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Chapter 1

Introduction

Social network analysis, i. e., the joint analysis of actors and relations among
them, rapidly gains importance in many scienti�c and commercial applica-
tions. Examples range from studies of organizational and communication
networks over to the analysis of Web-based user interaction. Statistical ap-
proaches in social network analysis are applied to model, estimate, and pre-
dict social interaction and behavior based on empirical data. In this course
you will learn mathematical and methodological foundations for modeling
social networks.

Statistical network modeling can yield mathematically precise statements
about uncertainty in social network data. Even under the assumption that a
social network has been collected or measured without any error, it is plau-
sible that the data will be di�erent when we collect it again�at a di�erent
point in time, on a di�erent set of actors, under di�erent environmental fac-
tors, and so on. Thus, we cannot know for sure how the network looks like
when we collect the data again (in reality or hypothetically); instead we
can specify a probability distribution encoding the information that some
network outcomes are just more likely than others. One or several network
observations can in�uence the probability distribution of other networks col-
lected at (real or hypothetical) repetitions of the experiment. A probability
distribution for social networks can serve several purposes: to predict future
network data, to learn rules that govern social processes, or to simply gener-
ate random networks that look like real data. In this lecture we treat several
(families of) probability distributions that are more or less realistic as models
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for social networks. A variable that has an outstanding e�ect on the nature
of the model is time. This lecture is split in two major parts where in the
�rst part we model networks without any time information and in the second
part we model the evolution of networks over time.



Chapter 2

Time-independent Networks

In this chapter, we present and analyze random graph models that are in-
creasingly realistic as models for empirical networks. After an introductory
section in which some concepts from probability theory are revisited, we
present several models of increasing complexity. Statistical properties, such
as the expected values of certain graph characteristics, are derived and we
present algorithms to (e�ciently) sample graphs from these models.

2.1 Preliminaries

In this section we recall some basic de�nitions from probability theory that
are needed later in this chapter.

2.1 De�nition (probability space)
A (�nite) probability space is a pair (Ω, P ), where Ω is a �nite set and
P : Ω → [0, 1] a function satisfying

∑
x∈Ω P (x) = 1. The real value P (x) is

called the probability of x. The probability of a subset X ⊆ Ω is denoted by
P (X) and de�ned by P (X) =

∑
x∈X P (x).

If ϕ is a Boolean condition de�ned on Ω, we often write P (ϕ(x)) instead
of P ({x ∈ Ω : ϕ(x)}). For instance, if Ω = N we write P (x < 100) for
P ({x ∈ N : x < 100}).

2.2 De�nition (random variable)
Let (Ω, P ) be a probability space. A (real-valued) random variable is a
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function X : Ω→ R. The probability that a random variable X takes a real
number x ∈ R is denoted by P (X = x) and de�ned by

P (X = x) = P (X−1(x)) = P ({ω ∈ Ω : X(ω) = x}) .

The function fX : R → [0, 1]; x 7→ P (X = x) is called the probability mass
function of X.

The expectation of a random variable X : Ω→ R is denoted by E(X) and is
de�ned by

E(X) =
∑

x∈X(Ω)

x · P (X = x) ,

where X(Ω) = {X(ω) : ω ∈ Ω} is the set of values of X.

One of the recurrent questions in this chapter is if and how an observed event
(such as the presence of an edge in a network) in�uences the probability of
another event (such as the presence of another edge in the same network).
To make such statements precise, we need the following de�nitions.

2.3 De�nition (independence and conditional probability)
Let (Ω, P ) be a probability space and let A,A′, B ⊆ Ω be three subsets.

• A and A′ are called independent if P (A ∩ A′) = P (A) · P (A′).

• If P (B) > 0, then the conditional probability of A, given B is denoted
by P (A|B) and de�ned by

P (A|B) =
P (A ∩B)

P (B)
.

• If P (B) > 0, then A and A′ are called conditionally independent, given
B if

P (A ∩ A′|B) = P (A|B) · P (A′|B) .

2.2 Random Graph Models

A random graph model is a probability space on a set of graphs.
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2.4 De�nition (random graph model)
A random graph model is a probability space (G, P ), where G is a (�nite) set
of graphs.

2.5 Remark (basic notation)
In this lecture we consider only random graph models (G, P ), where all graphs
in G have the same set of vertices V ; usually V = {1, . . . , n} for a positive
integer n.

The set of dyads is denoted by D and consists of all elements that can be
edges in the respective graph model. For instance, in the case of undirected,
simple, loopless graphs with vertex set V it is

D = {{u, v} : u, v ∈ V, u 6= v}

and in the case of directed, simple, loopless graphs it is

D = V × V \ {(v, v) : v ∈ V } .

In the case of graphs with loops, the �diagonal elements� (v, v) respectively
{v, v} = {v} are included in the set of dyads. The cardinality of D is usually
denoted by M in this lecture.

If no misunderstanding can arise, we denote a dyad connecting the vertices i
and j by ij, both for undirected and directed graphs. In the case of undirected
graphs ij and ji denote the same dyad and we typically write ij (rather than
ji) if i < j. In the case of directed graphs ij and ji are di�erent.

2.6 De�nition (random variable of a random graph model)
A random graph model (G, P ) is associated with a family of random variables

Y = (Yij : G → R)ij∈D ,

de�ned in the following. For a �xed graph G ∈ G the value of the random
variable Yij(G) describes the state of the dyad ij in the graph G. In the case
of simple graphs this value is equal to one if ij is an edge in G and zero else.
In the case of multi-graphs the value Yij(G) is a non-negative integer equal
to the multiplicity of the edge connecting i and j in G.

It is easy to see that a graph G is uniquely described by the family of values
(yij = Yij(G))ij∈D. Therefore, the random graph model is uniquely described
by the joint distribution P (Y ) of Y = (Yij)ij∈D. Here, the joint distribution
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of the family of random variables Y = (Yij)ij∈D is de�ned in the following
way: for a family of real numbers y = (yij ∈ R)ij∈D, the probability that Y
takes the value y is de�ned by

P (Y = y) = P ({G ∈ G : ∀ij ∈ D : Yij(G) = yij}) .

The values (yij = Yij(G))ij∈D can be thought of as the entries of the adjacency
matrix associated with G.

The simplest possible random graph model assigns the same probability to
every graph.

2.7 De�nition (uniform random graph model)
Let n ≥ 1 be a positive integer, let G be the set of undirected, simple, loopless
graphs that have exactly n vertices, and let the mapping P be de�ned by

P : G → R; P (G) =
1

2M
=

1

2
n(n−1)

2

.

Then G(n) = (G, P ) is a random graph model.

Note that P (G) is indeed a real number from the interval [0, 1] and that P
is normalized since ∑

G∈G

P (G) = |G| · 1

2
n(n−1)

2

= 1 .

The last equation holds since the number of graphs in G is equal to the
number of subsets of the set of dyads D. It is |D| = n(n − 1)/2 and thus

|{E ⊆ D}| = 2
n(n−1)

2 .

For two integers i, j with 1 ≤ i < j ≤ n we associate the dyad ij with a
subset of graphs

Gij = {G = (V,E) ∈ G : {i, j} ∈ E} ,

i. e., the set of all graphs that contain ij in their edge set. The probability of

the edge ij is de�ned as the probability of Gij, i. e.,

P ({i, j} ∈ E) = P (Gij) =
∑
G∈Gij

P (G) .
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Likewise, two edges {i, j} and {u, v} are said to be independent if Gij and
Guv are independent, i. e., if

P (Gij ∩ Guv) = P (Gij) · P (Guv) .

The notion of independence of two sets of dyads is made precise in the fol-
lowing de�nition.

2.8 De�nition (independence of sets of dyads)
Let (G, P ) be a random graph model with associated set of dyads D and
let D1 ⊂ D and D2 ⊂ D be two disjoint, non-empty sets of dyads. Then,
D1 is said to be independent of D2 if for all partitions D1 = D+

1 ∪D−1 and
D2 = D+

2 ∪D−2 the subset

GD+
1 ∪D

−
1

= {G ∈ G : D+
1 ⊆ EG and D−1 ∩ EG = ∅}

is independent of

GD+
2 ∪D

−
2

= {G ∈ G : D+
2 ⊆ EG and D−2 ∩ EG = ∅} .

Intuitively, the above de�nition requires that no matter how the dyads in D1

are restricted to be edges or non-edges, the edge-probabilities for elements of
D2 are left unchanged.

With the above notation we can show that edges are mutually independent
in the uniform random graph model G(n).

2.9 Lemma
Let n be a positive integer and let i, j be two integers with 1 ≤ i < j ≤
n. Then, the edge {i, j} is contained in a graph drawn from G(n) with
probability 1/2, independent of any set of dyads.

Proof. The two sets

{(V,E) ∈ G : {i, j} ∈ E} and {(V,E) ∈ G : {i, j} 6∈ E}

have the same cardinality, are disjoint, and their union equals G. Since every
graph has the same probability in G(n), it follows

P ({(V,E) ∈ G : {i, j} ∈ E}) = 1/2 .

The same reasoning applies if any two disjoint subsets D+, D− ⊆ D \ {i, j}
of dyads are �xed and we compute the conditional probability of {(V,E) ∈
G : {i, j} ∈ E}, given D+ ⊆ E (i. e., all dyads in D+ are edges) and given
D− ∩ E = ∅ (i. e., no dyad in D− is an edge). �
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To get a feeling into the properties of graphs sampled from a random graph
model�in particular, to assess whether a random graph model is realistic as
a model for empirical networks�it is often insightful to consider the expec-
tation of certain graph properties. In the following we denote the number of
edges of a graph G ∈ G by m(G).

2.10 Lemma
Let n be a positive integer. The expected number of edges of graphs in G(n)
is

EG(n)[m] =
n(n− 1)

4

and, thus, the expected density of graphs in G(n) equals 1/2.

Proof. Trivially, the number of edges of a graph G = (V,E) can be written
as

m(G) =
∑
e∈D

χe(G) ,

where the characteristic function χe : G → {0, 1} is de�ned by (let EG denote
the edge set of the graph G)

χe(G) =

{
1 if e ∈ EG
0 else.

From the linearity of the expectation it follows that

EG(n)[m] =
∑
e∈D

EG(n)[χe] =
∑
e∈D

P (e ∈ E) · 1 + P (e 6∈ E) · 0 =
1

2

n(n− 1)

2

�

The uniform random graph model G(n) is very unsatisfactory as a model for
empirical networks. For instance, it is typically observed that the density of
networks tends to zero when the number of vertices increases. (Many more
arguments could be given that G(n) does not realistically model empirical
networks.) A random graph model that allows to control the expected density
is de�ned in the following section.
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2.3 G(n, p)

2.11 De�nition (G(n, p))
Let n be a positive integer and p be a real number from the interval [0, 1]. The
random graph model G(n, p) on the set of undirected simple, loopless graphs
with exactly n vertices is induced by de�ning that each dyad {u, v} ∈ D is
an edge with probability p, independently on any set of dyads that does not
contain {u, v}.

2.12 Remark
1. In this section, let q = 1− p denote the probability of a non-edge. To

exclude trivial cases, we assume that p is neither zero nor one.

2. The model G(n, p) is equivalently speci�ed by de�ning the probability
of a graph G as

P (G) = pm(G)q
n(n−1)

2
−m(G) .

This follows by multiplying the probabilities for edges and non-edges,
respectively, over all dyads. (Multiplication is valid since edge-probabilities
are by de�nition independent in this model; see Lemma 2.13 below.)

3. The uniform random graph model from the previous section is identical
with G(n, 1

2
).

4. The expected density in the model G(n, p) is equal to p. Consequently,
the expected degree of any vertex is p ·(n−1) and the expected number

of edges is p · n(n−1)
2

. This follows by the same techniques as for the
G(n) model in Lemma 2.10.

5. Sequences of random graph models G(n, pn) with growing number of
vertices that are sparse with constant expected degree can be generated
by choosing pn ∈ Θ(1/n).

2.13 Lemma
Let n ≥ 1, p ∈ [0, 1], and q = 1−p. The probability of a graph G with m(G)
edges in G(n, p) is

P (G) = pm(G)q
n(n−1)

2
−m(G) .
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Proof. Let D be the set of dyads and EG be the set of edges of G. It is

{G} =
⋂
d∈EG

Gd ∩
⋂

d∈D\EG

Gd .

Since every dyad is independent of every set of dyads, the probability of
an intersection of subsets is equal to the product of the probabilities of the
individual subsets. In particular,

P (G) = P ({G})

= P

 ⋂
d∈EG

Gd ∩
⋂

d∈D\EG

Gd


=

∏
d∈EG

P (Gd) ·
∏

d∈D\EG

P (Gd)

=
∏
d∈EG

p ·
∏

d∈D\EG

q

= pm(G)q
n(n−1)

2
−m(G) .

�

2.3.1 Generating Graphs from G(n, p)

We now turn to the algorithmic question of generating graphs from G(n, p).
This means that we want to design a probabilistic algorithm returning at each
call a graph from G such that, for any graph G ∈ G, the probability that G
is returned by the algorithm is equal to the probability of G in G(n, p). We
assume that probabilistic algorithms can rely on random number generators.
Apart from the values returned by the random number generator, all other
steps in the algorithm are deterministic.

A naïve algorithm to generate graphs from G(n, p) iterates over all dyads,
generates for each dyad a (uniformly and independently distributed) random
number r ∈ [0, 1], and inserts the dyad in the edge set if r ≤ p. The runtime
of this algorithm is in Θ(n2) independent of p. In particular, if p is decreasing
with growing n and, thus, the generated graphs are sparse in expectation,
then the runtime is asymptotically larger than the expected graph size.
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To get an idea about how an e�cient algorithm can be designed, we review
the abovementioned naïve algorithm in an informal manner. Let p be a
probability close to zero, e. g., p = 1/1000. The naïve algorithm iterates
over all dyads d1, . . . , dM and asks for each dyad di the random number
generator: is di an edge? getting most of the times the answer no (which
can be interpreted that the e�ort was wasted). On average, the answer is yes
only once in a thousand questions. Clearly, this is very ine�cient.

It would be much more clever to ask the random number generator what is
the index of the next dyad that becomes an edge? Then, only Θ(m) questions
have to be asked if m is the number of edges of the generated graph. Im-
portant question: can this be done in a way that each graph has exactly the
probability as in G(n, p)?

A simple observation is that, at each step of the naïve algorithm, the next
dyad that becomes an edge is preceeded by exactly k non-edges with prob-
ability qkp. Thus we have to generate the number k of failed trials with
probability qkp using only one call to the random number generator. To
achieve this, we associate each k = 0, 1, . . . with a subinterval Ik ⊂ [0, 1]
of length qkp such that these intervals are pairwise disjoint and their union
equals [0, 1]. This is achieved by de�ning Ik to be the interval ranging from∑k−1

i=0 pq
i to

∑k
i=0 pq

i, if k > 0 and I0 = [0, p] (also compare the following
drawing).

0 1p

I0

p+ qp

I1 I2 I3 . . .

The union of the Ik indeed equals [0, 1], since

∞∑
k=0

qkp = p ·
∞∑
k=0

qk = p · 1

1− q
= 1 .

For a random number r ← random([0, 1]), we need to determine the interval
containing r. Note that the interval Ik ends at

k∑
i=0

qip = p ·
k∑
i=0

qi = p · 1− qk+1

1− q
= 1− qk+1 .
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Thus, for a random number r ← random([0, 1]) we need to compute the min-
imum k such that Ik ends after r. The following inequalities are equivalent.

r < 1− qk+1

qk+1 < 1− r
(k + 1) log q < log(1− r)

k >
log(1− r)

log q
− 1

(For deriving the last inequality, note that log q < 0. Furthermore, note that
the probability P (r = 1) = 0 so that we can safely assume that r is not equal
to one and, hence, log(1− r) is well-de�ned.)

Thus we leave out k =
⌊

log(1−r)
log q

⌋
dyads and insert the k+ 1 dyad in the edge

set. Since we draw r from the uniform distribution on [0, 1] we can as well
take log r instead of log(1− r).

Algorithm 1: Generating a graph from G(n, p)

input : number of nodes n ∈ N≥1, edge-probability 0 < p < 1
output: graph G = ({0, . . . , n− 1}, E)

E ← ∅
c← 1

log(1−p)
v ← 1; w ← −1
while v < n do

r ← random([0, 1])
w ← w + 1 + bc · log rc
while w ≥ v and v < n do

w ← w − v; v ← v + 1

if v < n then E ← E ∪ {{v, w}}
return G

The follwing image illustrates the use of the indices v and w. If w gets larger
than or equal to v, then w is successively reduced by v and v is incremented
by one in the second while loop.
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0

v w

n− 1

0 n− 1

2.14 Theorem
Let n be a positive integer, p from the open, real interval (0, 1), m ∈
{0, . . . , n(n−1)

2
} and G = ({0, . . . , n − 1}, E) an undirected, simple, loopless

graph with exactly m edges. Then with probability

P (G) = pmq
n(n−1)

2
−m

i. e., with the probability of G in G(n, p), Algorithm 1 returns G. In this
case Algorithm 1 runs in O(n+m) time and uses exactly m+ 1 calls to the
random number generator.

Proof. Without loss of generality, assume that the (undirected) dyads are
represented by pairs of vertices (v, w) such that v < w. Using this repre-
sentation, the dyads are enumerated (starting from one) in lexicographical
ordering (�rst by v, then by w). This ordering of dyads induces also an or-
dering of the edges of the graph G. For i = 1, . . . ,m let ki be the number
of consecutive non-edges just before the ith edge in G. (More precisely, ki is
the number of dyads between the (i − 1)th and ith edge, if i > 1 and it is
the number of dyads before the �rst edge, if i = 1.) Furthermore, let km+1

be the number of non-edges after the last edge in G. Algorithm 1 generates
G if and only if the following conditions are satis�ed.

1. For all i = 1, . . . ,m, the random number generator returns in the
ith iteration of the outer while loop a random number r such that⌊

log r
log(q)

⌋
= ki.
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2. For i = m+1 the random number generator returns in the ith iteration

of the outer while loop a random number r such that
⌊

log r
log(q)

⌋
≥ ki.

The condition for i = 1, . . . ,m is satis�ed with probability pqki (compare the
derivation of the algorithm). The condition for i = m + 1 is satis�ed with
probability qkm+1 . To see this note that the probability of drawing a random

number r such that
⌊

log r
log(q)

⌋
≥ ki is

∞∑
j=ki

pqj =
∞∑
j=0

pqj −
ki−1∑
j=0

pqj = 1− (1− qki) = qki .

Since the random numbers are independent, it follows that the conditions
are simultaneously satis�ed for i = 1, . . . ,m+ 1 with probability

qkm+1

m∏
i=1

pqki = pmq
∑m+1

i=1 ki = pmq
n(n−1)

2
−m .

Thus, the probability of generating G is equal to the probability of G in
G(n, p).

Furthermore, if Algorithm 1 generates G, then the outer while loop is exe-
cuted exactly m+ 1 times, implying that exactly m+ 1 random numbers are
generated. During the whole runtime of the algorithm, the second while loop
is called n times (since each time v is increased by one). Together it follows
that the runtime is in O(n+m). �

2.3.2 Statistical Inference of the Edge Probability

In this section we treat the following task: suppose that we are given a graph
G of which we know that it is generated from some G(n, p) of which we do
not know the parameter p. Can we infer p from G? To exclude trivial cases,
assume that G is neither empty nor complete.

From a certain point of view it is impossible to infer p with certainty since
G has a positive probability in G(n, p) for any p that lies between zero and
one. Thus, we have to be more speci�c about what is meant by �inferring
p.� The speci�cation of the �most likely� value for p that we adopt here
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is derived from the so-called maximum likelihood principle (see, e. g., [9]).
We determine p̂ such that the probability of the given graph G in G(n, p̂) is
maximized over all p ∈ [0, 1]. We give the following more general de�nition
applying to random graph models that are parameterized by a real parameter
vector θ.

2.15 De�nition (maximum likelihood)
Let (G, Pθ) be a family of random graph models parameterized by a k-
dimensional vector of parameters θ ∈ Θ ⊆ Rk and letGobs ∈ G be a particular
graph, called observation. The function

L : Θ→ R; θ 7→ Pθ(Gobs)

mapping a parameter vector θ to the probability of Gobs in the model de�ned
by Pθ is called likelihood. A parameter vector θ̂ maximizing L, i. e.,

θ̂ = arg max
θ
L(θ)

is called a maximum likelihood estimate (MLE) of θ.

In the case of the G(n, p) model we have a one-dimensional parameter vector,
denoted by p ∈ [0, 1]. Given an observed graph Gobs (which is assumed to be
neither empty nor complete) it is indeed quite simple to �nd the maximum
likelihood estimate for p. Assume that Gobs has exactly m edges. Then the
associated likelihood is

L(p) = Pp(Gobs) = pm(1− p)M−m

where M is the number of dyads, i. e., M = n(n−1)
2

.

Taking the �rst derivative of L with respect to p yields

L′(p) = m · pm−1 · (1− p)M−m − pm · (M −m) · (1− p)M−m−1 .

Searching for p in the open interval (0, 1) such that L′(p) = 0 yields

m · pm−1 · (1− p)M−m = pm · (M −m) · (1− p)M−m−1

m · (1− p) = p · (M −m)

m− pm = pM − pm
m

M
= p
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so that L(p) can take its only extremal point within the open interval (0, 1)
at p̂ := m

M
, i. e., at the ratio of the observed number of edges over the number

of dyads. Since L(0) = L(1) = 0, L(p) > 0 for p ∈ (0, 1), [0, 1] is a compact
set, and L is continuous, we conclude that L(p) assumes a maximum at p̂.

Maximum likelihood estimation becomes more insightfull (but also more dif-
�cult) for the exponential random graph models, later introduced in this
chapter. There, parameter estimates serve to test social science hypotheses
(such as homophily or transitivity) on given empirical network data.

2.3.3 Distribution of Degrees in G(n, p)

We noted already that the expected degree EG(n,p)[d(v)] of any vertex v is
equal to p(n − 1). Additionally, it is interesting to look at the distribution
of degrees, i. e., how likely is it that the degree of a particular vertex equals
a given number (which might be di�erent from the expected degree).

2.16 Theorem
1. Let n ≥ 1, p ∈ [0, 1], and k ∈ {0, . . . , n − 1}. The probability that a

given vertex v has degree equal to k in a graph drawn from G(n, p) is

P (dG(v) = k) =

(
n− 1

k

)
· pkqn−1−k

2. Let λ be a positive real number, let for n ≥ λ + 1 a sequence of edge
probabilities pn ∈ [0, 1] be de�ned by

pn =
λ

n− 1

and let k ∈ N0.

Further, let Pn(d(v) = k) denote the probability that a given vertex v
has degree equal to k in a graph drawn from G(n, pn). Then it is

lim
n→∞

Pn(d(v) = k) = e−λ · λ
k

k!
.

Proof. For the �rst claim, note that there are exactly
(
n−1
k

)
di�erent neigh-

borhoods of v that have cardinality k. Each of them has probability pkqn−1−k.
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For the second claim de�ne qn = 1−pn and note that it is su�cient to consider
the probability Pn(d(v) = k) only when n ≥ k+1. Then, Pn(d(v) = k) equals(

n− 1

k

)
· pknqn−1−k

n =
(n− 1)!

k!(n− 1− k)!
· pkn(1− pn)n−1−k

=
(n− 1)!

(n− 1− k)!(1− pn)k
· p

k
n

k!
· (1− pn)n−1

=
(n− 1)!

(n− 1− k)!(1− pn)k(n− 1)k
·

(n− 1)kpkn
k!

·
(

1− λ

(n− 1)
· (n− 1)pn

λ

)n−1

The �rst factor converges for n→∞ to one, the second to λk

k!
, and the third

to e−λ. �

2.4 Preferential Attachment

The random graph model G(n, p) has not been designed to model empirical
networks (rather it turned out to be very helpful for proo�ng the existence
of certain combinatorial objects in graphs, see [1]). Nevertheless, researchers
started to point out that it is indeed a poor model for real-world networks.
For instance, Theorem 2.16 shows that if pn decays linearly in n, then the de-
gree distribution in graphs from G(n, pn) approximates a Poisson-distribution
when n tends to in�nity. In particular, the probability that a graph from
G(n, pn) has any node with a degree much larger than the average degree
is vanishing. Figure 2.1 shows the histogram of 107 random draws from a
poison distribution P (k) = e−λ · λk

k!
with λ = 10. One can see that the prob-

ability mass is highly centered around the mean and larger values become
rapidly very unlikely. The maximal observed value is 30 which has been
drawn four times out of ten million. In contrast it has been observed that
many empirical networks contain some nodes whose degrees are much higher
than the average degree.

More speci�cally, it has been claimed that empirical degree distributions
often resemble a power-law, i. e.,

P (d(v) = k) ≈ c · 1

kγ
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Figure 2.1: Histogram of 107 random draws from a poison distribution
P (k) = e−λ · λk

k!
with λ = 10.

for constants c, γ > 0. In such distributions, it is likely that a few nodes have
degrees that are much higher than the average degree.

Therefore, e�orts have been made to design random graph models that yield
a power-law degree distribution. One idea for such a model comes from
Barabási und Albert [2]. Roughly, they de�ned a generative model where
vertices are successively added to the network, where the newly introduced
vertices create a �xed number of edges to already existing vertices, and where
the probability of forming an edge to a particular node v is proportional to
the degree of v. Thus, a high-degree vertex is more popular with respect
to incomming edges and the vertices entering the network have a preference
towards creating edges to popular nodes. Barabási and Albert provide exper-
imental evidence that such a process generates random graphs whose degree
distribution is approximately a power-law with exponent γ ≈ 3.
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However, the description of the random graph model in Barabási and Albert
was claimed to be �rather imprecise [4]� and a more precise model, imple-
menting the ideas of the preferential attachment model, was proposed.

2.17 De�nition (preferential attachment [4])
For n ∈ N≥1 a random graph model for directed multi-graphs with loops
having exactly n vertices, denoted by GPn1 = (G, Pn), is recursively de�ned
as follows. For a multi-graph G = ({1, . . . , n + 1}, E) let G′ denote the
subgraph of G induced by the vertices 1, . . . , n. Then Pn+1 is de�ned by

Pn+1(G) =


0 if d+

G(n+ 1) 6= 1 oder m(G)−m(G′) 6= 1

Pn(G′) · dG′ (v)

2n+1
if (n+ 1, v) ∈ E, v ≤ n

Pn(G′) · 1
2n+1

if (n+ 1, v) ∈ E, v = n+ 1 .

For n = 1 the probability P1(G) of a graph G with exactly one vertex is set
to one if G is the (unique) directed multi-graph with exactly one edge and
P1(G) is set to zero if the number of edges in G is not equal to one.

Let additionally b be a positive integer. Then the random graph model GPnb
is de�ned as follows. To generate a graph G with n vertices and nb edges
from GPnb �rst a graph G′ is drawn from GPnb1 ; then repeatedly b successive
vertices of G′ are contracted to one vertex of G. More precisely, a vertex
i : (0 ≤ i ≤ n− 1) of G is the contraction of vertices ib, . . . , ib+ b− 1 of G′.

Note that all graphs that get a positive probability in GPnb have the same
number of edges. Hence, only a �nite number of graphs get a positive prob-
ability. Since graphs with probability equal to zero can be left out without
loosing any interesting information, the GPnb model can still be treated as a
�nite probability space.

For the following algorithm to generate graphs from GPnb we use a random
number generator that draws (uniformly and independently) integers from
{0, . . . , r}. The idea of the following algorithm is to record each edge by
its two endpoints in an array A. The endpoints of the ith edge (where the
counting is assumed to start at zero) are recorded in the 2ith and 2i + 1th
entry of A, respectively. Thus, at each stage of the algorithm the current
degree of a vertex is equal to its number of occurrences in A. This last-
mentioned property facilitates choosing the targets of edges with the correct
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probability, i. e., proportional to their degree.

Algorithm 2: Generation of a graph from GPnb
input : number of nodes n ∈ N0, out-degree b ∈ N≥1

data : array A[0 . . . 2nb− 1]
output: multi-graph G = ({0, . . . , n− 1}, E)

E ← ∅
m← 0

foreach v = 0, . . . , n− 1 do
foreach j = 0, . . . , b− 1 do

A[2m]← v
w ← A[random({0, . . . , 2m})]
A[2m+ 1]← w
E ← E ∪ {(v, w)}
m← m+ 1

Algorithm 2 generates a directed multi-graph G = (V,E) with n vertices and
m = nb edges with probability as speci�ed in GPnb . It uses O(n + m) time
and space and draws exactly m random numbers.

The following theorem (which we note without proof) shows that the distri-
bution of in-degrees follows approximately a power-law with exponent equal
to three�at least up to degree equal to n

1
15 .

2.18 Theorem ([4])
For a, b ∈ N let δ be de�ned by

δ(a, b) =
2b(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)
.

For n, a, b ∈ N≥n with 0 ≤ a ≤ n
1
15 and ε ∈ R>0 it holds in the model GPnb

that

P

(
(1− ε) · δ(a, b) ≤ |{v ∈ Vn : d−G(v) = a}|

n
≤ (1 + ε) · δ(a, b)

)
−→
n→∞

1
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2.5 Exponential Random Graph Models

From a certain point of view, the preferential attachment model is a better
model for social networks than the G(n, p) model. For instance, it can gener-
ate graphs whose expected degree distributions resemble those of empirical
networks more closely. On the other hand, the preferential attachment model
cannot reproduce other structural properties that are commonly observed in
empirical data, such as transitivity or homophily. Rather than trying to
augment network models by adding more and more structural features, we
go the opposite way: we �rst de�ne a class of random graph models that is
very general and then restrict this generality in such a way that the model
becomes tractable and can still reproduce important structural traits.

Exponential random graph models (ERGMs) are a class of random graph
models whose underlying probability functions have a speci�c form. Infor-
mally, a concrete random graph model belonging to the ERGM class can be
de�ned by specifying two components.

1. A set of network characteristics (called statistics) that determine the
probability of a graph. Network statistics describe properties of the
network such as density, occurrence of high-degree vertices, number of
triangles, etc. An ERGM with a �xed set of statistics is still a model
class that is parameterized by a real parameter vector.

2. Given a set of statistics, the parameters determine which of the net-
work properties measured by these statistics increase or decrease (or
have no in�uence on) the probability of a network. Parameters can be
chosen to obtain a random graph model that incorporates certain struc-
tural features or parameters can be inferred from an observed empirical
network.

In this section, let G denote the set of undirected, simple, loopless graphs
with exactly n vertices.

2.19 De�nition
The class of exponential random graph models (ERGM) consists of random
graph models that assign a graph G ∈ G a probability of the form

Pθ(G) =
exp

(∑k
i=1 θi · gi(G)

)
κ(θ)
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where

• the θi ∈ R (i = 1, . . . , k) are real numbers, called parameters;

• the gi : G → R (i = 1, . . . , k) are real-valued functions de�ned on
graphs, called statistics;

• the normalizing constant κ is de�ned by

κ(θ) =
∑
y∈G

exp

(
k∑
i=1

θi · gi(y)

)
.

Note that κ ensures that P is normalized, i. e.,
∑

G∈G Pθ(G) = 1.

2.20 Remark
We remind that the above formula de�nes a model class rather than a random
graph model. A concrete model is de�ned by specifying k, (g1, . . . , gk), and
(θ1, . . . , θk) .

• The set of statistics (g1, . . . , gk) (and, thus, also the value for k) is
typically chosen by the researcher, e. g., motivated by social science
theory or motivated by the hypotheses that are to be tested.

• The parameters are either chosen in order to specify a random graph
model with the desired structural features, or they are inferred from an
observed empirical network.

• Inference of parameters means that for a �xed choice of statistics (g1, . . . , gk)
and a given empirical network (the observation) the parameters (θ1, . . . , θk)
are estimated by statistical methods such that the resulting model �ts
in a best-possible manner to the observation. What is meant by �best-
possible� is usually speci�ed by the maximum likelihood principle (see
Def. 2.15).

• The fact whether estimated parameters are (signi�cantly) positive or
negative provides answers to empirical questions about structural trends
in the network, such as reciprocity, transitivity, homophily, preferential
attachment, etc.
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2.21 Example (network statistics)
Many commonly used statistics count the number of speci�c subgraphs (called
con�gurations) in the network. The following statistics are of this type. Let
G denote the set of undirected, simple, loopless graphs on the vertex set
V = {1, . . . , n} and let G ∈ G.

• The set of edges of G is denoted by E(G). The associated statistic
m(G) = |E(G)|, thus, counts the number of edges in the network. If
m(G) is associated with a positive parameter, then graphs with more
edges have higher probability. Conversely, if m(G) is associated with a
negative parameter, then graphs with less edges have higher probability.
The statistic m(G) is typically included in every reasonable ERGM
(for an argument supporting this rule, see the Hammersley-Cli�ord
Theorem 2.31).

• For k ∈ {2, 3, . . . , n − 1} the set of k-stars of G is denoted by Sk(G)
and de�ned by

Sk(G) = {(u, {v1, . . . , vk}) : 1 ≤ u ≤ n,

1 ≤ v1 < v2 < · · · < vk ≤ n,

∀i = 1, . . . , k : vi 6= u, and

∀i = 1, . . . , k : {u, vi} ∈ E }

Note that if 2 ≤ k ≤ ` ≤ n − 1, then an `-star contains
(
`
k

)
k-stars.

The associated k-star statistic sk is denoted by sk(G) = |Sk(G)|.
Informally, a positive parameter associated with a k-star statistic im-
plies a tendency to create edges to vertices that already have a high
degree. Conversely, if a k-star statistic is associated with a negative
parameter, then this implies a reluctance to create edges to high-degree
vertices.

• The set of triangles of G is denoted by T (G) and de�ned by

T (G) = {{u, v, w} : 1 ≤ u < v < w ≤ n,

{u, v} ∈ E, {v, w} ∈ E, {w, u} ∈ E } .

The associated triangle statistic t(G) is de�ned by t(G) = |T (G)|.
Informally, a positive parameter associated with the triangle statistic
implies a tendency to create edges between vertices that have common
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neighbors. For instance, if the edges encode friendship, then a friend
of a friend of a vertex v has a higher probability to become v's friend.
Conversely, if the triangle statistic is associated with a negative pa-
rameter, then this implies a reluctance to create edges between vertices
with common neighbors.

The following lemma clari�es that the G(n, p) model is a member of the
ERGM class.

2.22 Lemma
If the edge probability p is neither zero nor one then G(n, p) is identical to
the ERGM de�ned by

P1(G) =
exp (θ ·m(G))

κ(θ)

with θ = log
(

p
1−p

)
.

Proof. Let P2 denote the probability function of the G(n, p) model. It is

P2(G) = pm(G) · (1− p)(
n
2)−m(G)

=

(
p

1− p

)m(G)

· (1− p)(
n
2)

= exp [θ ·m(G)] · (1− p)(
n
2)

Note that both the values (1 − p)(
n
2) and 1

κ(θ)
are independent of G (rather

they are properties of the graph model). Thus, P1(G)
P1(G′)

= P2(G)
P2(G′)

for any two

graphs G, G′.

This implies that for arbitrary but �xed G′ it is∑
G∈G

P1(G) =
∑
G∈G

P2(G) · P1(G′)

P2(G′)

1 = 1 · P1(G′)

P2(G′)

Hence, P1(G′) = P2(G′). �
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2.5.1 Generating Graphs from an ERGM

This section presents a probabilistic algorithm to generate graphs from a
completely speci�ed ERGM (i. e., an ERGM with �xed statistics and pa-
rameters). The generation of random graphs from ERGMs is much more
complicated than the generation of graphs from the G(n, p) model (where
edges are independent and, thus, can be created in an arbitrary order) or
the generation of graphs from the preferential attachment model (which is
actually de�ned by its generating algorithm).

The generation of graphs from a given ERGM (G, P ) is done via a Markov
chain simulation. Informally, the yet-to-be-de�ned Markov chain speci�es
transition probabilities to move from one graph in G to another in a such
way that, when run in�nitely long, the relative number of times that the
Markov chain is on a given graph G equals the probability of G in (G, P ).

Thus, to generate a graph from an ERGM one has to simulate the Markov
chain for a large number of time-steps and then return its current state.

2.23 De�nition (Markov chain)
Let G = {G1, . . . , GN} be a set of graphs. A (stationary) Markov chain on G
is a sequence of random variables (Y (t))t∈N, each taking values in G, with the
property that for all t ∈ N and all sequences of graphs (G(0), . . . , G(t−1), G′, G) ∈
Gt+2 it is

P (Y (t+1) = G|Y (0) = G(0), . . . , Y (t) = G′) = P (Y (1) = G|Y (0) = G′) .

In words, the conditional probability distribution of Y (t+1), given Y (t), is inde-
pendent of t (the stationarity condition) and independent of the realizations
of the random variables Y (0), . . . , Y (t−1) (the Markov condition).

For two graphs Gi, Gj ∈ Y , the transition probability of a Markov chain to
move from Gi to Gj is denoted by

πij = P (Y (1) = Gj|Y (0) = Gi) .

2.24 De�nition (stationary distribution)
Let π be the matrix of transition probabilities of a Markov chain on a set
of graphs G = {G1 . . . , GN}. A probability distribution P on G is called
stationary if for all j it is P (Gj) =

∑N
i=1 P (Gi)πij.
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Note that P is stationary if and only if (with P = [P (G1) . . . P (GN)] ∈ RN

written as a row vector) it is

P = Pπ ,

i. e., P is an eigenvector of π with eigenvalue one.

2.25 De�nition (irreducible, aperiodic)
A Markov chain on G with transition probabilities π is associated with a
directed graph (G, E) whose vertices are the states and where

(Gi, Gj) ∈ E ⇐⇒ πij > 0 .

The Markov chain is called

• irreducible if (G, E) is strongly connected;

• aperiodic if the greatest common divisor of all cycles in (G, E) equals
one.

The following theorem shows how the transition matrix can be de�ned such
that the probability distribution on a set of graphs converges to a given
distribution.

2.26 Theorem
Let π be the transition matrix of a Markov chain on G. If a probability
distribution P on G satis�es for all graphs Gi, Gj ∈ G

P (Gi)πij = P (Gj)πji

(Markov chain is then called reversible) and the Markov chain is irreducible
and aperiodic, then P is the unique stationary distribution of the Markov
chain and for any initial distribution P ′ it is

lim
K→∞

P ′πK = P .

Proof. Note that the matrix π satis�es the conditions of the Perron-
Frobenius theorem. We show that

• the spectral radius ρ of π is one;
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• P is an eigenvector of π with eigenvalue one.

Let Gi ∈ G, then

N∑
j=1

P (Gj)πji =
N∑
j=1

P (Gi)πij = P (Gi)

(where the latter equation holds since the rows of π sum up to one). Thus,
P and π satisfy the matrix equation Pπ = P , i. e., P is an eigenvector of π
with eigenvalue one.

Now, let x be an eigenvector of π with eigenvalue ρ (the spectral radius of
π). For all j it is ρxj =

∑N
i=1 xiπij. Thus

ρ
N∑
j=1

xj =
N∑
j=1

ρxj =
N∑
j=1

N∑
i=1

xiπij

=
N∑
i=1

N∑
j=1

xiπij =
N∑
i=1

xi

N∑
j=1

πij =
N∑
i=1

xi

Since all entries of x have the same sign it is in particular
∑N

i=1 xi 6= 0. Thus,
it must be ρ = 1. �

The transition probabilities are not uniquely determined by the condition
of reversibility which leaves some freedom in specifying the Markov chain.
One established speci�cation of the transition probabilities π is called Gibbs
sampling (compare [8]). The transition probability to jump from graph Gi

to Gj is de�ned to be

• πij = 0 if Gi and Gj di�er in more than one dyad;

• if Gi and Gj di�er in exactly one dyad, then

πij =
P (Gj)(

n
2

)
(P (Gi) + P (Gj))

=
exp

(∑k
`=1 θ`g`(Gj)

)
(
n
2

)
exp

(∑k
`=1 θ`g`(Gi)

)
+ exp

(∑k
`=1 θ`g`(Gj)

) .
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• πii =
∑ P (Gi)

(n
2)(P (Gi)+P (G))

where the sum goes over all G that di�er from

Gi in exactly one dyad.

Note that the computation of the transition probabilities does not require
the computation of the normalizing constant κ.

2.27 Theorem
The matrix of transition probabilities π de�ned by Gibbs sampling is normal-
ized and leads to a Markov chain that is irreducible, aperiodic, and reversible.

Proof.

1. π is normalized since for all i = 1, . . . , N it is (let the summation index
G range over all graphs that di�er from Gi in exactly one dyad)

N∑
j=1

πij =
∑
G

P (Gi)(
n
2

)
(P (Gi) + P (G))

+
∑
G

P (G)(
n
2

)
(P (Gi) + P (G))

=
∑
G

P (G) + P (Gi)(
n
2

)
(P (Gi) + P (G))

= 1 .

2. The so-de�ned Markov chain is irreducible since every graph Gi can
be transformed into every other graph Gj by successively reverting all
dyads in which Gi di�ers from Gj. Since all of these dyad changes have
a positive probability, there is a path going from Gi to Gj in the graph
associated with the Markov chain.

3. The Markov chain is aperiodic since its associated graph contains all
loops and therefore the greatest common divisor of all cycles can only
be one.

4. The Markov chain is reversible since for all i, j = 1, . . . , N it is

πij
πji

=
P (Gj)(P (Gi) + P (Gj))

P (Gi)(P (Gi) + P (Gj))
=
P (Gj)

P (Gi)
.

�
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2.5.2 Markov Random Graphs

The Markov random graphs [5] are a sub-class of the ERGM class. Markov
random graphs are de�ned by specifying that the random variables associated
with two dyads ij and uv are conditionally independent (given the realization
of all other dyads) unless they have a vertex in common. Before we give a
formal de�nition we �rst introduce the concept of a dependence graph.

2.28 De�nition (dependence graph)
Let Z = (Z1, . . . , Zm) be a family of discrete random variables with a �nite
range and let M = {1, . . . ,m} be the index set. The dependence graph
D = (M,E) of Z has vertex setM and edge set E consisting of all unordered
pairs {i, j} of indices such that Zi and Zj are conditionally dependent, given
the rest of Z, i. e., given the values of all Z` for ` 6= i, j.

2.29 Remark (dependence graph of a random graph)
The dependence graph D of a random graph (G, P ) has as vertices all dyads
of G and two dyads {i, j} and {u, v} are connected by an edge in D if Yij
and Yuv are conditionally dependent, given all other dyads, i. e., all dyads Yrs
with {r, s} 6= {i, j} and {r, s} 6= {u, v}.

2.30 De�nition (Markov graph)
Let G = (G, P ) be a random graph, where the underlying graph class G has a
common set of vertices V = {1, . . . , n}. G is called a Markov random graph
if for all four pairwise di�erent vertices i, j, u, v ∈ V , the unordered pair of
dyads {{i, j}, {u, v}} is not an edge in the associated dependence graph, i. e.,
Yij and Yuv are conditionally independent, given the rest of the graph.

From the de�nition of Markov random graphs, it is not obvious that they
can be expressed as ERGMs. However, the next theorem states that this is
true.

2.31 Theorem (Hammersley-Cli�ord [3, 6]; special case)
Let (G, P ) be a random graph satisfying P (G) > 0 for all G ∈ G and let
D denote the set of dyads of the graphs in G. If D denotes the dependence
graph of (G, P ), then, there are constants {αA ∈ R : A ⊆ D}, associated
with subsets A of D, satisfying αA = 0 if A is not a clique in D, such that
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the probability P (G) of each G ∈ G can be written as

P (G) =
1

κ
exp

 ∑
A⊆E(G)

αA

 , where (2.1)

κ =
∑
G′∈G

exp

 ∑
A⊆E(G′)

αA

 . (2.2)

Conversely, if the probability P on G is de�ned by (2.1) and (2.2), then
two dyads d1 and d2 are independent unless there is a subset A ⊆ D with
d1, d2 ∈ A and αA 6= 0.

Note that a set consisting of only one dyad is always a clique in the depen-
dence graph. For the proof of the Hammersley-Cli�ord Theorem we need the
following theorem.

2.32 Theorem (Möbius inversion theorem [7])
Let S be a �nite set and

f : P(S)→ R; g : P(S)→ R;

two functions de�ned on the set of subsets of S.

Then, for all subsets A ⊆ S it is

f(A) =
∑
B⊆A

g(B)

if and only if for all subsets A ⊆ S it is

g(A) =
∑
B⊆A

(−1)|A\B|f(B) .

We turn to the proof of the Hammersley-Cli�ord Theorem.

Proof. The following proof is adapted from [6].

For a set of dyads B ⊆ D de�ne GB ∈ G to be the graph (on the same �xed
set of vertices) whose edge set is equal to B.
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We �rst note that two dyads d, d′ ∈ D that are not adjacent in the dependence
graph D satisfy for any subset A ⊂ D with d 6∈ A and d′ ∈ A the equation

P (GA∪{d})

P (GA) + P (GA∪{d})
=

P (GA∪{d}\{d′})

P (GA\{d′}) + P (GA∪{d}\{d′})
. (2.3)

(This is a direct formulation of d and d′ being conditionally independent.)
From (2.3) it can be derived that for two conditionally independent dyads
d, d′ ∈ D and all subsets B ⊂ D with d, d′ 6∈ B it is

P (GB∪{d,d′})

P (GB∪{d′})
=
P (GB∪{d})

P (GB)
. (2.4)

De�ne Q : G → R by setting for G ∈ G

Q(G) =
∑

B⊆E(G)

(−1)|E(G)\B| logP (GB) . (2.5)

Let G ∈ G and A ⊆ E(G). Then, it follows from (2.5) that

Q(GA) =
∑
B⊆A

(−1)|A\B| logP (GB) . (2.6)

For A ⊆ E(G), we claim that Q(GA) = 0 unless A is a clique in D. To show
this, assume that A is not a clique in D, i. e., A contains two dyads d, d′ ∈ D
which are conditionally independent, given all other dyads. Then, by (2.6)
it is

Q(GA) =
∑
B⊆A

d,d′∈B

(−1)|A\B| logP (GB) +
∑
B⊆A

d∈B, d′ 6∈B

(−1)|A\B| logP (GB)

+
∑
B⊆A

d 6∈B, d′∈B

(−1)|A\B| logP (GB) +
∑
B⊆A

d,d′ 6∈B

(−1)|A\B| logP (GB)

=
∑

B⊆A\{d,d′}

(−1)|A\B| log

(
P (GB∪{d,d′})

P (GB∪{d′})

/
P (GB∪{d})

P (GB)

)
= 0 ,

where the last equality follows from (2.4).
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From (2.6), which holds for all A ⊆ E(G) we can derive from the Möbius
inversion theorem that for all A ⊆ E(G) it is

logP (GA) =
∑
B⊆A

Q(GB) . (2.7)

In particular, if we set A = E(G) in (2.7) we get

P (G) = P (G∅) exp

 ∑
K⊆E(G)

K∈Cliques(D)

Q(GK)

 . (2.8)

Here we used that by (2.6) it is Q(G∅) = logP (G∅). Note that a one-element
set of dyads is always a clique in D but we consider ∅ ⊆ D not as a clique in
D. And we are done with the �rst implication.

Now suppose that a random graph model is de�ned by (2.1) and (2.2) and
let d, d′ be two dyads such that there is no subset A ⊆ D with αA 6= 0 and
d, d′ ∈ A.
Let B ⊆ D be any subset of dyads with d, d′ 6∈ B. We show that

P (GB∪{d,d′})

P (GB∪d′) + P (GB∪{d,d′})
=

P (GB∪{d})

P (GB) + P (GB∪{d})
.

i. e., d and d′ are conditionally independent. Equivalently,

P (GB∪{d,d′})

P (GB∪{d′})
=
P (GB∪{d})

P (GB)
.

We have that

log

(
P (GB∪{d,d′})

P (GB∪{d′})

)
=

∑
K⊆B∪{d,d′}

αK −
∑

K⊆B∪{d′}

αK

=
∑

K⊆B∪{d,d′}
d∈K

αK

=
∑

K⊆B∪{d}
d∈K

αK

=
∑

K⊆B∪{d}

αK −
∑
K⊆B

αK

= log

(
P (GB∪{d})

P (GB)

)
,
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(Note that we sum over all K that are cliques in D.) �

For general Markov graphs the cliques ofD correspond to sets of dyads A such
that any pair of dyads within A have a vertex in common, i. e., are incident.
These sets are singleton edges, triangles, and k-stars for k = 2, . . . , n− 1.

Let D =
(
V
2

)
denote the set of dyads, let T = T (V,D) denote the set of

triangles of the complete graph on V , and, for k = 2, . . . , n − 1, let Sk =
Sk(V,D) denote the set of k-stars of the complete graph on V .

2.33 Corollary (ERGM of general Markov graphs)
Let G = (G, P ) be a Markov random graph on vertices V = {1, . . . , n}. Then
there are real constants

ηuv for all {u, v} ∈ D
τuvw for all {u, v, w} ∈ T

σuv1...vk for all 2 ≤ k ≤ n− 1, (u, {v1, . . . , vk}) ∈ Sk

such that the probability of a graph G ∈ G can be written as

P (G) =
1

κ
exp

 ∑
uv∈E(G)

ηuv +
∑

uvw∈T (G)

τuvw +
n−1∑
k=2

∑
uv1...vk∈Sk(G)

σuv1...vk


Note that the parameter families ηuv, τuvw, and σuv1...vk are de�ned for all
edges, triangles, and k-stars (respectively) of the complete graph; that these
parameters are constants determined by the random graph model; and that
the summation in the exponent of P (G) goes over all edges, triangles, and
k-stars (respectively) of G.

Markov graphs have way too many parameters to yield a parsimonious model.
The reason is that in a general Markov graph each edge, triangle, and k-star
can have a di�erent probability. A restriction of Markov graphs is given in
the following de�nition.

2.34 De�nition (homogeneous Markov graph)
A Markov random graph G = (G, P ) is called homogeneous if for any pair of
isomorphic graphs G and H it is P (G) = P (H).
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It is easy to see that for homogeneous Markov graphs all edge parameters are
equal, all triangle parameters are equal, and, for each k all k-star parameters
are equal. Thus the probability of a graph G in a homogeneous Markov
model is determined by counting the number of these con�gurations.

2.35 Corollary (ERGM of homogeneous Markov graphs)
Let G = (G, P ) be a homogeneous Markov random graph. Then there are
real constants η, τ , and σk for k = 2, . . . , n − 1 such that the probability of
a graph G ∈ G can be written as

P (G) =
1

κ
exp

(
η ·m(G) + τ · t(G) +

n−1∑
k=2

σk · sk(G)

)

ERGMs used in empirical research often contain only a few of the k-star
statistics for the lower values of k (e. g., for k = 2, 3). The reason for this
is that the n parameters of a homogeneous Markov graph might still be too
many to be estimated with low standard error. Furthermore, the estimated
k-star parameters are hard to interpret jointly�especially if some of them
assume positive and some negative values.

2.5.3 Near-degeneracy and Multi-modality of ERGMs

Many Markov random graphs (i. e., for many choices of the parameters) give
rise to multi-modal probability distributions:

• probability mass centered on a few small sets of graphs

• intermediate graphs are very unlikely.

For instance, only near-empty or near-complete graphs have a non-vanishing
probability.

Consider the following ERGM

P (G) =
1

κ
exp (ηm(G) + τt(G)) with η < 0, τ > 0 .

Then, in very sparse networks

• there is no possibility to close triangles;
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• creation of edges is very unlikely.

In contrast, in very dense networks

• an edge can close many triangles (up to n− 2);

• deletion of edges is very unlikely.

Very unlikely to leave the set of near-complete graphs.

Degeneracy is undesirable for two reasons.

1. Convergence of the Markov chain towards the stationary distribution
is very slow.

2. Degenerate models seem to be unreasonable models for empirical net-
works.

Di�erent proposals to overcome degeneracy have been made. Alternative
de�nition of MC transition probabilities.

• For instance, allow switching to the complement graph.

• Leads to better convergence of the Markov chain.

• However, random graph model stays the same⇒ still unreasonable for
empirical networks.

• Additionally, Markov chain simulation becomes unrealistic for empirical
network evolution.

Condition on observed/reasonable number of edges.

• Allow only replacing one edge by another.

• Disjoint union of cliques becomes most likely form of network.

Assumed linear marginal e�ect of closed triangles:

• closing one triangle contributes τ to the log-probability;
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• closing two triangles contributes 2τ ; . . .

u

v

w1 w2 w3 . . . wk

Introduced k-triangle statistic:

• a 2k-triangle counts more than a k-triangle,

• but less than twice as much.

⇒ no longer a Markov random graph.



Bibliography

[1] N. Alon, J. Spencer, and P. Erd®s. The Probabilistic Method. Wiley, 1992.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509�512, 1999.

[3] J. Besag. Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society, 36(2):192�236, 1974.

[4] B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády. The degree se-
quence of a scale-free random graph process. Random Structures and

Algorithms, 18:279�290, 2001.

[5] O. Frank and D. Strauss. Markov graphs. Journal of the American

Statisticsl Association, 81(359):832�842, 1986.

[6] G. R. Grimmet. A theorem about random �elds. Bulletin of the London

Mathematical Society, 5(1):81�84, 1973.

[7] G.-C. Rota. On the foundations of combinatorial theory (I. Theory of
möbius functions). Wahrscheinlichkeitstheorie, 2:340�368, 1964.

[8] T. A. B. Snijders. Markov chain Monte Carlo estimation in exponential
random graph models. Journal of Social Structure, 2002.

[9] G. A. Young and R. L. Smith. Essentials of Statistical Inference. Cam-
bridge University Press, 2005.

37


	Introduction
	Time-independent Networks
	Preliminaries
	Random Graph Models
	G(n,p)
	Preferential Attachment
	Exponential Random Graph Models


