
served at three time points, two rate parameters are specified. Then, outdegree and reciprocity
effects are included in the objective function. The out-degree effect always must be included in
the model, while the reciprocity effect practically almost always must be included since most re-
lations show a tendency towards reciprocity.

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.5948 ( 0.7091 )
Rate parameter period 2 7.2115 ( 0.5751 )

Other parameters:
outdegree (density) -2.4147 ( 0.0387 ) -62.3875
reciprocity 2.7106 ( 0.0811 ) 33.4061

Table 2.1: A simple model

Table 2.1 shows first the estimated rate parameters. The rate parameter is the expected frequency,
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between two consecutive network observations, with which actors get the opportunity to change a
network tie. Rate parameters suggest that pupils had about 9 opportunities for change in the first
period and about 7 in the second period (perhaps due to a higher friendship turnover between the
first and the second school years). We should observe that the estimated rate parameters will be
higher than the observed number of changes per actor for two main reasons. The former is that an
actor can decide not to make any change when he has the opportunity to change a tie. The latter is
that an actor may add and then withdraw the same tie during the period between two observation
moments.
The parameters for the objective function, which the table shows next, are more interesting for the
interpretation. In fact, they provide information about the leading forces of network evolution. In
the previous pages, we pointed out that the strength of each effect sk is represented by the value
assumed by the corresponding parameter βk. The parameter βk can assume any real value and
can be interpreted as follows. If βk is equal to 0, it means that the corresponding effect plays no
role in the network dynamics. If it assumes a positive value, then there is higher probability of
moving into networks where the corresponding effect is higher. Vice versa if the parameter takes a
negative value there is higher probability of moving into networks where the corresponding effect
is lower. Therefore, the first thing to do when interpreting the parameters of the SAOM is to estab-
lish which parameters are “significantly” different from 0, i.e.which effects are really important
to explain network evolution. To do this we use hypotheses test. Several steps are necessary to
perform a hypothesis test.

1. State the hypotheses.

Definition 6.1. A statistical hypothesis is a statement about the parameters of a model.
There are two different kind of hypothesis, which in the context of the SAOM model can be
described in the following way:

- The null hypothesis, denoted by H0, is usually the hypothesis that the observed increase
or decrease in the number of network configurations related to a certain effect results
purely from chance. This means that the considered effect plays no role in the network
dynamics and the null hypothesis can be expressed by:

H0 : βk = 0

- The alternative hypothesis, denoted by H1, is the hypothesis that the observed increase
or decrease in the number of network configurations related to a certain effect is in-
fluenced by some non-random cause. This means that there is a tendency towards or
against the considered effect and the alternative hypothesis can be expressed by:

H1 : βk 6= 0

The hypotheses are stated in such a way that they are mutually exclusive. The observed data
are used in ordered to decide between the two hypotheses, i.e. to decide if the data give
evidence to the null or the alternative hypothesis.

2. Define a decision rule that allows discriminating between the null and the alternative hy-
pothesis.

Definition 6.2. The decision rule is defined by the test statistic
∣∣∣ βk

s.e.(βk)

∣∣∣≥ 2 reject H0∣∣∣ βk
s.e.(βk)

∣∣∣< 2 fail to reject H0
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The logic behind this decision rule is based on the standard error concept. The standard
error s.e.(βk) is a measure of the accuracy associate to an estimate βk that takes into account
the randomness introduced in the estimation process using simulations and only one set
of data: different set of simulations and slightly different set of data can lead to slightly
different estimates. For instance, let us assume that βk = 0.13. The question is: is this value
far enough from 0, so that we can conclude that the effect is important to explain network
evolution? If we consider its s.e.(βk) = 0.9, we can assume that a more or less plausible set
of values that the parameter can assume is approximately [0.04,0.22]. Therefore, in order
to decide if a parameter βk is significantly different from 0, we should take into account its
standard error.
The decision rule suggests that if the estimate of a parameter in its standard error unit is
“small” enough (i.e. close enough to 0), then we can conclude that the data support H0 and
we conclude that the effect is not important (or not significant) for explaining the observed
network evolution. On the contrary if the estimate of a parameter in its standard error unit
is “big” enough (i.e. far enough from 0) then we can conclude that the data support H1
and we conclude that the effect is important (or significant) for explaining the observed
network evolution. In our context the “enough” is expressed by 2, and it is established using
determined statistical tools.
The ratio between the estimate and their standard error is reported in the “t-score” column
of Table 2.1.

At this point we can continue in interpreting Table 2.1. The t-scores related to outdegree and
reciprocity effects are in absolute value greater than two, thus these two effects are significant in
explaining network evolution. Their interpretation takes into account that the objective function
expresses the attractiveness of the network for a given actor. Thus, theobjective functions are used
to compare how attractive various different tie changes are.
The parameter of the outdegree effect is negative and suggests that the observed networks have
low density. This means that on average the cost of establishing a friendship tie is higher than its
benefit. The positive parameters related to reciprocity effect, suggests that there is strong tendency
towards reciprocated ties. In more detail, let us consider the contribution to the objective function:

βout

n

∑
j=1

xi j +βrec

n

∑
j=1

xi jx ji =−2.4147
n

∑
j=1

xi j +2.7106
n

∑
j=1

xi jx ji

where βout and βrec are the parameters associated to the considered effects. Adding a reciprocated
tie (i.e., for which x ji = 1) gives a positive contribution to the objective function

−2.4147+2.7106 = 0.2959

while adding a non-reciprocated tie (i.e., for which x ji = 0) gives a negative contribution to the
objective function (-2.4147). This means that reciprocated ties are valued positively and non-
reciprocated ties are valued negatively by actors, thus actors will be reluctant to form reciprocated
ties. Such ties will be formed nevertheless by chance and these are the basis on which reciproca-
tion by others can start. We consider now a more detailed specification of the objective function.
The effects related to the objective function must be determined according to hypotheses derived
from theory.
In friendship context, sociological theory suggests that friendship relations tend to be reciprocated
and that the statement “the friend of my friend is also my friend” is almost always true. Thus, the
reciprocity transitive triplets effect are included in the model. Furthermore, it is well-known from
psychological theory that pupils prefer to establish friendship relations with others that are similar
to themselves. Thus, we include two covariate-related similarity effects with respect to gender
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and smoking behavior, respectively (i.e. sex similarity and smoke similarity). These effects are
controlled for the sender (i.e., sex ego, smoke ego) and receiver (i.e. sex alter, smoke alter) effects
of the two attributes. The graphical interpretation and the verbal description of these effects are
reported in Table 2.5.

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
sex ego 0.1571 ( 0.1072 ) 1.4659
sex similarity 0.9191 ( 0.1076 ) 8.5440
smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

Table 2.2: A more complex model

The interpretation of the rate, outdegree and reciprocity parameters was provided before. There-
fore, we focus our attention on the effects added to the previous model.
The parameter related to transitivity, measured by the transitive triplets effects, is significant and
positive. It indicates a preference for being friends with friends’friends.
To interpret the three effects of the actor covariates related to gender, it is more useful to consider
them simultaneously. The sender (ego) and receiver (alter) effect of gender are not significant,
meaning that the activity or the popularity of the node does not depend on gender. On the con-
trary, the same gender effect is significant, suggesting that actors’similarity plays a key role on
network evolution. To establish if gender similarity support or prevent tie formation we should
look to the sign of the parameter. The parameter is positive, thus there is a tendency to choose
friends with the same gender. To be more precise, we can consider again the contribution of gen-
der to the objective function.
Gender was coded originally with 1 for male and with 2 for female. All actor covariates are
centered, i.e. their mean value is subtracted from the original values. For instance, the vari-
able for gender has mean z = 1.434 (73 boys and 56 girls), which leads to the centered values
zi− z =−0.434 for boys and zi− z = 0.566 for girls. For this variable, the model includes the ego,
alter and same covariate effects. Let us denote the corresponding parameters by βego, βalter and
βsame. The contribution of the single tie xi j to the objective function is provided by7:

βego(zi− z)+βalter(z j− z)+βsameI{zi = z j}= 0.1571(zi− z)−0.1513(z j− z)+0.9191I{zi = z j}

where I{zi = z j} is the indicator function which takes the two values:

I{zi = z j}
{

1 zi = z j

0 otherwise

Substituting the values −0.434 for boys and 0.566 for girls yelds the following table:
7The alter and ego effects are not significant so they can be excluded by the following expression. For illustrative

purposes, we does not concern about their significance.
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Male Female
Male 0.9166 0.1546
Female -0.1538 0.9224

Table 2.3: Gender-related contributions to the objective function

Table 2.3 shows the preference for similar alters: in all rows, the highest value is at the diagonal
(z j = zi). This result can be explained by the the fact that the ego and alter parameters are close
to 0 (not significant), therefore the similarity effect is dominant. The interpretation is that pupils
prefer to nominate friends of the same gender denoting segregation (or homophily) with respect to
this actor covariate. Furthermore, the negative value associated to the the single tie form a girl to
a boy, suggests that girls seem not to like male friends.
We can proceed in the similar way for the smoking behavior. Only the similarity in smoking
behavior is significant and the positive value of the parameter suggests the pupils’preference in
choosing friends with the same smoking behavior. The smoking behavior covariate is centered
using the overall mean value from the original values of the covariate. In more detail, the smoking
covariate has mean z1 = 1.233 (109 no-smokers, 10 occasional smokers and 10 regular smokers)
in the first period and z2 = 1.388 (100 no-smokers, 8 occasional smokers and 21 regular smok-
ers) in the second period. The overall mean of the two periods is given by the mean of these
values, i.e. z = 1.310. Thus, the centered values for the smoking covariate are: zi− z = −0.310
for no-smokers, zi− z = 0.690 for occasional smokers and zi− z = 1.690 for regular smokers.
The contribution of the single tie xi j to the objective function is provided by the more complex
expression:

βego(zi− z)+βalter(z j− z)+βsame

(
1− |zi−z j|

Rz
− simz

)
=

= 0.0714(zi− z)+0.1055(z j− z)+0.3724
(

1− |zi−z j|
2 −0.7415

)
where Rz is the range of the values assumed by the actor covariate (i.e. the difference between the
highest and the smallest values, for the smoking behavior Rz = 2) and simz is the mean similarity
value. It is defined by the mean of all similarity scores simz(i j)

simz(i j) = 1−
∣∣zi− z j

∣∣
Rz

The value of simz is computed directly by the RSiena program through the sienaDataCreate func-
tion and here simz = 0.7415. Substituting the centered values for the smoking covariate yelds the
following table:

no occasional regular
no 0.0414 -0.0734 -0.1882
occasional -0.0393 0.2183 0.1035
regular -0.1200 0.1376 0.3952

Table 2.4: Smoking-related contributions to the objective function

We observed preference for similar alters with respect to smoking behavior. Table 2.4 shows
that the net resulting preference for similar others is strongest for actors (egos) high on smoking
behavior, and weakest for actors in the low range of smoking behavior.
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Chapter 3

Modeling the co-evolution of networks
and behaviors

1 The interdependence of network and behaviors

One of the natural extensions of the SAOM is related to the kind of changes that can hap-
pen in a social system represented by a network. Together with ties, also actors’characteristics
can change over time. In the following, the term “behavior” will denote any changeable actor
attribute (including opinions, attitudes, intentions, performances etc.).
Changes in ties and in actor’s attributes are two interdependent processes. On the one hand, social
network dynamics can depend on actor’s characteristics, i.e. network evolution can be affected by
actors’ attributes. This is the result of a selection process in which relationship partners are se-
lected according to their characteristics. The best known example of such process is the homophily
mechanism, i.e. the formation of relations based on the similarity of two actors. On the other hand,
changeable actors’characteristics can depend on the social network, i.e. behaviors can be affected
by the configuration of the network. This is the outcome of an influence process, in which actors
adjust their characteristics according to the characteristics of other actors to whom they are tied.
A classical example is the assimilation process, by which connected actors become increasingly
similar over time. Since hoophily and assimilation give rise to the same outcome (similarity of
connected individuals), researchers have known for long time that the study of influence requires
the consideration of selection and vice versa. A fundamental question is then whether this simi-
larity is caused mainly by influence or mainly by selection. The answer to this question is then
provided by the extension of the SAOM to a structure where the dependent variables consist of
both tie variables and actor’s behavior variables.

2 Data

In this section we follow the notation used in Chapter 2. Let x be a binary adjacency matrix
representing a network. The network is defined by a relation R collected over a set N of actors.
For each actor we collected also a series of actor attributes. Let V1, · · · ,VH denote the H constant
covariates (such as gender, ethnicity, and so on) and Z1(t), · · · ,ZL(t) the L behavior covariates
(such as, smoking or drinking behaviors). It is assumed that the behavior variables are ordinal
categorical variables , with values 1,2, etc.1

1A categorical variable is a variable with modalities in the form of categories, such as, for example, man and woman
of the variable sex; when it is possible to order the modalities of a categorical variable, the variable is said to be an
ordinal categorical variable. Examples are the professional variable with categories “qualified”, “semiqualified”, and
“nonqualified” or the smoking behavior with categories “no”, “occasional” and“regular”.
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Networks and behaviors are observed at M ≥ 2 time points t1, · · · , tM. The corresponding time
series of observed networks and behaviors will be denoted by:

(x,z)(t1), (x,z)(t2), · · · , (x,z)(tM)

This time series together with the constant actor’s attribute V1, · · · ,VH constitutes the the longitudi-
nal network-behavior panel data that we want to analyze in order to determine the leading forces
which govern network and behavioral changes and to distinguish between selection and influence
mechanism. In more detail the time series of observed networks and behaviors is the dependent
variable of the model and our aim is to explain it as a function of structural effects and individ-
uals’characteristics (constant or time-varying covariates). For simplivity in the next sections we
will considered L = 1.

3 Assumptions

The assumptions for the actor-based model for the dynamics of networks and behaviors are
extensions of the assumptions of network dynamics for the SAOM.

1. Distribution of the process. Changes between observational time points are modeled accord-
ing to a continuous-time Markov chain. The state space C of the chain is comprised of all
possible configurations arising from the combination of network and behaviors. The num-
ber of possible networks based on a set of n actors is 2n(n−1), while the possible distribution
over the n actors of a behavior variable with B categories is Bn. Therefore the cardinality of
C is |C|= 2n(n−1)×Bn.
The continuous-time assumption expresses the idea that the changes reflected in the longi-
tudinal data typically accrue over the unobserved periods between the observation moments
in continuous time. The importance of this consideration in explaining the co-evolution of
networks and behaviors becomes clear when looking at Figure 3.1a. Let us assume, at t0,
actor i considers actor j a friend but they are not behaviorally similar, whereas at t1, i again
considers j a friend but now they are behaviorally similar. Then, one is tempted to conclude
that this is the result of an influence process. However, the unobserved process that gener-
ated these data may have looked very different, as illustrated in the brackets. The relation
between i and j may have ended, and i may have changed his behavior in the absence of a
relation with j. After the behavior of i changed, i may have renewed is the friendship with
j. According to this scenario, the change in behavior happened in the absence of a tie form
i to j and the configuration observed at time t1 is actually the result of a selection process.
Figure 3.1b illustrates how social influence can be misdiagnosed as homophilous selection.
The Markov-chain assumption means that the changes actors make are assumed to depend
only on the current state of the network and the behaviors, not on previous configurations.

2. Opportunity to change. At any given moment one probabilistically selected actor has the
opportunity to change one of his outgoing tie or his behavior. The moments at which an
actor has the opportunity for a tie change or a behavior change are modeled by two distinct
rate functions.

3. Absence of co-occurrence. No more than one tie or one behavior can change at any given
moment, i.e. only one actor has the opportunity to change (an outgoing time or one behavior)
at each instant t.

4. Actor-oriented perspective. Actors control their outgoing ties as well as their own behavior,
i.e. the changes in outgoing ties and behavior are determined by the position of the actor
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Figure 3.1: Selection and influence as alternative mechanisms

in the network, his individual characteristics, as well as the characteristics and the behavior
of the other actors in the network. This means that actors do not change ties and behavior
at will but they act in order to improve their preferences towards the resulting network and
behavior configuration. These preferences are modeled by two distinct objective functions:
one for the network and one for the behavior change.
As already mentioned the behavior variables are ordinal discrete variables. It is assumed that
once an actor i has the opportunity to change his behavior, he can increase or decrease the
level of its behavior only by one unit. For instance, let us suppose that the current behavior
level of actor i is zi = l. Once i gets the opportunity to change his behavior, he can decide
to increase his level by one unit (zi = l +1), to decrease his level by one unit (zi = l−1) or
not to change zi = l

Assumptions 2 and 4 suggest that network evolution and behavioral evolution are modeled accord-
ing to two distinct processes: a network process and a behavior process. This does not mean that
network and behavior interdependence is neglected. As it will be shown in the following section,
the interdependence of networks and behaviors is modeled through the effects that specify the
objective function for the network change and the behavioral change.

4 Model formulation

According to the previous assumptions, the network-behavior co-evolution process is decom-
posed into a series of micro-steps that consist of either the opportunity of changing one network
tie and the corresponding tie changed or by the opportunity of changing a behavior and the cor-
responding unit changed in behavior. Consequently, every micro-step requires the identification
of a focal actor who gets the opportunity to make a change and the identification of the change
outcome.
To take into account the double nature of the micro-steps, the basic co-evolution model is de-
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Occurrence Preference
Network changes Network rate function Network objective function
Behavioral changes Behavioral rate function Behavioral objective function

Table 3.1: Model components of the SAOM for network change

scribed by four components, expressing the amount of opportunities for a change (modeled by the
rate functions) and the direction of a change (modeled by the objective functions). This structure
is represented in Table 3.1.
The first observations of network x(t0) and behavior z(t0) serve as starting values of the evolution
process, so that we do not concern about the process that may have generated the first network and
behavior observation and only the subsequent changes of network ties and behavior are modeled.

4.1 The rate functions

The frequency by which actors have the opportunity to make a change is modeled by the rate
functions, one for each type of change. The main reason for having two different rate functions
for the behavioral and the network changes is that practically always, one type of decision will be
made more frequently than the other. For instance, in the joint study of friendship and smoking
behavior at high school, we would expect more frequent changes in the network than in behavior,
because of the addictive nature of substance use and the high friendship turnover in adolescence.
The Markov chain assumption requires that the waiting times between micro steps must have
exponential distributions. For each actor i, we denote by T net

i and by T beh
i the waiting time until i

gets the opportunity to make a network or a behavioral change, respectively. Therefore, T net
i and

T beh
i are exponentially distributed with parameters λ net

i and λ beh
i , respectively.These parameters

indicate the speed at which the respective change is likely to occur. The parameters λ that govern
the rate functions are indexed by a i, because we assume that actors may change their network ties,
or their behavior, at different frequencies. We can incorporate such activity differences between
actors by letting the parameters λ depend on actor attributes and network positions.
The Markov-property suggests that all waiting times are independent, given the current state of
network and behavior. Thus, properties of the exponential distribution imply that, starting from
the moment of the preceding micro step, the waiting time until the occurrence of the next micro
step of either kind by any actor is exponentially distributed with parameter:

λtot = ∑
i
(λ net

i +λ
beh
i )

It follows that the probability of a network micro-step is taken by actor i is given by

P(i has the opportunity to change one of his tie) =
λ net

i
λtot

and the probability of a behavioral micro-step is taken by actor i is given by

P(i has the opportunity to change his behavior) =
λ beh

i
λtot

If we consider the simplest specification of the rate functions, that assumes that all actors have
the same rate of change between two observational moments, T net

i and T beh
i are exponentially dis-

tributed with parameters λ net and λ beh, respectively. Therefore, the waiting time until occurrence
of the next micro step of either kind by any actor is exponentially distributed with parameter:

λtot = ∑
i
(λ net

i +λ
beh
i ) = n(λ net +λ

beh)
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It follows that the probability of a network micro-step is given by

P(network micro-steps) =
nλ net

λtot

and the probability of a behavioral micro-step is given by

P(behavioral micro-step) =
nλ beh

λtot

and as a consequence

P(i has the opportunity to change one of his tie) =
λ net

λtot

P(i has the opportunity to change his behavior) =
λ beh

λtot

In the following we assume that both types of rate functions are constant across actors, and depend
only on the observational period.

4.2 The objective functions

The probability of going from one state to another state of the co-evolution Markov chain is
defined by the objective functions. Since we are considering the co-evolution of networks and
behaviors, we use a slightly different notation. We denote the objective function for the network
changes by f net

i (β ,x(i ; j),z). The definition and the interpretation of f net
i (β ,x(i ; j),z) were

described deeply in Chapter 2. In this section we will focus on the objective function for behav-
ioral change.
We denote the behavioral objective function by f beh

i (γ,z(l ; l′),x). The three quantities between
brackets express the dependence of the objective function on the statistical parameters γ , the be-
havior of actor i when he changes his behavior form l to l′ ∈ {l−1, l, l+1} and the current network
configuration x.
The mathematical formulation of f beh

i (γ,z(l ; l′),x) is again a linear combination of a vector γ

of statistical parameters and a vector of effects denoted by sbeh(x,z) plus a random utility term
εi(t,z, l, l′)

f beh
i (γ,z(l ; l′),x) =

W

∑
w=1

γksbeh
iw (x,z)+ εi(t,z, l, l′)

This function will be different from the objective function for network change since it needs to
represent primarily how likely it is for the actor to change the current level of its behavior. There-
fore, effects which are supposed to play a key role in the behavioral evolution must be different
from those important for describing network evolution.
The strength of each effect is represented by the corresponding parameter γk, which should be
estimated on the basis of the longitudinal network data. γk can assume any real value and its inter-
pretation is equivalent to that of the parameters of the objective function for network change.
The term εi(t,z, l, l′) is assumed to be distributed as a Gumbel distribution. Thus, according to
equation (2.2), the probability that an actor i changes his own behavior by one unit is:

pll′(γ;z(l ; l′);x) =
exp
(

W
∑

w=1
γwsbeh

iw (x,z(l ; l′))
)

∑
l′′∈{l+1,l−1,l}

exp
(

W
∑

w=1
γwsbeh

iw (x,z(l ; l′′))
) (3.1)

If l = l′, then equation (3.1) represents the probability that actor i does not change his behavior.
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4.3 The effects of objective function for behavioral change

Several effects are proposed to specify the objective function for behavioral change.

- Basic shape effects
The linear shape effect sbeh

i linear(x,z) and the quadratic shape effect sbeh
i quadratic(x,z) are defined

by the level of the behavior for the actor i and its quadratic value, respectively:

sbeh
i linear(x,z) = zi sbeh

i quadratic(x,z) = z2
i

The basic shape effects must be always included in the model specification, since they rep-
resent the relative preference for the specific value zi of the behavior. In the special case
in which the behavior variable is dichotomous, the linear shape effect suffices, since each
function of two values can be represented by a linear function.

- Classical nfluence effects
The influence effects describe the influence of alter’s behavior on ego’s behavior. There are
different ways to measure the influences from different alter:

1. The average similarity effect sbeh
i avsim(x,z) expressing the preference of actors to be

similar in behavior to their alters, in such a way that the total influence of the alters is
the same regardless of the number of alters (i.e., ego’s outdegree xi+):

sbeh
i avsim(x,z) =

1
xi+

n

∑
j=1

xi j(simz(i j)− simz)

where

simz(i j) = 1−
∣∣zi− z j

∣∣
Rz

Rz is the range of the behavior z and simz is the mean similarity value.
2. The total similarity effect sbeh

i totsim(x,z), expressing the preference of actors to be sim-
ilar in behavior to their alters, in such a way that the total influence of the alters is
proportional to the number of alters:

sbeh
i totsim(x,z) =

n

∑
j=1

xi j(simz(i j)− simz)

The choice among these different representations of social influence has to be made on
theoretical grounds.

- Position-dependent influence effects
Network position could also have an effect on the behavior of dynamics. Therefore the
outdegree effect sbeh

i out(x,z) or sbeh
i ind(x,z) indegree effect may be included in the objective

function for network behavior.

sbeh
i out(x,z) = zi

n

∑
j=1

xi j

sbeh
i ind(x,z) = zi

n

∑
j=1

x ji

- Effects of other actor variables.
For each actor’s attribute a main effect on the behavior can be included in the model. This
reflects the influence of the considered actor characteristics on changes in the behavior.
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5 Simulating the co-evolution of networks and behaviors

This section presents a probabilistic algorithm to simulate the co-evolution of networks and
behaviors for fixed parameter values. This algorithm is the extensions of the “network evolution”
algorithm presented in Chapter 2. Therefore, the algorithm consists in reproducing a possible se-
ries of micro-steps between two observation moments t0 and t1 according to fixed parameter value,
the initial network x(t0) and the initial behavior z(t0). The simulation algorithm is as follows.

1. Set the time t = 0, x = x(t0) and z = z(t0)

2. Generate T net according to an exponential distribution with parameter λ net

3. Generate T beh according to an exponential distribution with parameter λ beh

4. If min
{

T net ,T beh
}
= T net a network micro-step is implemented:

- Select the actor i ∈N, who makes the changes, with probability

P(i has the opportunity to change one tie| network micro-steps) =
λ net

λtot

- Select the actor j ∈N, to whom i changes his outgoing tie, with probability:

pi j(β ;x(i ; j);z) =
exp
(

K
∑

k=1
βksik(x(i ; j),z)

)
n
∑

h=1
exp
(

K
∑

k=1
βksik(x(i ; h),z)

)
- If i 6= j then x = x(i ; j). If i = j then x = x

- Set t = t +T net

Otherwise if min
{

T net ,T beh
}
= T beh a behavioral micro-step is implemented:

- Select the actor i ∈N, who makes the changes, with probability

P(i has the opportunity to change his behavior|behavioral micro-steps) =
λ beh

λtot

- Determine the behavioral change l′ ∈ {l +1, l−1, l} with probability:

pll′(γ;z(l ; l′);x) =
exp
(

W
∑

w=1
γwsbeh

iw (x,z(l ; l′))
)

∑
l′′∈{l+1,l−1,l}

exp
(

W
∑

w=1
γwsbeh

iw (x,z(l ; l′′))
)

- If l 6= l′ then z = z(l ; l′). If l = l′ then z = z

- Set t = t +T beh

5. Repeat step 2. to 4. until the stopping criterion is satisfied.
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The stopping rules for the algorithm of the co-evolution of network and behaviors are the same of
those for the algorithm of network evolution, but for the conditional simulation we can now define
a stopping rule based also on the behavior variable. Conditioning on the behavior variable means
running simulations until the number of different entries between the initially observed behavior
vector and the simulated behavior vector is equal to the number of entries in the vector of the
behavior variable that differ between the initially and the finally observed behavior variable of this
period.
The algorithm for the unconditional estimation is summed up in Algorithm 5.

Algorithm 5: Co-evolution of network and behaviors

Input: x(t0), z(t0), λ net , λ beh, β , γ , n
Output: xsim(t1),zsim(t1)
t← 0
x← x(t0)
z← z(t0)
while t < 1 do

T net ∼ Exp(lambdanet)
T beh ∼ Exp(lambdabeh)
if min

{
T net ,T beh

}
= T net then

i ∼Uni f orm(1, . . . ,n)

select j with probability pi j =
e f net

i (β ,x(i; j),z)

n
∑

h=1
e f net

i (β ,x(i; j),z)

if i 6= j then
x = x(i ; j)

else
x = x

t←= t +T net

else
i ∼Uni f orm(1, . . . ,n)

select l′ with probability pll′ =
e f beh

i (γ,z(l;l′),x)

∑
l′′∈{l+1,l−1,l}

e f beh
i (γ,z(l;l′′),x)

if l 6= l′ then
z = z(l ; l′)

else
z = z

t←= t +T net

xsim(t1)← x
zsim(t1)← z
return xsim(t1),zsim(t1)

6 The parameter estimation

The estimation of the parameters of the SAOM for the co-evolution of network and behaviors
are obtained mainly using the Method of Moments. The Maximum likelihood estimation is cur-
rently too time-consuming and is still under construction.
We will denote by θ the 2(M-1)+K+W dimensional vector of parameters (M−1 parameters for the
network rate function, M−1 parameters for the behavior rate function, K parameters for the net-
work objective function, W parameters for the behavior objective function). For network-behavior
co-evolution the following four types of statistics for the model parameters were proposed:
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- Network rate parameters for the period m

snet
λm
(X(tm),X(tm−1)|X(tm−1) = x(tm−1)) =

n

∑
i, j=1
ı 6= j

∣∣Xi j(tm)−Xi j(tm−1)
∣∣

- Behavior rate parameters for the period m

sbeh
λm

(Z(tm),Z(tm−1)|Z(tm−1) = z(tm−1)) =
n

∑
i=1
|Zi(tm)−Zi(tm−1)|

- Network objective function effects

M−1

∑
m=1

snet
mk (X(tm)|X(tm−1) = x(tm−1)) =

M−1

∑
m=1

snet
mk (X(tm),X(tm−1))

- Behavior objective function effects

M−1

∑
m=1

sbeh
mw (X(tm)|X(tm−1) = x(tm−1)) =

M−1

∑
m=1

sbeh
mw(X(tm),X(tm−1))

Consequently the MoM estimator for θ is provided by the solution of the system of equations:

Eθ

[
sλm (X(tm),X(tm−1)|X(tm−1) = x(tm−1))

]
= sλm(x(tm),x(tm−1)) m = 1, · · · ,M−1

Eθ

[
sλm (Z(tm),Z(tm−1)|Z(tm−1) = z(tm−1))

]
= sλm(z(tm),z(tm−1)) m = 1, · · · ,M−1

Eθ

[
M−1
∑

m=1
snet

mk (X(tm)|X(tm−1) = x(tm−1))

]
=

M−1
∑

m=1
snet

mk (x(tm),x(tm−1)) k = 1, · · · ,K

Eθ

[
M−1
∑

m=1
sbeh

mw (X(tm)|X(tm−1) = x(tm−1))

]
=

M−1
∑

m=1
sbeh

mw(x(tm),x(tm−1)) w = 1, · · · ,W

This system of equation is solved using the Robbins-Monro algorithm, described in Chapter 2.

7 The parameter interpretation

In this section we consider the parameter interpretation of the SAOM model for the co-
evolution of networks and behaviors. The analyzed data are the excerpt from the “Teenage Friends
and Lifestyle Study” data set already used in Chapter 2.
In the literature there are several studies suggesting that the similarity in smoking behavior could
be caused by selection of similar others as friends as well as by influence processes where friends
adjust their smoking behavior to each other, or by a combination of these. Therefore, in the fol-
lowing we will use the SAOM for the co-evolution of networks and behaviors (see the Rscript
“coevolution.R”) to disentangle influence and selection processes. In particular we can try to
answer these two questions:

1. Do pupils select friends based on similar smoking behavior?

2. Are pupils influenced by friends to adjust to their smoking behavior?
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In this context, the dependent variables are represented by the friendship networks and the smoking
attitudes gathered at the three time points. To find out whether it makes sense to analyze the
data with a co-evolution model, we first need to check whether there is interdependence between
networks and behavioral variables. Second we should check whether the data are sufficiently
informative to allow for identification of effects.
One measure of interdependence is the Moran index.

I =− d(δ )
(n−1)d

where

d(δ ) =
∑
i j

xi j(zi− z)(z j− z)

∑
i j

xi j

is the mean of the cross products of the centered behavioral variable for connected actors and

d =

∑
i j
(zi− z)(z j− z)

n(n−1)

is the overall mean of the cross products of the centered behavioral variable for all the possible
pairs of actors in the network (i.e. without considering the presence of ties between the actors).
The Moran index can in theory range from -1 to +1, with values close to zero indicating indepen-
dence between networks and behaviors, and the values +1 or -1 indicating identity or perfect com-
plementarity of the behaviors of two friends (i.e. very strong interdependence). The computation
of the Moran index for the friendship networks and smoking behaviors at the three measurement
points leads to the values 0.244, 0.258 and 0.341. Since these values are greater than zero, there is
considerable dependence between networks and behaviors.
The Jaccard indexes for the two periods allow for checking whether the data provide enough in-
formation for estimating the parameters. The values taken by the Jaccard indexes are higher than
0.3 (0.304 and 0.351), revealing that the data are sufficiently informative to allow for identification
of effects. Since the two “preconditions” are satisfied, we can estimate the co-evolution model.
For illustrative purposes, we start considering a baseline model. Networks and the Behaviors were
observed at three time points, thus four rate parameters are specified: two for the network rate
functions and two for the behavioral rate functions. Then, outdegree and reciprocity effects are
included in the network objective function, and the linear and the quadratic shape effects are in-
cluded in the behavioral objective function2.
Table 3.2 shows the estimates of the parameters. The table is divided up into two parts.
The former concern to the network dynamics and we have already learned how to interpret it. The
rate parameter is the expected frequency, between two consecutive network observations, with
which actors get the opportunity to change a network tie. The rate parameters suggest that pupils
had about 9 opportunities for change in the first period and about 7 in the second period. The
outdegree and the reciprocity effects are both significant (absolute t-scores > 2). The parameter of
the outdegree effect is negative and suggests that the cost of establishing a friendship tie is higher
than its benefit. The positive parameters related to reciprocity effect, suggests that there is strong
tendency towards reciprocated ties.
The latter refers to the behavioral dynamics. The behavioral rate parameter is the expected fre-
quency, between two consecutive network observations, with which actors get the opportunity to
change their behavior by one unit. The rate parameters suggest that pupils had about 4 oppor-
tunities for change in the two considered periods. We should observe that the behavioral rate

2The quadratic shape effect is included because the number of the smoking behavioral categories is higher than 2.
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Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 8.6287 ( 0.6666 )
constant friendship rate (period 2) 7.2489 ( 0.5466 )
outdegree (density) -2.4084 ( 0.0407 ) -59.12676
reciprocity 2.7024 ( 0.0823 ) 32.8337

Behavior Dynamics
rate smokebeh (period 1) 3.8922 ( 1.9689 )
rate smokebeh (period 2) 4.4813 ( 2.3679 )
behavior smokebeh linear shap -3.5464 ( 0.4394 ) -8.0712
behavior smokebeh quadratic shape 2.8464 ( 0.3628 ) 7.8447

Table 3.2: A baseline model

parameters will be higher than the observed number of behavioral changes per actor for two main
reasons: an actor can decide not to make any change when he has the opportunity to change his
behavior; an actor may first increase and then decrease (or vice versa) by one unit his behavior
during the period between two observation moments. Comparing the rate parameters of the net-
work rate functions and the behavioral rate functions we note that the speed at which tie change
occur is higher than the speed at which behavioral change occur.
The interpretation of the parameters of the behavioral objective function is more complex. We
should keep in mind that the behavioral objective function expresses the attractiveness of differ-
ent behavioral levels taking into account the current structure of the network and the behavior of
the other actors. Both the linear and the quadratic shape effects are highly significant (absolute
t-scores > 2). To interpret the parameters it should be noted that all actors’covariates are internally
centered by RSiena, and that the mean values used for the centering are directly provided by the
program. The overall mean value of the smoking behavior is 1.377. In more detail, the smoking
covariate has mean z1 = 1.233 (109 no-smokers, 10 occasional smokers and 10 regular smokers)
at the first measurement point, z2 = 1.388 (100 no-smokers, 8 occasional smokers and 21 regular
smokers) at the second measurement point and z3 = 1.512 (93 no-smokers, 6 occasional smokers
and 30 regular smokers) at the third measurement point. The overall mean of the three observation
points is given by the mean of these values, i.e. z = 1.377. Thus, the centered values for the
smoking covariate are: zi− z =−0.377 for no-smokers, zi− z = 0.623 for occasional smokers and
zi− z = 1.623 for regular smokers.
The contribution to the behavioral objective function by actor i is:

f beh
i (γ,x,z) = γlinear(zi− z)+ γquadratic(zi− z)2 =

=−3.5464linear(zi− z)+2.8464quadratic(zi− z)2

and it is depicted in Figure 3.2
The behavioral objective function is a unimodal preference function, with the maximum/minimum
attained for zi = z− γlinear

2γquadratic
= 1.778. The U-shaped suggests that changes in the behavior are

drawn to the extreme of the range, with actors already low on the behavior to lower values and
actors already high on the behavior to higher values. This result reflects the U-shaped distribution
of the smoking behavior in the pupils’population.
The baseline model does not provide any information about selection and influence processes be-
cause the network dynamics are explained by the preference towards creating and reciprocating
ties and the behavior dynamic are described only by the distribution of the behavior in the popula-
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Figure 3.2: Shape of the behavioral objective function and distribution of the smoking behavior in the
pupils’population

tion. If we want to disentangle the selection and influence effects a more complex model must be
specified. This model should be able to simultaneously represent changes in friendship network
structure and changes in smoking behavior among pupils. Therefore, we consider the following
model specification.
The network objective function is specified according to the final specification of the SAOM pre-
sented in Chapter 2 (Table 2.5). The behavioral objective function includes, besides the baseline
effects, the indegree, outdegree and average similarity effect related to smoking behavior (Ta-
ble 3.5). The choice of the average similarity effect instead of the total similarity effect can be
justified by the (sociological) theory that each pupil is influenced by its own group of friends in
about the same way, so that it is not necessary to take into account the total amount of friends.
Table 3.3 shows the estimates of the parameters. The rate parameters suggest that actors’opportunity
to change their outgoing ties is higher in the first period than in the second period (11 vs. 9 op-
portunities), while actors’opportunity to change their behavior is nearly the same during the two
periods (nearly 4 opportunities).
The estimates for the network objective function parameters leads to the same conclusions of the
model estimated at the end of Chapter 2. The main result is related to the similarity based on
smoking behavior. Controlling for the influence process (i.e. including the behavior dynamics in
the model), the parameter related to the smoking similarity is still positive and significant. Thus,
there is evidence for smoking-based friendship selection.
The parameter estimates of the rate behavioral objective function reveal that the indegree and the
outdegree effects turned out not to be significant contributors to the behavior dynamics (absolute
t-scores ≤ 2). Therefore, the contribution to the behavioral objective function is given by:

γlinear(zi− z)+ γquadratic(zi− z)2 + γavsim
1

xi+

n
∑
j=1

xi j(simz(i j)− simz) =

=−3.3573linear(zi− z)+2.8406quadratic(zi− z)2 +3.4361 1
xi+

n
∑
j=1

xi j(simz(i j)−0.7415)
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Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 10.7166 ( 1.4036 )
constant friendship rate (period 2) 9.0005 ( 0.7709 )
outdegree (density) -2.8435 ( 0.0572 ) -49.6776
reciprocity 1.9683 ( 0.0933 ) 21.1077
transitive triplets 0.4447 ( 0.0322 ) 13.7964
sex ego 0.1612 ( 0.1206 ) 1.3368
sex alter -0.1476 ( 0.1064 ) -1.3871
sex similarity 0.9104 ( 0.0882 ) 10.3244
smoke ego 0.0665 ( 0.0846 ) 0.7857
smoke alter 0.1121 ( 0.0761 ) 1.4719
smokebeh similarity 0.5114 ( 0.1735 ) 2.9479

Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )
behavior smokebeh linear shap -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Table 3.3: A co-evolution model for the analysis of selection and influence mechanisms

Since the behavioral objective function depends not generally on the average behavior of the ac-
tor’s friends, here we present a table only for the special case of actors all whose friend have the
same behavior z j. The result is given in Table 3.4.

z j / zi no occasional regular
1 2.56 -1.82 -0.51
2 0.84 -0.10 1.20
3 -0.88 -1.82 2.92

Table 3.4: Smoking-related contributions to the behavioral objective function

The interpretation of Table 3.4 is that each row corresponds to a given common behavior of the
focal actor’s friends; comparing the different values in the row shows the relative attractiveness of
the different potential values of ego’s own behavior. The row maximum is assumed at the diagonal
for the non-smokers and for the regular smokers. This means that for low and high values of the
common friends’ behavior z j, the focal actor prefers to have the same behavior as all these friends.
The differences in the bottom row is larger than in the top row, indicating that in the case where the
friends do not smoke at all, the preference (or social pressure) toward imitating their behavior is
less strong than in the case where all the friends smoke a lot. The second row of the table suggests
that if all the actor’s friend are occasional smokers, then it is more rewarding for the focal actor to
adjust his behavior towards a higher value of the smoking attitude.
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