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Where we are

Model Main feature Real data
G(n,p) ties are independent ties are usually dependent

Preferential attachment based on there are other
degree distribution structural properties

ERGM class of models reasonable representation
of the data

These are models for cross-sectional data
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Where we are going

Network are dynamic by nature. How to model network evolution?

We need a model for longitudinal data
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Networks are dynamic by nature: a real example

The Teenage Friends and Lifestyle Study analyzes smoking behavior and
friendship

Data collection: (available from http://www.stats.ox.ac.uk/∼snijders/siena/)

- One school year group monitored over 3 years;

- questionnaires at approximately one year interval:

1. Friendship relation: each pupil could name up to 12 friends
2. Individual information and lifestyle elements: gender, age,

substances use, smoking of parents and siblings etc.

arrows = friendship relation
gender: circle = girl, square = boy
smoking behavior: blue = non, gray = occasional, black = regular
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Some questions

- Is there any tendency in friendship formation
towards reciprocity?

- Is there any tendency in friendship formation
towards transitivity?
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Some questions

- Is there any homophily in friendship formation with
respect to gender?

- Is there any homophily in friendship formation with
respect to smoking behavior?
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Solution

Stochastic actor-oriented model (SAOM)

Aim
Explain network evolution as a result of

- endogenous variables: structural effects depending on the network only
(e.g. reciprocity, transitivity, etc.)

- exogenous variables: actor-dependent and dyadic-dependent covariates
(e.g. effect of a covariate on the existence of a tie or on homophily)

simultaneously
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Background: random variable
Definition
Let (Ω,P) be a probability space.
A (real-valued) random variable (r.v.) is a function X : Ω→ R.

Example
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Background: stochastic (or random) process

Definition
A stochastic process {X(t), t ∈ T} is a mapping

∀t ∈ T 7→ X(t) : Ω→ R
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Background: stochastic process

T = index set (usually interpreted as time)
S = state space

Different stochastic processes can be defined according to S and T

S T

Countable (discrete) Uncountable (continuous)

Countable discrete-time with continuous-time with
(finite) finite state space finite state space

Uncountable discrete-time with continuous-time with
(continuous) continuous state space continuous state space
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Background: stochastic process

Example
X(t) = the outcome of flipping a coin

S = {−1,1}, where −1 =tail 1 =head
T = {1,2, · · ·}

{X(t), t ∈ T} is a discrete-time stochastic process with a finite state space
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Background: stochastic process

Example
X(t) = the number of telephone call at a switchboard of a company

from 8 a.m. to 8 p.m.

S = {0,1,2, · · ·}
T = [0,12]

{X(t), t ∈ T} is a continuous-time stochastic process with a finite state space
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Background: continuous-time Markov Chain

Definition
{X(t), t ∈ T} has the Markov property if:

∀ x ∈ S and ∀ ti < tj

P(X(tj ) = x(tj ) | X(t) = x(t) ∀ t ≤ ti ) = P(X(tj ) = x(tj ) | X(ti ) = x(ti ))

Definition
A continuous-time Markov chain {Xt , t ≥ 0} is a stochastic process having

1. finite state
2. continuous-time
3. the Markovian property
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Background: continuous-time Markov Chain

Example
X(t) = # of goals that a given soccer player scores by time t (time played

in official matches)

{X(t), t ≥ 0} is a continuous-time Markov chains

Why?

1. state space: S = {0,1,2, . . . ,B}
B = total number of goals scored during the career

2. the time is continuous: [0,T]
T = time of retirement

3. the process {X(t), t ≥ 0} has the Markov property
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Background: Markov property
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Background: describing a continuous-time Markov chain
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Background: describing a continuous-time Markov chain
Holding time
T = amount of time the chain spends in state i (Exponential r.v.)

fT (t) = λi e−λi t , λi > 0, t > 0

fT (t) : R+→ R+ such that

P(T ≤ t′) =

∫ t′

0
fT (t)dt = 1− e−λi t′ ∀t ≥ 0
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Background: describing a continuous-time Markov chain

Holding time

The Exponential r.v. has the memoryless property

P(T > s + t | T > t) = P(T > s) ∀ s, t > 0

Proof.

P(T > s + t | T > t) =
P(T>t+s ∩ T>t)

P(T>t)
=

P(T>t+s)
P(T>t)

=

=
1−P(T≤t+s)

1−P(T≤t)
= 1−1+e−λi (t+s)

1−1+e−λi t = e−λi s = P(T > s)
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Background: describing a continuous-time Markov chain
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Background: describing a continuous-time Markov chain

Jump chain

P = (pij : i , j ∈ S) = jump matrix

pij = P(X(t′) = j|X(t) = i , the opportunity to leave i)

pij ≥ 0
∑
j∈S

pij = 1 ∀i , j ∈ S
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Background: describing a continuous-time Markov chain

Example

P =

 0.1 0 0.6 0.3
0.8 0.1 0.1 0

0.05 0.5 0.05 0.4
0.6 0.1 0.15 0.15
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Recall: adjacency matrix and directed relations

Social network: a set of actors N + a relation R existing among them

Graph = G(N,R) Adjacency matrix=X

- 0 0 0 0
1 - 1 0 0
0 0 - 0 0
0 1 1 - 0
1 1 0 0 -

Directed relation:

6=⇒
i → j j → i
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Data

Longitudinal (or panel) network data = M (≥ 2) repeated observations on a
network

x(t0), x(t1), . . . , x(tm), . . . , x(tM−1), x(tM)

- set of actors N = {1,2, . . . ,n}
- a non reflexive and directed relation R

- actor covariates V (gender, age,social status, ...)
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Model definition: assumptions

Network evolution is the outcome of a Continuous-time Markov-Chain

1. Ties are state:
a tie is a state with a tendency to endure over time

2. Distribution of the process:
{X(t), t ∈ T} is a continuous time Markov Chain defined on:

- the state space X

- the set of actors N

39
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Model definition: assumptions
State space: X is the set of all possible adjacency matrices defined on N

X = 2n(n−1)⇒X is a countable set
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Model definition: assumptions

Continuous-time process

Latent process: the network evolves in continuous-time but
we observed it only at discrete time points

44



Model definition: assumptions

Continuous-time process

Latent process: the network evolves in continuous-time but
we observed it only at discrete time points

45



Model definition: assumptions

Continuous-time process

Latent process: the network evolves in continuous-time but
we observed it only at discrete time points

46



Model definition: assumptions

Markov property: the current state of the network determines probabilistically
its further evolution
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Model definition: assumptions
3. Opportunity to change: at any given moment t one actor has the

opportunity to change
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Model definition: assumptions
4. Absence of co-occurrence: no more than one tie can change at any given

moment t
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Model definition: assumptions

5. Actor-oriented perspective: actors control their outgoing ties

- change in ties are made by the actor who sends the ties

- decisions are made according to the position of the actor in the
network, his attributes and the characteristics of the others

Aim: maximize a utility function

- actors have complete knowledge about the network and all the other
actors

- the maximization is based on immediate returns (myopic actors)
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Model definition: assumptions (recap)

1. Ties are states

2. The evolution process is a continuous-time Markov chain

3. At any given moment t one probabilistically selected actor has the
opportunity to change

4. No more than one tie can change at any given moment t

5. Actor-oriented perspective
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Model definition

Consequences of the assumptions

The evolution process can be decomposed into micro-steps

Micro-step Continuous-time Markov chain
- the time at which i had - the waiting time until the next opportunity
the opportunity to change for a change made by an actor i

(holding time)

- the precise change i made - the probability of changing xij
given the opportunity for changing
(jump chain)

Distribution of the waiting time: rate function

Transition matrix of the jump chain: objective function
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Model definition: rate function

How fast is the opportunity for changing?

Waiting time between opportunities of change for actor i ∼ Exp (λi )

λi is called the rate function

Simple specification: all actors have the same rate of change λ

P(i has the opportunity of change) =
1
n ∀i ∈N
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Model definition: rate function

How fast is the opportunity for changing?

More complex specification

Actors may change their ties at different frequencies λi (α,x ,v)

Example
“Young girls might change their ties more frequently”

λi (α,x ,v) = αage ∗ vage +αgender ∗ vgender

It follows

P(i has the opportunity of change) =
λi (α,x ,v)

n∑
j=1

λj (α,x ,v)
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Model definition: rate function

How fast is the opportunity for changing?

In the following we assume that:

- all actors have the same rate of change

=⇒ λ is constant over the actors

- the frequencies at which actors have the opportunity to make a change
depends on time

=⇒ λ is not constant over time

As a consequence, we must specify M−1 rate functions

λ1, · · · , λM−1
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Model definition: objective function

Which tie is changed?

Changing a tie means turning it into its opposite:

xij = 0 is changed into xij = 1 tie creation

xij = 1 is changed into xij = 0 tie deletion

Given that i has the opportunity to change:

Possible choices of i Possible reachable states
n−1 changes n−1 networks x(i ; j)

1 non-change 1 network equal to x

62
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Model definition: objective function
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Model definition: objective function
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Background: random utility model

Setting: decision makers who face a choice between n-alternatives

Decision rule: choose the alternative that assures the highest utility

Uij = Fij +Eij

Fij : deterministic part of the utility
Eij : random term

Decision probabilities: for a suitable choice of Eij

pij =
eFij

n∑
j=1

eFij
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Background: random utility model

It is assumed that Eij is Gumbel distributed

fEij (ε) = e−εe−e−ε ε ∈ R

67



Model definition: objective function

Actors change their ties in order to maximize a utility function

ui (β,x(i ; j)) = fi (β,x(i ; j)) +Ei (t,x , j)

- fi (β,x(i ; j)) is the objective function
- Ei (t,x , j)) is a random utility term Gumbel distributed

Probabilities

pij =
exp (fi (β,x(i ; j))))
n∑

h=1
exp (fi (β,x(i ; h)))

Probabilities interpretation:
pij is the probability that i changes the tie towards j
pii is the probability of not changing

68
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Model definition: objective function

The objective function is defined as a linear combination

fi (β,x(i ; j)) =

K∑
k=1

βk sik (x(i ; j))

- sik (x(i ; j)) are effects
- βk are statistical parameters
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Objective function specification

Endogenous effects = dependent on the network structures

- Outdegree effect

si out (x ′) =
∑

j
x ′ij

- Reciprocity effect

si rec (x ′) =
∑

j
x ′ij x ′ji
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Objective function specification

Endogenous effects = dependent on the network structures

- Transitive effect

si trans (x ′) =
∑
j,h

x ′ij x ′ihx ′jh

- three cycle-effect
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Objective function specification

Example

βout =−1 βrec = +0.5 βtrans =−0.25

si out si rec si trans

i → j
1 → 1
1 → 2
1 → 3
1 → 4
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Objective function specification

Example

βout =−1 βrec = +0.5 βtrans =−0.25

si out si rec si trans

i → j
1 → 1 2 1 1
1 → 2 1 0 0
1 → 3 3 1 3
1 → 4 1 1 0
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Objective function specification

Example

βout =−1 βrec = +0.5 βtrans =−0.25

si out si rec si trans

i → j fi

1 → 1 2 1 1 -1.75
1 → 2 1 0 0 -1
1 → 3 3 1 3 -3.25
1 → 4 1 1 0 -0.5

p11 = 0.146 p12 = 0.310 p13 = 0.033 p14 = 0.511
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Objective function specification

Exogenous effects = related to actor’s attributes

Example

- Friendship among pupils:
Smoking: non, occasional, regular

Gender: boys, girls

- Trade/Trust (Alliances) among countries:
Geographical area: Europe, Asia, North-America,...

Worlds: first, Second, Third, Fourth
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Objective function specification

- covariate-ego

si cego(x) =
∑

j
xij vi

- covariate-alter

si calt (x) =
∑

j
xij vj
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Objective function specification

- covariate-related similarity

si csim(x) =
∑

j
xij

(
1−

∣∣vi − vj
∣∣

RV

)

where RV is the range of V and
(

1− |vi−vj |
RV

)
is called similarity score

Remark:

when V is a binary covariate, the covariate-related similarity can be written in
the following way:

si csim(x) =
∑

j
xij I
{

vi = vj
}
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Objective function specification

Which effects must be included in the objective function?

Outdegree and Reciprocity must always be included.
The choice of the other effects must be determined according to
hypotheses derived from theory

Example
Friendship network

Theory Effect
the friend of my friend ⇒ transitive effect
is also my friend
girls trust girls ⇒ covariate-related
boys trust boys similarity
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Objective function specification

1. Parameter interpretation: βk quantifies the role of sik (x ′) in the network
evolution.

- βk = 0: sik (x ′) plays no role in the network dynamics

- βk > 0: higher probability of moving into networks where sik (x ′) is higher

- βk < 0: higher probability of moving into networks where sik (x ′) is lower

2. The preferences driving the choice of the actors have the same intensities
over time

=⇒ β1, · · · ,βK are constant over time
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Parameter interpretation

The procedures for estimating the parameters of the SAOM are implemented
in a R library called RSiena

(SIENA = Simulation Investigation for Empirical Network Analysis)

The R script “estimation.R” contains the R commands to implement the
estimation procedure in R and the folder “tfls.zip” includes the data files.

Example data: an excerpt from the “Teenage Friends and Lifestyle Study” data
set:

- Networks: relation = friendship
Networks: actors = 129 pupils present at all three measurement points

- Covariates: gender (1 = Male, 2 = Female)
Covariates: smoking behavior (1 = no, 2= occasional, 3 = regular)
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Parameter interpretation: a very simple model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.5948 ( 0.7091 )
Rate parameter period 2 7.2115 ( 0.5751 )

Other parameters:
outdegree (density) -2.4147 ( 0.0387 ) -62.3875
reciprocity 2.7106 ( 0.0811 ) 33.4061

Rate parameter: expected frequency, between two consecutive network
observations, with which actors get the opportunity to change a network tie

- about 9 opportunities for change in the first period
- about 7 opportunities for change in the second period

The estimated rate parameters will be higher than the observed number of
changes per actor (why?)
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Parameter interpretation: a very simple model

Interpreting the objective function parameters:

The parameter βk quantifies the role of the effect sik in the network evolution.

βk = 0 sik plays no role in the network dynamics

βk > 0 higher probability of moving into networks where sik is higher

βk < 0 higher probability of moving into networks where sik is lower

Which βk are “significantly” different from 0?

E.g. βrec = 0.13 is “significantly” different from 0?
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Parameter interpretation: a very simple model

Hypothesis test:

1. State the hypotheses.
- The null hypothesis (H0) states that the observed increase or

decrease in the number of network configurations related to a certain
effect results purely from chance.

H0 : βk = 0

- The alternative hypothesis (H1) states that the observed increase or
decrease in the number of network configurations related to a certain
effect is influenced by some non-random cause.

H1 : βk 6= 0
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Parameter interpretation: a very simple model
Hypothesis test:

2. Define a decision rule
∣∣∣ βk

s.e.(βk )

∣∣∣≥ 2 reject H0∣∣∣ βk
s.e.(βk )

∣∣∣< 2 fail to reject H0

The logic behind this decision rule is based on the standard error concept.

Example

Is the value βrec = 0.13 far enough from 0?

If s.e.(βrec ) = 0.9, a more or less plausible set of values that the parameter can
assume is approximately

[0.04,0.22]∣∣∣∣ βrec
s.e.(βrec )

∣∣∣∣=
∣∣∣0.13

0.9

∣∣∣= 0.14< 2

βrec is not significantly different from 0
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Parameter interpretation: a very simple model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.5948 ( 0.7091 )
Rate parameter period 2 7.2115 ( 0.5751 )

Other parameters:
outdegree (density) -2.4147 ( 0.0387 ) -62.3875
reciprocity 2.7106 ( 0.0811 ) 33.4061

Objective function parameters:
- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties
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Parameter interpretation: a very simple model

In more detail

βout

n∑
j=1

xij +βrec

n∑
j=1

xij xji =−2.4147
n∑

j=1
xij + 2.7106

n∑
j=1

xij xji

Adding a reciprocated tie (i.e., for which xji = 1) gives

−2.4147 + 2.7106 = 0.2959

while adding a non-reciprocated tie (i.e., for which xji = 0) gives

−2.4147

Conclusion: reciprocated ties are valued positively and non-reciprocated ties are
valued negatively by actors
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Parameter interpretation: a more complex model

Specifying the objective function

In friendship context, sociological theory suggests that:
- friendship relations tend to be reciprocated → reciprocity effect

- the statement “the friend of my friend is also my friend” is almost always
true → transitive triplets effect
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Parameter interpretation: a more complex model
Specifying the objective function

In friendship context, sociological theory suggests that:
- pupils prefer to establish friendship relations with others that are similar to

themselves → covariate similarity

This effect must be controlled for the sender and receiver effects of the
covariate.

- Covariate ego effect

- Covariate alter effect
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Parameter interpretation: a more complex model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
sex ego 0.1571 ( 0.1072 ) 1.4659
sex similarity 0.9191 ( 0.1076 ) 8.5440
smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties
- transitivity parameter: preference for being friends with friends’friends
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Parameter interpretation: a more complex model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
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smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

- sex alter: gender does not affect actor popularity
- sex ego: gender does not affect actor activity
- sex similarity: tendency to choose friends with the same gender
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Parameter interpretation: a more complex model

- Gender: coded with 1 for boys and with 2 for girls.

- All actor covariates are centered: v = 1.434 is the mean of the covariate

vi − v =

{ −0.434 for boys

0.566 for girls

- The contribution of xij to the objective function is

βego(vi − v) +βalter (vj − v) +βsame
(
I{vi = vj}− simv

)
=

= 0.1571(vi − v)−0.1513(vj − v) + 0.9191
(
I{vi = vj}−0.5048

)
where simv is the average of the similarity score.
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Parameter interpretation: a more complex model

Male Female
Male 0.4526 -0.618
Female -0.309 0.4584

Table : Gender-related contributions to the objective function

Conclusions: Preference for intra-gender relationships.
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Parameter interpretation: a more complex model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
sex ego 0.1571 ( 0.1072 ) 1.4659
sex similarity 0.9191 ( 0.1076 ) 8.5440
smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

- smoke alter: smoking behavior does not affect actor popularity
- smoke ego: smoking behavior not affect actor activity
- smoke similarity: tendency to choose friends with the same smoking

behavior
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Parameter interpretation: a more complex model

- Smoking behavior: coded with 1 for “no”, 2 for “occasional”, and 3 for
“regular” smokers.

- The smoking covariate is centered: v = 1.310 is the mean of the covariate

vi − v =


−0.310 for no smokers

0.690 for occasional smokers

1.690 for regular smokers

- The contribution of xij to the objective function is

βego(vi − v) +βalter (vj − v) +βsame
(

1− |vi−vj |
Rv
− simv

)
=

= 0.0714(vi − v) + 0.1055(vj − v) + 0.3724
(

1− |vi−vj |
2 −0.7415

)
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Parameter interpretation: a more complex model

no occasional regular
no 0.0414 -0.0734 -0.1882
occasional -0.0393 0.2183 0.1035
regular -0.1200 0.1376 0.3952

Table : Smoking-related contributions to the objective function

Conclusions:
- preference for similar alters
- this tendency is strongest for high values on smoking behavior
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Simulating network evolution
Reproducing a possible series of micro-steps between t0 and t1 according to
fixed parameter value and the network x(t0).
t = time
dt = holding time between consecutive opportunities to change

Algorithm 1: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)
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Simulating network evolution

Two different stopping rules:

1. Unconditional simulation:
the simulation of the network evolution carries on until a predetermined
time length has elapsed (usually until t = 1).

2. Conditional simulation on the observed number of changes:
simulation runs on until the number of different entries between x(t0) and
the simulated network x sim(t1) is equal to the number of entries that differ
between x(t0) and x(t1)

n∑
i,j=1
ı6=j

∣∣∣xobs
ij (t1)− xij (t0)

∣∣∣=

n∑
i,j=1
ı6=j

∣∣∣x sim
ij (t1)− xij (t0)

∣∣∣
This criterion can be generalized conditioning on any other explanatory
variable.
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Parameter estimation

The formulation of the SAOM depends on M−1 + K statistical parameters

θ = (λ1, · · · ,λM−1,β1, · · · ,βK )

Aim: estimate θ

Different estimation methods:
- the Method of Moments (MoM)
- the Maximum Likelihood Estimation (MLE)
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Background: Method of Moments (MoM)

Let
- X be a r.v. with distribution fX (x ;θ)

- Eθ[X ] be the expected value of X

- (x1, . . . , xn) be n observations from the r.v. X .

Definition
The sample counterpart of Eθ[X ] is defined as:

µ=
1
n

n∑
i=1

xi
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Background: Method of Moments (MoM)

One can observe that the expected value of a certain distribution usually
depends on the parameter θ

Definition
The method of moment estimator for θ is found by equating the expected
value Eθ[X ] to its sample counterpart µ

Eθ[X ] = µ

and solving the resulting equation for the unknown parameter.

In practice:
1. Compute the expected value Eθ[X ]

2. Compute the sample counterpart µ= 1
n

n∑
i=1

xi

3. Solve the moment equation Eθ[X ] = µ for θ
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Background: Method of Moments (MoM)

Example
10 undirected, simple, loopless graphs are generated according to G(30,p).
The number of edges yi in each graph is reported in the following table:

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
yi 37 40 35 32 39 34 25 28 41 32

Find a plausible value for p that might have generated the observed graphs.

Y = r.v. describing the number of edges

P(Y = y) =

(
N
y

)
py (1−p)N−y

where N =
n(n−1)

2
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Background: Method of Moments (MoM)

Example
1. The theoretical expected value of the number of edges is:

Eθ[Y ] =

N∑
y=0

yP(Y = y) =

N∑
y=0

y
(

N
y

)
py (1−p)N−y

=

N∑
y=1

y
(

N
y

)
py (1−p)N−y

=

N∑
y=1

y N!

y !(N− y)!
py (1−p)N−y

= Np
N∑

y=1

(N−1)!

(y −1)!(N−1− (y −1))!
py−1(1−p)N−1−(y−1)

= Np
N−1∑
i=0

(
N−1

i

)
pi (1−p)N−1−i = Np
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Background: Method of Moments (MoM)

Example

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
yi 37 40 35 32 39 34 25 28 41 32

2. The sample counterpart is:

µ=
1

10

10∑
i=1

yi =
343
10 = 34.3

3. The estimate for p is given by:

Eθ[Y ] = µ

Np = µ

p̂ =
µ

N =
34.3
435 = 0.079
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Background: Method of Moments (MoM)

Remark
It is easy to imagine that the estimate of the parameter can vary according to
the selected sample.

Example
Other 10 generated graphs result in the following number of edges:

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
yi 34 28 23 31 32 36 33 41 26 39

The new estimate for p is now

p̂ = 0.074

This value is close to the one obtained before, but it is not the same!
For this reason, we usually associate to an estimator its standard error.
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Background: Generalizations of MoM

The principle of the MoM can be easily generalized to any function s(X).

1. Expected value of s(X):

Eθ[s(X)] =
∑

x
s(x)fX (x ;θ)

2. Corresponding sample moment:

γ =
1
n

n∑
i=1

s(xi )

3. Moment equation:
Eθ[s(X)] = γ

The functions s(X) are called statistics
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Background: Generalizations of MoM

The MoM can be applied also in situations where θ = (θ1, . . . , θp).

1. Definition of p statistics (s1(X), . . . , sp(X))

2. Definition of p moment conditions:

Eθ[s1(X)] = γ1

Eθ[s2(X)] = γ2

· · ·
Eθ[sp(X)] = γp

3. Solving the resulting equations for the unknown parameters
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Estimating the parameter of the SAOM using MoM

Aim: estimate θ using the MoM

θ = (λ1, . . . , λM−1, β1, . . . , βK )

In practice:

1. find M−1 + K statistics

2. set the theoretical expected value of each statistic equal to its sample
counterpart

3. solve the resulting system of equations with respect to θ.

For simplicity, let us assume to have observed a network at two time points t0 and t1
and to condition the estimation on the first observation x(t0)
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1. Defining the statistics

The rate parameter λ describes the frequency at which changes
can potentially happen.

sλ(X(t1),X(t0)|X(t0) = x(t0)) =

n∑
i,j=1

∣∣Xij (t1)−Xij (t0)
∣∣

Reason

λ= 2 λ= 3 λ= 4
sλ 94 135 171

⇒ higher values of λ leads to higher values of sλ
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1. Defining the statistics

The parameter βk quantifies the role played by each effect in the network
evolution.

sk (X(t1)|X(t0) = x(t0)) =

n∑
i=1

sik (X(t1))

Example
Let us consider the outdegree:

sout (X(t1)|X(t0) = x(t0)) =

n∑
i=1

si out (X(t1)) =

n∑
i=1

n∑
j=1

xij (t1)

βout =−2.5 βout =−2 βout =−1.5
sout 195 214 234

⇒ higher values of βout leads to higher values of sout
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1. Defining the statistics

Generalizing to M−1 periods:

- Statistics for the rate function parameters

sλ1 (X(t1),X(t0)|X(t0) = x(t0)) =
n∑

i,j=1

∣∣Xij (t1)−Xij (t0)
∣∣

. . .

sλM−1 (X(tM),X(tM−1)|X(tM−1) = x(tM−1)) =
n∑

i,j=1

∣∣Xij (tM)−Xij (tM−1)
∣∣

- Statistics for the objective function parameters:

M−1∑
m=1

smk (X(tm)|X(tm−1) = x(tm−1)) =

M−1∑
m=1

smk (X(tm))
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2. Setting the moment equations

The MoM estimator for θ is defined as the solution of the system
of M + K −1 equations


Eθ
[
sλm (X(tm),X(tm−1)|X(tm−1) = x(tm−1))

]
= sλm (x(tm),x(tm−1))

Eθ
[M−1∑

m=1
smk (X(tm)|X(tm−1) = x(tm−1))

]
=

M−1∑
m=1

smk (x(tm))

with m = 1, . . . ,M−1 and k = 1, · · · ,K
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2. Setting the moment equations

Example
Let us assume to have observed a network at M = 2 time points

We want to model the network evolution according to the outdegree, the
reciprocity and the transitivity effects

θ = (λ,βout ,βrec ,βtrans )
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2. Setting the moment equations

Example
Statistics:

sλ(X(t1),X(t0)|X(t0) = x(t0)) =
4∑

i,j=1

∣∣Xij (t1)−Xij (t0)
∣∣

sout (X(t1)|X(t0) = x(t0)) =
4∑

i,j=1
Xij (t1)

srec (X(t1)|X(t0) = x(t0)) =
4∑

i,j=1
Xij (t1)Xji (t1)

strans (X(t1)|X(t0) = x(t0)) =
4∑

i,j,h=1
Xij (t1)Xih(t1)Xjh(t1)
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2. Setting the moment equations

Example

Observed values of the statistics:

sλ = 5

sout = 6 srec = 4 strans = 2
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2. Setting the moment equations

Example

We look for the value of θ that satisfies the system:



Eθ [sλ(X(t1),X(t0)|X(t0) = x(t0))] = 5

Eθ [sout (X(t1)|X(t0) = x(t0))] = 6

Eθ [srec (X(t1)|X(t0) = x(t0))] = 4

Eθ [strans (X(t1)|X(t0) = x(t0))] = 2
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3. Solving the moment equations

Simplified notation:

- S: (M−1 + K)-dimensional vector of statistics

- s: (M−1 + K)-dimensional vector of the observed values of the statistics

Consequently, the system of moment equations can be written as

Eθ[S] = s

or equivalently as
Eθ[S− s] = 0

Problem:
analytical procedures cannot be applied to solve this system
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3. Solving the moment equations

Definition
Stochastic approximation methods are a family of iterative stochastic
algorithms that attempt to find zeros of functions which cannot be
analytically computed.

The Robbins-Monro (RM) algorithm: iterative algorithm to find the solution to

Eθ[X ] = α

The value of θ is iteratively updated according to:

θ̂i+1 = θ̂i −ai

(
E
θ̂i

[X ]−α
)

where

lim
i→∞

ai = 0
∞∑

i=1
ai =∞

∞∑
i=1

a2
i <∞

and E
θ̂i

[X ] is an approximation of Eθ[X ] based on θi .
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3. Solving the moment equations

Adapting the RM step for the SAOM:

The MoM equation is:
Eθ[S] = s

Let
S i ≈ Eθ[S]

according to θ̂i

The value of θ is iteratively updated according to:

θ̂i+1 = θ̂i −ai
(

S i − s
)

129



3. Solving the moment equations

Adapting the RM step for the SAOM:

The MoM equation is:
Eθ[S] = s

Let
S i ≈ Eθ[S]

according to θ̂i

The value of θ is iteratively updated according to:

θ̂i+1 = θ̂i −ai
(

S i − s
)

129



Updating the value of θ

Example

Let us consider the “Teenage Friends and Lifestyle Study” data set.

We model the network evolution according to the following parameter

θ = (λ1,λ2,βout ,βrec ,βtrans )

The MoM equations are:



Eθ
[
sλ1 (X(t1),X(t0)|X(t0) = x(t0))

]
= 477

Eθ
[
sλ2 (X(t2),X(t1)|X(t1) = x(t1))

]
= 437

Eθ [sout (X(t1)|X(t0) = x(t0))] = 909

Eθ [srec (X(t1)|X(t0) = x(t0))] = 548

Eθ [strans (X(t1)|X(t0) = x(t0))] = 1146
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Updating the value of θ

Example

- Guess θ0 = (7.45,6.83,−1.61,0,0)

- Simulate the network evolution 1000 times according to θ̂0

- Approximation of the expected values

Sλ1 = 605.745 Sλ2 = 573.715

Sβout = 1151.886 Sβrec = 141.406 Sβtrans = 270.118

- Approximation of the moment equation

Sλ1 −477 = 128.745 Sλ2 −437 = 136.715

Sβout −909 = 242.886 Sβrec −548 =−406.594 Sβtrans −1146 =−875.882
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Updating the value of θ

Example

- Guess θ1 = (7.1,6.75,−1.70,1.20,0.25)

- Simulate the network evolution 1000 times according to θ̂1

- Approximation of the expected values

Sλ1 = 549.787 Sλ2 = 532.551

Sβout = 1478.988 Sβrec = 517.450 Sβtrans = 1062.537

- Approximation of the moment equation

Sλ1 −477 = 72.787 Sλ2 −437 = 95.551

Sβout −909 = 569.988 Sβrec −548 =−30.550 Sβtrans −1146 =−83.463
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Updating the value of θ

Example

- Guess θ2 = (7.10,6.75,−2.20,1.40,0.35)

- Simulate the network evolution 1000 times according to θ̂2

- Approximation of the expected values

Sλ1 = 446.853 Sλ2 = 437.166

Sβout = 1025.729 Sβrec = 414.484 Sβtrans = 698.734

- Approximation of the moment equation

Sλ1 −477 =−30.147 Sλ2 −437 = 0.166

Sβout −909 = 116.729 Sβrec −548 =−133.516 Sβtrans −1146 =−447.266

and so on...
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Updating the value of θ

Example

- Guess θi = (10.71,8.79,−2.63,2.16,0.46)

- Simulate the network evolution 1000 times according to θ̂i

- Approximation of the expected values

Sλ1 = 476.022 Sλ2 = 436.983

Sβout = 906.809 Sβrec = 545.578 Sβtrans = 1147.795

- Approximation of the moment equation

Sλ1 −477 =−0.978 Sλ2 −437 =−0.017

Sβout −909 =−2.191 Sβrec −548 =−2.422 Sβtrans −1146 = 1.795
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3.Solving the moment equations
The Robbins-Monro (RM) algorithm - remarks

1. Convergence:
lim

i→∞
θ̂i = θ

2. Modified RM step: to improve the convergence of the algorithm

θ̂i+1 = θ̂i −ai D−1
(

E
θ̂i

[X ]−α
)

where D is a diagonal matrix with elements

D =
∂

∂θ̂i
E
θ̂i

[X ]

and estimate θ with:

θ̂ =
1
I

I∑
i1

θ̂i , I number of steps
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Updating the value of θ

θ̂i+1 = θ̂i −ai D−1
(

E
θ̂i

[X ]−α
)

Intuitively:
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3. Solving the moment equations

We want to solve:
Eθ[S− s] = 0

using the RM step:
θ̂i+1 = θ̂i −ai D−1 (Eθi [S]− s

)
but we cannot write

(
Eθi [S]− s

)
and D in a close form...

Approximate unknown quantities via Monte Carlo (MC)
methods
⇒ stochastic
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Background: Monte Carlo method

Let X be a random variable with distribution function fX (x).
We want to estimate the expected value E [s(X)].

Definition
The Monte Carlo method consists in:

1. generating a sample (x1, · · · ,xq) from the distribution function fX (x)

2. computing s(xl ), l = 1, . . . , q
3. approximating the expected value with the empirical average, i.e.:

S =
1
q

q∑
l=1

s(xl )

Reason
It can be proved that

S→ E [s(X)]

as q→∞
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Background: Monte Carlo method - empirical proof

Example
Let us consider the G(30,0.08) model.

We are interested in estimating the expected number of edges.

Simulations from the G(30,0.08) model for different values of q:

q 10 50 100 1000 10000
S 32.90 36.18 35.17 34.60 34.81

Since the number of edges Y follows the binomial distribution,

E [Y ] = Np = 34.8

Our results show that

S→ E [Y ]

as q→∞
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The MC Method for the statistics in the SAOM

1. Given x(t0) and θ

x (1)(t1), x (1)(t2), . . . , x (1)(tM)

. . .

x (q)(t1), x (q)(t2), . . . , x (q)(tM)

2. For each sequence compute the value S(l) taken by S

3. Approximate the expected value by

S =
1
q

q∑
l=1

S(l)→ Eθ[S]
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The MC Method for the expected values of the statistics

Example
Approximating Eθ[sout (X(t1)|X(t0) = x(t0))] for the “Teenage Friends and
Lifestyle Study” data set

1. Given:

- x(t0)

- θ = (λ1 = 10.69,λ2 = 8.82,βout =−2.63,βrec = 2.17,βtrans = 0.46)

simulate the network evolution q = 1000 times

x (1)(t1), x (1)(t2), . . . , x (1)(tM)

. . .

x (q)(t1), x (q)(t2), . . . , x (q)(tM)

myeff$initialValue[myeff$include] <- c(10.69,8.82,-2.63,2.17,0.46)
sim model <- sienaModelCreate(projname = ’sim model’, cond = FALSE,

useStdInits = FALSE, nsub = 0 , n3=1000)
sim ans <- siena07(sim model, data = mydata, effects = myeff,returnDeps=TRUE)
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The MC Method for the expected values of the statistics

Example
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The MC Method for the expected values of the statistics

Example

2. Compute the value assumed by Sout for each sequence of networks

S(l)
out =

M−1∑
m=1

n∑
i=1

n∑
j=1

x (l)
ij (tm)

sim 1 2 3 4 5 6 7 8 . . .
Nr. Edges 942 874 1047 881 865 866 999 948 . . .

stats <- t(t(sim ans$sf) + sim ans$targets)
stats
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The MC Method for the expected values of the statistics

Example

3. Approximate the expected value by

Sout =
1
q

q∑
i=1

S(l)
out

Sout =
942 + 874 + 1047 + 881 + 865 + 866 + 999 + 948 + . . .

1000 ≈ 912

statsMC <- apply(stats,2,mean)
statsMC

475.492 438.963 911.737 550.602 1155.026

146



3. Solving the moment equations

We want to solve:
Eθ[S− s] = 0

and using the RM:
θ̂i+1 = θ̂i −ai D−1 (Eθi [S]− s

)
but we cannot write

(
Eθi [S]− s

)
and D in a close form...

Approximate unknown quantities via Monte Carlo (MC)
methods
⇒ stochastic
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Background: the MC Method for the approximation of derivatives

Univariate function:

∂

∂x f (x) = lim
ε→0

f (x + ε)− f (x)

ε

(Finite difference method)
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Background: the MC Method for the approximation of derivatives

Multivariate function x = (x1, . . . ,xJ ):
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The MC Method for the derivatives of the statistics

Multivariate function x = (x1, . . . ,xJ ):

J derivatives, one with respect to each
variable

D =


∂
∂x1

f (x)

∂
∂x2

f (x)

. . .
∂
∂xJ

f (x)



The computation is done incrementing each variable at a time:

ej = (0, . . . ,0,1,0, . . . ,0) j-th unit vector

ε= (ε1, . . . , εJ ) vector of increments

∂

∂xj
f (x) = lim

εj→0

f (x + εej )− f (x)

εj
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The MC Method for the derivatives of the statistics

For the SAOM D is a M−1 + K squared diagonal matrix:

D =



∂
∂λ1

Eθ [S− s]

. . .
∂

∂λM−1
Eθ [S− s]

∂
∂β1

Eθ [S− s]

. . .
∂
∂βK

Eθ [S− s]


The diagonal element are computed increasing one parameter at a time
by a “small” value εj

∂

∂θj
E [S− s] = lim

εj→0

Eθ+εej [S− s]−Eθ[S− s]

εj
≈

Sθ+εej −Sθ
εj
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The MC Method for the expected values of the statistics

Example
Approximating ∂

∂βout
Eθ[sout (X)] for the “Teenage Friends and Lifestyle Study”

data set, considering a model with outdegree, reciprocity and transitivity

1. Given:

- x(t0)

- θ = (10.69,8.82,−2.63,2.17,0.46)

simulate the network evolution q = 1000 times w.r.t. θ

x (1)(t1), x (1)(t2), . . . , x (1)(tM)

. . .

x (q)(t1), x (q)(t2), . . . , x (q)(tM)

myeff$initialValue[myeff$include] <- c(10.69,8.82,-2.63,2.17,0.46)
sim model <- sienaModelCreate(projname = ’sim model’, cond = FALSE,

useStdInits = FALSE, nsub = 0 , n3=1000)
sim ans <- siena07(sim model, data = mydata, effects = myeff,returnDeps=TRUE)

153
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The MC Method for the expected values of the statistics

Example

2. Given:

- e3 = (0,0,1,0,0) unit vector

- ε= (0,0,0.1,0,0) vector of increments

- θ+ εe3 = (10.69,8.82,−2.53,2.17,0.46)

simulate the network evolution q = 1000 times w.r.t. θ+ εe3

x∗(1)(t1), x∗(1)(t2), . . . , x∗(1)(tM)

. . .

x∗(q)(t1), x∗(q)(t2), . . . , x∗(q)(tM)

myeff$initialValue[myeff$include] <- c(10.69,8.82,-2.63,2.17,0.46)+c(0,0,0.1,0,0)
sim model2 <- sienaModelCreate(projname = ’sim model’, cond = FALSE,

useStdInits = FALSE, nsub = 0 , n3=1000)
sim ans2 <- siena07(sim model, data = mydata, effects = myeff,returnDeps=TRUE)
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The MC Method for the expected values of the statistics

Example

3. Approximate the expected value using the MC method

Sout =
1
q

q∑
i=1

S(l)
out = 911.737 S∗out =

1
q

q∑
i=1

S∗(l)
out = 928.749

4. Approximate the first order derivative by

∂
∂βout

E [S− s] = lim
ε3→0

Eθ+εe3 [S−s]−Eθ [S−s]
ελ1

≈

≈ Sθ+εe3−Sθ
ε3

= 928.749−911.737
0.1 = 1701.2

statsMC <- apply(t(t(sim ans$sf) + sim ans$targets),2,mean)
475.492 438.963 911.737 550.602 1155.026

statsMC2 <- apply(t(t(sim ans2$sf) + sim ans2$targets),2,mean)
478.205 439.442 928.749 562.564 1202.127

deriv <- (statsMC2[3]-statsMC[3])/0.01
1701.2
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The Robbins-Monro algorithm

Phase 1:
- estimation of D
- first update of θ

Phase 2:
- estimation of θ through the RM step

Phase 3:
- estimation of the standard error of θ
- checking the convergence of the algorithm
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The Robbins-Monro algorithm - Phase1
Algorithm 2: Robbins-Monro algorithm - Phase 1
Input: θ0, s, q1,ε
Output: θ̂q1 , D̂

i ← 0; d ← 0; S0← 0
while i < q1 do

i ← i + 1
Si0 ∼ θ0
S0← S0 + Si0
for j=1, . . . (M+K-1) do

Sij ∼ θ1 + εej
dij ← ε−1

j (Sij −Si0)
d ← d + dij ej

S← 1
q1

S0

d̂ ← 1
q1

d
D̂← diag(d̂)

θ̂q1 ← θ0− D̂−1(S− s)

return θ̂q1 , D̂
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The Robbins-Monro algorithm - Phase 2
Algorithm 3: Robbins-Monro algorithm - Phase2

Input: θ̂q1 , D̂, s
Output: θ̂

h← 1
θ̂1← θ̂q1

while h ≤ c do
i ← 0
θ0← θ̂h
if i >= q+

h OR (i > q−h AND (Sih− s)(S(i−1)h− s)< 0) then
i ← i + 1
Si ∼ θ̂i
θ̂i+1← θ̂i −ahD̂−1(S i − s)

θ← θ̂i+1 +θ

θ̂h← 1
i θ

ah+1← ah/2
h← h + 1;

θ̂← θc

return θ̂ 158



The Robbins-Monro algorithm - Phase 3

Algorithm 4: Robbins-Monro algorithm - Phase 3

Input: θ̂, s, q3,ε
Output: Σ̂θ

i ← 0; d ← 0; S0← 0
while i < q3 do

i ← i + 1
Si0 ∼ θ̂
S0← S0 + Si0
for j=1, . . . M+K-1 do

Sij ∼ θ̂+ εej
dij ← ε−1

j (Sij −Si0)
d ← d + dij ej

S = 1
q3

S0

d̂ = 1
q3

d
D̂ = diag(D)

Σ̂θ = D̂−1
[

1
q3

(Si0−S)(Si0−S)
]

D̂−1

return Σ̂θ 159



Recap: estimating the parameter of the SAOM

Issue

Given
x(t0), x(t1), . . . , x(tM)

and a parametrization of the SAOM

θ = (λ1, . . . ,λM−1,β1, . . . ,βK )

we want to estimate θ in a plausible way.

Different estimation methods are available:

1. Method of Moments:
an estimation for θ is the value θ̂ that solves:

Eθ[S− s] = 0

[2.]Maximum Likelihood Estimation:
what is the most likely value of θ that could have generated the observed
data?

160



Recap: estimating the parameter of the SAOM

Issue

Given
x(t0), x(t1), . . . , x(tM)

and a parametrization of the SAOM

θ = (λ1, . . . ,λM−1,β1, . . . ,βK )

we want to estimate θ in a plausible way.

Different estimation methods are available:

1. Method of Moments:
an estimation for θ is the value θ̂ that solves:

Eθ[S− s] = 0

[2.]Maximum Likelihood Estimation:
what is the most likely value of θ that could have generated the observed
data?

160



Recap: estimating the parameter of the SAOM

Given an initial guess θ0 for the parameter θ, the procedure can be roughly
depicted as follows:

θ0
simulation−−−−−−→ Eθ0 [S− s]

rule−−→ θ1

θ1
simulation−−−−−−→ Eθ1 [S− s]

rule−−→ θ2

...
simulation−−−−−−→ ...

rule−−→ ...

θi−1
simulation−−−−−−→ Eθi−1 [S− s]

rule−−→ θi

...
simulation−−−−−−→ ...

rule−−→ ...

until a certain criterion is satisfied
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Recap: estimating the parameter of the SAOM

Issue

Given
x(t0), x(t1), . . . , x(tM)

and a parametrization of the SAOM

θ = (λ1, . . . ,λM−1,β1, . . . ,βK )

we want to estimate θ in a plausible way.

Different estimation methods are available:

1. Method of Moments:
an estimation for θ is the value θ̂ that solves:

Eθ[S− s] = 0

2. Maximum Likelihood Estimation:
what is the most likely value of θ that could have generated the observed
data?
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The Maximum-likelihood estimation (MLE)

Definition
Let

-
F = {F (θ),θ ∈Θ⊆ Rk}

be a collection of SAOMs parametrized by θ ∈Θ⊆ Rk

- x(t0), . . . ,x(tM) be the observed data

The likelihood function associated with the observed data is:

L : Θ→ R;θ 7−→ Pθ(x(t0), . . . ,x(tM))

A parameter vector θ̂ maximizing L:

θ̂ = arg max
θ∈Θ

L(θ)

is called a maximum likelihood estimate for θ
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Computing the Likelihood function

For semplicity let us consider only two observations x(t0) and x(t1)

The model assumptions allow to decompose the process in a series of
micro-steps:

{(Tr , ir , jr ), r = 1, . . . ,R}

where

- Tr is the time point for an opportunity for change

- ir denotes the actor who has the opportunity to change

- jr is the actor towards whom the tie is changed

Let R be the total number of micro-steps between t0 and t1.

We assume that the time point Tr are ordered increasingly:

t0 = T0 < T1 < .. . < TR < t1
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Computing the Likelihood function

Definition
Given the sequence {(Tr , ir , jr ), r = 1, . . . ,R}

L(θ) =

R∏
r=1

Pθ((Tr , ir , jr )))∝ (nλ)R

R!
e−nλ

R∏
r=1

1
n pir jr (β,x(Tr ))

Then, the estimate for θ is

θ̂ = arg max
θ∈Θ

L(θ)

or equivalently

θ̂ = arg max
θ∈Θ

log(L(θ))

where log(L(θ)) is called the log-likelihood function
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The Maximum-likelihood estimation (MLE)

In practice finding

θ̂ = arg max
θ∈Θ

log(L(θ))

means determining θ̂ such that:

∂

∂θ
log(L(θ)) = 0

where ∂
∂θ log(L(θ)) is called score function.
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The Maximum-likelihood estimation (MLE)
Example

Let us consider the “Teenage Friends and Lifestyle Study” data set.

We model the network evolution according to the following parameter

θ = (λ1,λ2,βout ,βrec ,βtrans )

We look for θ̂ such that:



∂
∂λ1

log(L(θ)) = 0

∂
∂λ2

log(L(θ)) = 0

∂
∂βout

log(L(θ)) = 0

∂
∂βrec

log(L(θ)) = 0

∂
∂βtrans

log(L(θ)) = 0
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The Maximum-likelihood estimation (MLE)

Problem:
we cannot observe the complete data, i.e., the complete series of micro-steps
that lead from x(t0) to x(t1), from x(t1) to x(t2), . . .

⇓
we cannot compute the L of the observed data

⇓
a stochastic approximation method must be applied.
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The Maximum-likelihood estimation (MLE)

Given an initial guess θ0 for the parameter θ, the procedure can be roughly
depicted as follows:

θ0
simulation−−−−−−→ ∂

∂θ log(L(θ0))
rule−−→ θ1

θ1
simulation−−−−−−→ ∂

∂θ log(L(θ1))
rule−−→ θ2

...
simulation−−−−−−→ ...

rule−−→ ...

θi−1
simulation−−−−−−→ ∂

∂θ log(L(θi−1))
rule−−→ θi

...
simulation−−−−−−→ ...

rule−−→ ...

until a certain criterion is satisfied
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Augmented data

To approximate the likelihood we use the augmented data method

Definition
The augmented data (or sample path) consist of the sequence of tie changes
that brings the network from x(t0) to x(t1)

(i1, j1), . . . ,(iR , jR )

Formally:
v = {(i1, j1), . . . ,(iR , jR )} ∈V

where V is the set of all sample paths connecting x(t0) and x(t1).

We can approximate the likelihood function (and then the score function) of
the observed data using the probability of v

P(v |x(t0),x(t1))∝ (nλ)R

R!
e−nλ

R∏
r=1

1
n pir jr (β,x(Tr ))
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Approximating the Likelihood function

Example

v = {(2,1),(1,1),(4,3),(1,3),(3,4)}
{(2,1),(1,1),(4,3),(1,3),(3,4)}
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Approximating the Likelihood function
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Augmented data

Example

V = {{(2,1),(1,1),(4,3),(1,3),(3,4)} ,

{(1,2),(3,4),(1,3),(4,3),(2,1),(1,2)} ,

{(3,3),(4,4),(2,3),(4,3),(2,1),(2,3),(3,4),(1,1)} ,

. . .}
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Sampling the augmented data

How to sample the augmented data from the distribu-
tion:

P(v |x(t0),x(t1))∝ (nλ)R

R!
e−nλ

R∏
r=1

1
n pir jr (β,x(Tr ))

given a certain value of the parameter θ?

The augmented data are sampled through the Metropolis-Hastings algorithm
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Sampling the augmented data

The Metropolis-Hastings algorithm is defined by the following steps:

1. given v i = v , generate ṽ from a proposal distribution u(ṽ |v i )

The proposal distribution u(ṽ |v i ) : V→ [0,1] assigns non-zero
probabilities only to the following 5 cases:

a. Pairwise deletions

b. Pairwise insertions

c. Single deletion

d. Single insertion

e. Permutation
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Sampling the augmented data

a. Pairwise deletions: r1 and r2 such that (ir1 , jr1 ) = (ir2 , jr2 ) is selected and
the pairs (ir1 , jr1 ) and (ir2 , jr2 ) are deleted from v

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (r1, r2) in {(1,7),(1,10),(7,10),(2,8)}, e.g.
(r1, r2) = (1,7)

- Delete the elements (2,4)

ṽ = (2,3) (1,1) (4,2) (3,2) (1,4) (2,3) (1,3) (2,4) (3,3)
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Sampling the augmented data

a. Pairwise deletions: r1 and r2 such that (ir1 , jr1 ) = (ir2 , jr2 ) is selected and
the pairs (ir1 , jr1 ) and (ir2 , jr2 ) are deleted from v

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (r1, r2) in {(1,7),(1,10),(7,10),(2,8)}, e.g.
(r1, r2) = (1,7)

- Delete the elements (2,4)

ṽ = (2,3) (1,1) (4,2) (3,2) (1,4) (2,3) (1,3) (2,4) (3,3)
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Sampling the augmented data

b. Pairwise insertions: (i , j) ∈N2 and r1 and r2 are randomly chosen. The
element (i , j) is inserted in v immediately before r1 and r2

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (i , j) and (r1, r2), e.g. i = 4, j = 1, r1 = 5, r2 = 7
- Insert the elements (4,1) before r1 = 5 and r2 = 7

ṽ = (2,4) (2,3) (1,1) (4,2) (4,1) (3,2) (1,4) (4,1) (2,4) (2,3) (1,3) (2,4) (3,3)
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Sampling the augmented data

c. Single deletion: one pair (ir , jr ) satisfying ir = jr is randomly selected and
deleted from v

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random r in {3,11}, e.g. r = 11
- Delete the elements (3,3)

ṽ = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4)
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Sampling the augmented data

d. Single insertion: one actor i ∈N and an index r are selected. The element
(i , i) is inserted immediately before r

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random i ∈N and r , e.g. i = 4 r = 6
- Insert the elements (4,4) before r = 6

ṽ = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (4,4) (2,4) (2,3) (1,3) (2,4) (3,3)
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Sampling the augmented data

e. Permutations: for randomly chosen indices r1 < r2, the sequence
(ir1 , jr1 ), . . . ,((ir2 , jr2 )) is randomly permuted

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (r1, r2) and r , e.g. r1 = 2, r2 = 5
- Permute the sequence (i2, j2), . . . ,(i5, j5)

v = (2,4) (1,1) (2,3) (3,2) (4,2) (1,4) (4,4) (2,4) (2,3) (1,3) (2,4) (3,3)

184



Sampling the augmented data

e. Permutations: for randomly chosen indices r1 < r2, the sequence
(ir1 , jr1 ), . . . ,((ir2 , jr2 )) is randomly permuted

Example

v = (2,4) (2,3) (1,1) (4,2) (3,2) (1,4) (2,4) (2,3) (1,3) (2,4) (3,3)

- Select at random (r1, r2) and r , e.g. r1 = 2, r2 = 5
- Permute the sequence (i2, j2), . . . ,(i5, j5)

v = (2,4) (1,1) (2,3) (3,2) (4,2) (1,4) (4,4) (2,4) (2,3) (1,3) (2,4) (3,3)

184



Sampling the augmented data

The Metropolis-Hastings algorithm is defined by the following steps:

1. given v i = v , generate ṽ from the proposal distribution u(ṽ |v i )

2. take

v i+1 =

{ ṽ with probability ρ(ṽ ,v)

v with probability 1−ρ(ṽ ,v)

where

ρ(ṽ ,v) = min
{

P(ṽ)u(v |ṽ )

P(v)u(ṽ |v )
,1
}

The transition probabilities of the chain generate by the Metropolis-Hastings
algorithm are given by ρ(ṽ ,v)u(ṽ |v )
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v with probability 1−ρ(ṽ ,v)
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Sampling the augmented data

Theorem
The Metropolis-Hastings algorithm leads to an irreducible, aperiodic and
reversible Markov-chain with stationary distribution:

P(v |x(t0),x(t1))∝ (nλ)R

R!
e−nλ

R∏
r=1

1
n pir jr (β,x(Tr ))

Proof

- The Markov chain is irreducible.
Pairwise deletions and insertions and single deletion and insertion are
sufficient for all v ∈V to communicate.

- The Markov chain is aperiodic.
The graph associated to the resulting Markov-chain contains all the loops
and thus the greatest common divisor of all cycles is one.
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Sampling the augmented data

- The Markov chain is reversible. The detailed balance condition:

ρ(ṽ ,v)u(ṽ |v )P(v) = ρ(v , ṽ)u(v |ṽ )P(ṽ)

is satisfied.

ρ(ṽ ,v)u(ṽ |v )P(v) = min
{

P (̃v)u(v
∣∣̃v )

P(v)u(̃v |v )
,1
}

u(ṽ |v )P(v) =

= min
{

P (̃v)u(v
∣∣̃v )

u(̃v |v )
,P(v)

}
u(ṽ |v ) =

= min
{

u(v
∣∣̃v )

u(̃v |v )
,

P(v)

P (̃v)

}
u(ṽ |v )P(ṽ) =

= min
{

1, P(v)u(̃v |v )

P (̃v)u(v
∣∣̃v )

}
u(v |ṽ )P(ṽ) =

= ρ(v , ṽ)u(v |ṽ )P(ṽ)
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Sampling the augmented data

The ML estimation algorithm can be sketched in the following way:

1. For each m = 1, . . . ,M−1 makes a large number of Metropolis-Hastings
steps yielding v (i) = (v (i)

1 , . . . ,v (i)
M−1)

2. Compute the score function:

∂

∂θ
log(L(θ̂i ;x ;v (i)

m ))

3. Update the parameter estimate using the Robbins-Monro step

θi+1 = θi + ai D−1U(L(θ̂i ;x ;v (i)
m ))

The estimate θ̂ is calculated as the average of the θi+1 values generated by this
algorithm.
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Outline

Introduction

The Stochastic actor-oriented model

Extending the model: analyzing the co-evolution of networks and behavior
Motivation
Selection and influence
Model definition and specification
Parameter interpretation
Simulating the co-evolution of networks and behavior
Parameter estimation

Something more on the SAOM
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Networks are dynamic by nature: a real example
Ties and actors’characteristics can change over time.
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Motivation

1. Social network dynamics can depend on actors’characteristics.

Selection process: relationship partners are selected according to their
characteristics

Example
Homophily: the formation of relations based on the similarity of two actors

E.g. smoking behavior
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Motivation

2. Changeable actors’characteristics can depend on the social network

E.g.: opinions, attitudes, intentions, etc. - we use the word behavior for all of
these!

Influence process: actors adjust their characteristics according to the
characteristics of other actors to whom they are tied

Example
Assimilation/contagion: connected actors become increasingly similar over time

E.g. smoking behavior
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Competing explanatory stories

Homophily and assimilation give rise to the same outcome (similarity of
connected individuals)

⇓

study of influence requires the consideration of selection and vice versa.

Fundamental question: is this similarity caused mainly by influence or mainly by
selection?

Extending the SAOM for the co-evolution of networks and behaviors

195



Competing explanatory stories

Homophily and assimilation give rise to the same outcome (similarity of
connected individuals)

⇓

study of influence requires the consideration of selection and vice versa.

Fundamental question: is this similarity caused mainly by influence or mainly by
selection?

Extending the SAOM for the co-evolution of networks and behaviors

195



Competing explanatory stories

Example
Similarity in smoking:

Selection: “a smoker may tend to have smoking friends because, once
somebody is a smoker, he or she is likely to meet other smokers in smoking
areas and thus has more opportunities to form friendship ties with them”

Influence: “the friendship with a smoker may have made an actor smoking in
the first place”
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Longitudinal network-behavior panel data

1. a network x represented by its adjacency matrix

2. a series of actors’ attributes:
- H constant covariates V1, · · · ,VH

- L behavior covariates Z1(t), · · · ,ZL(t)
Behavior variables are ordinal categorical variables.

Longitudinal network-behavior panel data: networks and behaviors observed at
M ≥ 2 time points t1, · · · , tM

(x ,z)(t0), (x ,z)(t1), · · · , (x ,z)(tM)

and the constant covariates V1, · · · ,VH .
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Assumptions
1. Distribution of the process.

Changes between observational time points are modeled according to a
continuous-time Markov chain.

- State space C: all the possible configurations arising from the
combination of network and behaviors

|C |= 2n(n−1)×Bn

where B is the number of categories for the behavior variable.

- Markovian assumption: changes actors make are assumed to depend
only on the current state of the network

- Continuous-time:
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Assumptions
1. Distribution of the process.

Changes between observational time points are modeled according to a
continuous-time Markov chain.

- State space C: all the possible configurations arising from the
combination of network and behaviors

|C |= 2n(n−1)×Bn

where B is the number of categories for the behavior variable.

- Markovian assumption: changes actors make are assumed to depend
only on the current state of the network and behavior

- Continuous-time:
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Assumptions
2. Opportunity to change.

At any given moment one probabilistically selected actor has the
opportunity to change one of his outgoing ties or his behavior.
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Assumptions

3. Absence of co-occurrence.
At each instant t, only one actor has the opportunity to change (one of his
outgoing ties or his behavior)

4. Actor-oriented perspective.
Actors control their outgoing ties as well as their own behavior.

- the actor decide to change one of his outgoing ties or his behavior
trying to maximize a utility function

- two distinct objective functions: one for the network and one for the
behavior change

- actors have complete knowledge about the network and the behaviors
of all the the other actors

- the maximization is based on immediate returns (myopic actors)
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Model definition

The co-evolution process is decomposed into a series of micro-steps:

- the opportunity of changing one network tie and the corresponding tie
changed

- the opportunity of changing a behavior and the corresponding unit
changed in behavior

⇓

every micro-step requires the identification of a focal actor who gets the
opportunity to make a change and the identification of the change outcome

Occurrence Preference

Network changes Network rate function Network objective function

Behavioral changes Behavioral rate function Behavioral objective function
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The rate functions

The frequency by which actors have the opportunity to make a change is
modeled by the rate functions, one for each type of change.

Why must we specify two different rate functions?

Practically always, one type of decision will be made more frequently than the
other

Example
In the joint study of friendship and smoking behavior at high school, we would
expect more frequent changes in the network than in behavior
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The rate functions

Network rate function
T net

i = the waiting time until i gets the opportunity to make a network change

T net
i ∼ Exp(λnet

i )

Behavior rate function
T beh

i = the waiting time until i gets the opportunity to make a behavior change

T beh
i ∼ Exp(λbeh

i )

Waiting time for a new micro-step
T net∨beh

i = the waiting time until i gets the opportunity to make any change

T net∨beh
i ∼ Exp(λtot )

where
λtot =

∑
i

(λnet
i +λbeh

i )
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The rate functions (simplest specification)

Network rate function
T net

i = the waiting time until i gets the opportunity to make a network change

T net
i ∼ Exp(λnet )

Behavior rate function
T beh

i = the waiting time until i gets the opportunity to make a behavior change

T beh
i ∼ Exp(λbeh)

Waiting time for a new micro-step
T net∨beh

i = the waiting time until i gets the opportunity to make any change

T net∨beh
i ∼ Exp(λtot )

where
λtot = n(λnet +λbeh)
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The rate functions (simplest specification)

Probabilities for an actor to make a micro-step

P(i can make a network micro− step) =
λnet

λtot

P(i can make a behavioral micro− step) =
λbeh

λtot

Probabilities for a micro-step

P(network micro− step) =
nλnet

λtot
=

λnet

λnet +λbeh

P(behavioral micro− step) =
nλbeh

λtot
=

λbeh

λnet +λbeh
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The objective functions

Why must we specify two different objective functions?

- The network objective function represents how likely it is for i to change
one of his outgoing ties

- The behavioral objective function represents how likely it is for the actor i
the current level of his behavior

Network utility function

unet
i (β,x(i ; j),z,v) = f net

i (β,x(i ; j),z,v) + εi (t,x , j)

=

K∑
k=1

βk snet
ik (x ,z,v) + εi (t,x , j)
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The objective functions
Behavioral utility function

ubeh
i (γ,z(l ; l ′),x ,v) = f beh

i (γ,z(l ; l ′),x ,v) + εi (t,z, l , l ′)

=

W∑
w=1

γw sbeh
iw (x ,z(l ; l ′),v) + εi (t,z, l , l ′)

where
- sbeh

w (x ,z,v) are effects
- γw are statistical parameters
- εi (t,z, l , l ′) is a random term

The probability that an actor i changes his own behavior by one unit is:

pll′(γ,z(l ; l ′),x ,v) =
exp
(

f beh
i (γ,z(l ; l ′),x ,v)

)∑
l′′∈{l+1,l−1,l}

exp
(

f beh
i (γ,z(l ; l ′′),x ,v)

)
pll is the probability that i does not change his behavior
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- γw are statistical parameters
- εi (t,z, l , l ′) is a random term

The probability that an actor i changes his own behavior by one unit is:

pll′(γ,z(l ; l ′),x ,v) =
exp
(

f beh
i (γ,z(l ; l ′),x ,v)

)∑
l′′∈{l+1,l−1,l}

exp
(

f beh
i (γ,z(l ; l ′′),x ,v)

)
pll is the probability that i does not change his behavior
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The objective functions
The specification of the behavioral objective function

- Basic shape effects

sbeh
i linear (x ,z,v) = zi sbeh

i quadratic (x ,z,v) = z2
i

The basic shape effects must be always included in the model specification

negative γquad positive γquad
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The objective functions

The specification of the behavioral objective function

- Classical influence effects

1. The average similarity effect sbeh
i avsim(x ,z,v)

sbeh
i avsim(x ,z,v) =

1
xi+

n∑
j=1

xij (simz (ij)− simz )

where

simz (ij) = 1−

∣∣zi − zj
∣∣

Rz
Rz is the range of the behavior z and simz is the mean similarity
value

2. The total similarity effect sbeh
i totsim(x ,z,v)

sbeh
i totsim(x ,z,v) =

n∑
j=1

xij (simz (ij)− simz )
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The objective functions

The specification of the behavioral objective function

- Position-dependent influence effects

Network position could also have an effect on the behavior of dynamics

1. outdegree effect

sbeh
i out (x ,z,v) = zi

n∑
j=1

xij

2. indegree effect

sbeh
i ind (x ,z,v) = zi

n∑
j=1

xji

- Effects of other actor variables.
For each actor’s attribute a main effect on the behavior can be included in
the model
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Example

Example data: excerpt from the “Teenage Friends and Lifestyle Study” data set

We will use the SAOM for the co-evolution of networks and behaviors to
distinguish influence from selection.

1. Do pupils select friends based on similar smoking behavior?

2. Are pupils influenced by friends to adjust to their smoking behavior?

Dependent variables: friendship networks and smoking behavior

Covariate: gender
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Precondition of the analysis

To find out whether it makes sense to analyze the data with a co-evolution
model one should check whether:

1. the data are sufficiently informative to allow for identification of effects

J =
N11

N11 + N01 + N10
> 0.3 Jaccard index
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Precondition of the analysis
2. there is interdependence between network and behavioral variables

I =

n
∑

ij
xij (zi − z)(zj − z)(∑

ij
xij

)(∑
i

(zi − z)2

) Moran index

where z is the mean of z over all the periods
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Precondition of the analysis
2. there is interdependence between network and behavioral variables

I =

n
∑

ij
xij (zi − z)(zj − z)(∑
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xij
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) Moran index
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Precondition of the analysis

The computation of the index I for the data leads to

0.244 0.258 0.341

Conclusion:
there is considerable dependence between networks and behaviors
and it is reasonable to apply the SAOM

moran1 <- nacf(net1,tobacco[,1],lag.max=1,neighborhood.type = ”out”,
type=”moran”,mode=”digraph”)

moran2 <- nacf(net2,tobacco[,2]„lag.max=1,neighborhood.type = ”out”,
type=”moran”,mode=”digraph”)

moran3 <- nacf(net3,tobacco[,3]„lag.max=1,neighborhood.type = ”out”,
type=”moran”,mode=”digraph”)

moranInd <- c(moran1[2],moran2[2],moran3[2])
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Parameter interpretation: a baseline model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 8.6287 ( 0.6666 )
constant friendship rate (period 2) 7.2489 ( 0.5466 )

outdegree (density) -2.4084 ( 0.0407 ) -59.1268
reciprocity 2.7024 ( 0.0823 ) 32.8337

Behavior Dynamics
rate smokebeh (period 1) 3.8922 ( 1.9689 )
rate smokebeh (period 2) 4.4813 ( 2.3679 )

behavior smokebeh linear shap -3.5464 ( 0.4394 ) -8.0712
behavior smokebeh quadratic shape 2.8464 ( 0.3628 ) 7.8447

Network rate parameters:
- about 9 opportunities for change in the first period
- about 7 opportunities for change in the second period
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- about 4 opportunities for a behavioral change in the first period
- about 4 opportunities for a behavioral change in the second period
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Behavioral objective function parameters:

attractiveness of different behavioral levels based on the current structure of
the network and the behavior of the others
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Parameter interpretation: a baseline model

- Smoking behavior: coded with 1 for “no”, 2 for “occasional”, and 3 for
“regular” smokers.

- The smoking covariate is centered: z = 1.377 is the mean of the covariate

zi − z =


−0.377 for no smokers

0.623 for occasional smokers

1.623 for regular smokers

- The contribution to the behavioral objective function is

γlinear (zi − z) +γquadratic (zi − z)2 =

=−3.5464(zi − z) + 2.8464(zi − z)2
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Parameter interpretation: a baseline model

U-shaped changes in the behavior are drawn to the extreme of the range
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A more complex model

The baseline model does not provide any information about selection and
influence processes:

- the network dynamics are explained by the preference towards creating and
reciprocating ties

- the behavior dynamics are described only by the distribution of the
behavior in the population

If we want to distinguish selection from influence we should include in the
objective functions specification:

- the effects that capture the dependence of social network dynamics on
actor’s characteristic

- the effects that capture the dependence of behavior dynamics on social
network
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A more complex model

Effects for the dependence of network dynamics on actor’s characteristic

- pupils prefer to establish friendship relations with others that are similar to
themselves → covariate similarity

This effect must be controlled for the sender and receiver effects of the
covariate.

- Covariate ego effect

- Covariate alter effect
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A more complex model
Effects for the dependence of behavior dynamics on network

- pupils tend to adjust their smoking behavior according to the behaviors of
their friends → average similarity effect

This effect must be controlled for the indegree and the outdegree effects
- Indegree effect

- Outdegree effect
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- Indegree effect

- Outdegree effect

234



A more complex model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 10.7166 ( 1.4036 )
constant friendship rate (period 2) 9.0005 ( 0.7709 )

outdegree (density) -2.8435 ( 0.0572 ) -49.6776
reciprocity 1.9683 ( 0.0933 ) 21.1077
transitive triplets 0.4447 ( 0.0322 ) 13.7964
sex ego 0.1612 ( 0.1206 ) 1.3368
sex alter -0.1476 ( 0.1064 ) -1.3871
sex similarity 0.9104 ( 0.0882 ) 10.3244
smoke ego 0.0665 ( 0.0846 ) 0.7857
smoke alter 0.1121 ( 0.0761 ) 1.4719
smokebeh similarity 0.5114 ( 0.1735 ) 2.9479

Rate parameters: the speed at which tie change occur is higher than the speed
at which behavioral change occur
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Network Dynamics
constant friendship rate (period 1) 10.7166 ( 1.4036 )
constant friendship rate (period 2) 9.0005 ( 0.7709 )
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sex ego 0.1612 ( 0.1206 ) 1.3368
sex alter -0.1476 ( 0.1064 ) -1.3871
sex similarity 0.9104 ( 0.0882 ) 10.3244
smoke ego 0.0665 ( 0.0846 ) 0.7857
smoke alter 0.1121 ( 0.0761 ) 1.4719
smokebeh similarity 0.5114 ( 0.1735 ) 2.9479

Network objective function parameters:

tendency towards reciprocity, transitivity and homophily with respect to gender
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A more complex model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 10.7166 ( 1.4036 )
constant friendship rate (period 2) 9.0005 ( 0.7709 )

outdegree (density) -2.8435 ( 0.0572 ) -49.6776
reciprocity 1.9683 ( 0.0933 ) 21.1077
transitive triplets 0.4447 ( 0.0322 ) 13.7964
sex ego 0.1612 ( 0.1206 ) 1.3368
sex alter -0.1476 ( 0.1064 ) -1.3871
sex similarity 0.9104 ( 0.0882 ) 10.3244
smoke ego 0.0665 ( 0.0846 ) 0.7857
smoke alter 0.1121 ( 0.0761 ) 1.4719
smokebeh similarity 0.5114 ( 0.1735 ) 2.9479

Network objective function parameters:

pupils selected others with similar smoking behavior as friends

→ evidence for selection process
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A more complex model

The contribution to the network objective function is given by:

βego(zi − z) +βalter (zj − z) +βsame
(

1− |zi−zj |
Rz
− simz

)
=

= 0.0665(zi −1.377) + 0.1121(zj −1.377) + 0.5114(1− |zi−zj |
Rz
−0.7415)

zi/zj no occasional regular
no 0.0648 -0.0787 -0.2223
occasional -0.1243 0.2435 0.0999
regular -0.3135 0.0543 0.4221

- preference for similar alters
- this tendency is strongest for high values on smoking behavior
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A more complex model

Estimates s.e. t-score
Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )

behavior smokebeh linear shape -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Behavioral objective function parameters:

U-shaped distribution of the smoking behavior
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A more complex model

Estimates s.e. t-score
Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )

behavior smokebeh linear shape -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Behavioral objective function parameters:

indegree and outdegree effects are not significant
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A more complex model

Estimates s.e. t-score
Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )

behavior smokebeh linear shape -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Behavioral objective function parameters:

pupils are influenced by the smoking behavior of the others

→ evidence for influence process
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A more complex model

The contribution to the behavioral objective function is given by:

γlinear (zi − z) +γquadratic (zi − z)2 +γavsim
1

xi+

n∑
j=1

xij (simz (ij)− simz ) =

=−3.3573(zi − z) + 2.8406(zi − z)2 + 3.4361 1
xi+

n∑
j=1

xij (simz (ij)−0.7415)

where simz (ij) = 1− |zi−zj |
RZ

= 1

Example

a) i adjusts his behavior to “no-smoker” when all of his friends are no-smokers

simz (ij) = 1− |1−1|
2 = 1

−3.3573(1−1.377) + 2.8406(1−1.377)2 + 3.4361(1−0.7415) = 2.56
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A more complex model
The contribution to the behavioral objective function is given by:

γlinear (zi − z) +γquadratic (zi − z)2 +γavsim
1

xi+

n∑
j=1

xij (simz (ij)− simz ) =

=−3.3573(zi − z) + 2.8406(zi − z)2 + 3.4361 1
xi+

n∑
j=1

xij (simz (ij)−0.7415)

where simz (ij) = 1− |zi−zj |
RZ

= 1

Example

b) i adjusts his behavior to “no-smoker” when all of his friends are occasional
smokers

simz (ij) = 1− |1−2|
2 = 0.5

−3.3573(1−1.377) + 2.8406(1−1.377)2 + 3.4361(0.5−0.7415) = 0.84
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A more complex model
The contribution to the behavioral objective function is given by:

γlinear (zi − z) +γquadratic (zi − z)2 +γavsim
1

xi+

n∑
j=1

xij (simz (ij)− simz ) =

=−3.3573(zi − z) + 2.8406(zi − z)2 + 3.4361 1
xi+

n∑
j=1

xij (simz (ij)−0.7415)

where simz (ij) = 1− |zi−zj |
RZ

= 1

Example

b) i adjusts his behavior to “no-smoker” when all of his friends are regular
smokers

simz (ij) = 1− |1−3|
2 = 0

−3.3573(1−1.377) + 2.8406(1−1.377)2 + 3.4361(0−0.7415) =−0.88
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A more complex model

The contribution to the behavioral objective function is given by:

γlinear (zi − z) +γquadratic (zi − z)2 +γavsim
1

xi+

n∑
j=1

xij (simz (ij)− simz ) =

=−3.3573linear (zi − z) + 2.8406quadratic (zi − z)2 + 3.4361 1
xi+

n∑
j=1

xij (simz (ij)−0.7415)

zj / zi no occasional regular
no 2.56 -1.82 -0.51
occasional 0.84 -0.10 1.20
regular -0.88 -1.82 2.92

- the focal actor prefers to have the same behavior as all these friends
(except for the occasional smokers)

- friends do not smoke at all: the preference toward imitating their behavior
is less strong
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Simulating the co-evolution of networks and behavior

Algorithm 5: Co-evolution of networks and behavior
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

T net ∼ Exp(λnet ), T beh ∼ Exp(λbeh)

if min{T net ,T beh}= T net then
i ∼ Uniform(1, . . . ,n), j ∼ pij
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + T net

else
i ∼ Uniform(1, . . . ,n), l ′ ∼ pll′
if l 6= l ′ then

z ← z(l ; l ′)
else

z ← z
t← t + T beh

x sim(t1)← x
zsim(t1)← z
return x sim(t1), zsim(t1)

246



Simulating the co-evolution of networks and behavior

1. Unconditional simulation:
simulation carries on until a predetermined time length has elapsed
(usually until t = 1).

2. Conditional simulation on the observed number of changes:
- simulation runs on until

n∑
i,j=1
ı 6=j

∣∣∣X obs
ij (t1)−Xij (t0)

∣∣∣=

n∑
i,j=1

∣∣∣X sim
ij (t1)−Xij (t0)

∣∣∣

- simulation runs on until
n∑

i=1

∣∣∣zobs
i (t1)− zi (t0)

∣∣∣=

n∑
i=1

∣∣∣zsim
i (t1)− zi (t0)

∣∣∣
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(usually until t = 1).

2. Conditional simulation on the observed number of changes:
- simulation runs on until

n∑
i,j=1
ı 6=j

∣∣∣X obs
ij (t1)−Xij (t0)

∣∣∣=

n∑
i,j=1

∣∣∣X sim
ij (t1)−Xij (t0)

∣∣∣

- simulation runs on until
n∑

i=1

∣∣∣zobs
i (t1)− zi (t0)

∣∣∣=

n∑
i=1

∣∣∣zsim
i (t1)− zi (t0)

∣∣∣
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The parameter estimation (MoM)
Aim: estimate the parameter θ for the co-evolution model

- M−1 rate parameters for the network rate function

λnet
1 , . . . , λnet

M−1

- M−1 rate parameters for the behavior rate function

λbeh
1 , . . . , λbeh

M−1

- K parameters for the network objective function
K∑

k=1

βk snet
ik (x ,z,v)

- W parameters for the behavior objective function
W∑

w=1
γw sbeh

iw (x ,z(l ; l ′),v)
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The parameter estimation (MoM)

Aim: estimate the 2(M−1) + K + W -dimensional parameter θ using the MoM

In practice:

1. find 2(M−1) + K + W statistics

2. set the theoretical expected value of each statistic equal to its sample
counterpart

3. solve the resulting system of equations

Eθ[S− s] = 0

with respect to θ
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The parameter estimation (MoM)

Statistics:

- Network rate parameters for the period m

snet
λm (X(tm),X(tm−1)|X(tm−1) = x(tm−1)) =

n∑
i,j=1

∣∣Xij (tm)−Xij (tm−1)
∣∣

- Behavior rate parameters for the period m

sbeh
λm (Z(tm),Z(tm−1)|Z(tm−1) = z(tm−1)) =

n∑
i=1

|Zi (tm)−Zi (tm−1)|
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The parameter estimation (MoM)

Statistics:

- Network objective function effects
M−1∑
m=1

snet
mk ((X ,Z ,V )(tm)|(x ,z,v)(tm−1)) =

M−1∑
m=1

snet
mk ((X ,Z ,V )(tm),(X ,Z ,V )(tm−1))

- Behavior objective function effects
M−1∑
m=1

sbeh
mw ((X ,Z ,V )(tm)|(x ,z,v)(tm−1)) =

M−1∑
m=1

sbeh
mw ((X ,Z ,V )(tm),(X ,Z ,V )(tm−1))
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The parameter estimation (MoM)

Consequently the MoM estimator for θ is provided by the solution of the
system of equations:

Eθ [sλm (X(tm),X(tm−1)|X(tm−1) = x(tm−1))] = sλm (x(tm),x(tm−1))

Eθ [sλm (Z(tm),Z(tm−1)|Z(tm−1) = z(tm−1))] = sλm (z(tm),z(tm−1))

Eθ

[
M−1∑
m=1

snet
mk ((X ,Z ,V )(tm)|(x ,z,v)(tm−1))

]
=

M−1∑
m=1

snet
mk ((x ,z,v)(tm),(x ,z,v)(tm−1))

Eθ

[
M−1∑
m=1

sbeh
mw ((X ,Z ,V )(tm)|(x ,z,v)(tm−1))

]
=

M−1∑
m=1

sbeh
mw ((x ,z,v)(tm),(x ,z,v)(tm−1))
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The parameter estimation (MoM)

Example
Let us assume to have observed a network at M = 3 time points

We want to model the network evolution according to the outdegree, the
reciprocity, the linear shape and the quadratic shape effects

θ = (λnet
1 ,λnet

2 ,λbeh
1 ,λbeh

2 ,βout ,βrec ,γlinear ,γquadratic )
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The parameter estimation (MoM)

Example
Statistics for the network evolution:

sλnet
1

(X(t1),X(t0)|X(t0) = x(t0)) =
4∑

i,j=1

∣∣Xij (t1)−Xij (t0)
∣∣

sλnet
2

(X(t2),X(t1)|X(t1) = x(t1)) =
4∑

i,j=1

∣∣Xij (t2)−Xij (t1)
∣∣

M−1∑
m=1

sout (X(tm)|X(tm−1) = x(tm−1)) =
2∑

m=1

4∑
i,j=1

Xij (tm)

M−1∑
m=1

srec (X(tm)|X(tm−1) = x(tm−1)) =
2∑

m=1

4∑
i,j=1

Xij (tm)Xji (tm)
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The parameter estimation (MoM)

Example
Statistics for the behavior evolution:

sλbeh
1

(Z(t1),Z(t0)|Z(t0) = z(t0)) =
4∑

i=1
|Zi (t1)−Zi (t0)|

sλbeh
2

(Z(t2),Z(t1)|Z(t1) = z(t1)) =
4∑

i=1
|Zi (t2)−Zi (t1)|

M−1∑
m=1

slinear (Z(tm)|Z(tm−1) = z(tm−1)) =
2∑

m=1

4∑
i=1

zi (tm)

M−1∑
m=1

squadratic (Z(tm)|Z(tm−1) = z(tm−1)) =
2∑

m=1

4∑
i=1

z2
i (tm)
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The parameter estimation (MoM)
Example

sλnet
1

= 3 sλnet
2

= 4

sλbeh
1

= 2 sλbeh
2

= 4

sout = 5 + 7 = 12 srec = 4 + 6 = 10

slinear = 5 + 7 = 12 squadratic = 7 + 13 = 20
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The parameter estimation (MoM)
Example
We look for the value of θ that satisfies the system:

Eθ
[

Sλnet
1

]
= 3

Eθ
[

Sλnet
2

]
= 4

Eθ
[

Sλbeh
1

]
= 2

Eθ
[

Sλbeh
2

]
= 4

Eθ[Sout ] = 12

Eθ[Srec ] = 10

Eθ[Slinear ] = 12

Eθ[Squadratic ] = 20
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The parameter estimation (MoM)

In a more compact notation, we look for the value of θ that satisfies the
system:

Eθ[S− s] = 0

but we know that we cannot solve it analytically.
We can use the Robbins-Monro algorithm:

Phase 1: provide the initial value for θ and for D

Phase 2: updating the value of θ via the RM step:

θ̂i+1 = θ̂i −ai D−1 (Eθi [S]− s
)

Phase 3: estimate the s.e. of the estimate
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Outline

Introduction

The Stochastic actor-oriented model

Extending the model: analyzing the co-evolution of networks and behavior

Something more on the SAOM
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Creating and deleting ties

Terminating a tie is not just the opposite of creating a tie

Example

- the loss in terminating a tie is greater than the reward in creating one

- transitivity plays an important role especially in creating ties

This is modeled by adding to the objective function one of the two components:

1. the creation function

2. the endowment function
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The creation function

Models the gain in satisfaction incurred when a network tie is created:

ci (δ,x) =
∑

k

δk sik (x)

where

- δk are statistical parameters

- sik (x) are the effects

The utility function for an actor i when he creates a new tie is provided by:

ui (x) = fi (β,x) + ci (δ,x) + εi (t,x , j)

The creation function is zero for the dissolution of ties

261



The endowment function

Models the loss in satisfaction incurred when a network tie is deleted

ei (η,x) =
∑

k

ηk sik (x)

where

- ηk are statistical parameters

- sik (x) are the effects

The utility function for an actor i when he deletes a tie is provided by:

ui (x) = fi (β,x) + ei (η,x) + εi (t,x , j)

The endowment function is zero for the creation of ties
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Creating and deleting ties - Remarks

- creation and deletion functions must not be included when ties mainly are
created or terminated

- it could also happen that increasing a behavior is not the same as
decreasing a behavior. Thus, there are also:

1. the creation behavior function

2. the endowment behavior function

but their usage is still under investigation
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Creating and deleting ties

Example
Example data: excerpt from the “Teenage Friends and Lifestyle Study” data set

We estimate the SAOM for investing the evolution of friendship networks
according to:

- outdegree
- reciprocity
- transitivity
- reciprocity for the endowment function

myeff < − includeEffects(myeff,transTrip)
myeff < − includeEffects(myeff,recip,type=”endow”)
myeff
mymodel < − sienaModelCreate(useStdInits = FALSE, projname = ’tfls’)
model1 < − siena07(mymodel, data = mydata, effects=myeff,useCluster=TRUE,
nbrNodes=2, initC=TRUE,clusterString=rep(”localhost”, 2))
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Creating and deleting ties

Example

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 6.70 0.73
Rate parameter period 2 5.81 0.58

Other parameters:
outdegree -2.58 0.05 -51.62
reciprocity 3.23 0.29 11.15
reciprocity (endow) -2.23 0.58 -3.85
transitive triplets 0.44 0.03 14.55

The utility function for an actor i when he deletes a tie is provided by:

ui (x) = fi (β,x) + ei (η,x) + εi (t,x , j) =

= βout si out (x) +βrec si rec (x) +βtrans si trans (x) +ηrec si rec (x)

= −2.58si out (x) + 3.23si rec (x) + 0.44si trans (x)−2.23si rec (x)
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Creating and deleting ties
Example

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.44 0.73
Rate parameter period 2 7.09 0.58

Other parameters:
outdegree -2.58 0.05 -51.62
reciprocity 3.23 0.29 11.15
reciprocity (endow) -2.23 0.58 -3.85
transitive triplets 0.44 0.03 14.55

Ties formation/deletion

-2.58

+2.58
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Creating and deleting ties
Example
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Creating and deleting ties
Example

Estimates s.e. t-score
Rate parameters:
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Creating and deleting ties

Example

Ties formation/deletion
-2.58

+2.58

Reciprocation/ending reciprocation
+0.65

-2.88

Conclusions:

1. formation of reciprocal ties is more rewarding than the formation of a
non-reciprocal tie

2. dissolution of reciprocal ties is more costly than the dissolution of a
non-reciprocal tie and the creation of a reciprocal tie
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Non-directed relations

For directed relation we assumed that:

1. an actor gets the opportunity to make a change

2. he decided for the change that assures him the highest payoff

Are this assumptions still reliable when we consider undi-
rected relations such as: collaboration, trade, strategic
alliance?

- Yes, if one actor (dictator) can impose a decision
about a tie to another

- No, if there is coordination or negotiation about a
tie
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Non-directed relations

1. Dictatorial choice: i chooses his action and imposes his decision to j
Actor 1 gets the opportunity to change
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Non-directed relations

1. Dictatorial choice: i chooses his action and imposes his decision to j
Actor 1 evaluates the alternatives and the corresponding objective functions
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Non-directed relations

1. Dictatorial choice: i chooses his action and imposes his decision to j
E.g. actor 1 imposes his choice to actor 1
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Non-directed relations

2. Mutual agreement: both actors must agree
Actor 1 gets the opportunity to change
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Non-directed relations

2. Mutual agreement: both actors must agree
Actor 1 evaluates the alternatives and the corresponding objective functions
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Non-directed relations

2. Mutual agreement: both actors must agree
Actor 1 suggests to modify the tie towards actor 2
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Non-directed relations

2. Mutual agreement: both actors must agree
Actor 2 evaluates the proposal of actor 1

and accepts it with probability

P(2 accepts tie proposal) =
exp(f2(x+12))

exp(f2(x+12)) + exp(f2(x−12))
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Non-directed relations - Tie-based approach
A couple (i , j) of actors is selected with rate λij and gets the opportunity to
revise the tie among them

1. Dictatorial choice: one actor can impose the decision (e.g. actor 1)

Actor 1 chooses his action with probability

P(1 imposes a tie on 2) =
exp(f1(x+12))

exp(f1(x+12) + f1(x−12)) 279
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Non-directed relations - Tie-based approach
A couple (i , j) of actors is selected with rate λij and gets the opportunity to
revise the tie among them

2. Mutual agreement: both actors propose a tie

Actor 1 and 2 created a tie with probability

P(+12) =
exp(f1(x+12))

exp(f1(x+12)) + exp(f1(x−12))

exp(f2(x+12)

exp(f2(x+12)) + exp(f2(x−12))
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Non-directed relations - Tie-based approach
A couple (i , j) of actors is selected with rate λij and gets the opportunity to
revise the tie among them

3. Compensatory: the decision is made on the combined interest

Actor 1 and 2 choose their action with probability

P(+12) =
exp(f1(x+12) + f2(x+12))

exp(f1(x+12) + f2(x+12)) + exp(f1(x−12) + f2(x−12))
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And others...

- Improving the estimation procedures (MLE)

- New estimation procedures (bayesian estimation)

- Goodness of fit of the model

- Model selection

- Time-heterogeneity tests

- Missing data

- Analysis of multiple relations

- ...
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