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Chapter 1

Time dependent Networks

In the last decade the interest of social network analysts has been extended from cross-sectional
data, deriving from a single observation of one network at a certain time point, to longitudinal
data, collected through the observation of a network over time. The reason for the growing in-
terest in time-dependent networks relies on the fact that ties may change over time: they can be
established or they can be broken. In this chapter, statistical models for time-dependent networks
are presented. After introducing (or briefly recalling) statistical concepts that are meaningful for
understanding the network models described in the following pages, the stochastic actor-oriented
model (SAOM) and its extensions will be presented.

1 Preliminaries

In the first part of the course we defined a (real-valued) random variable (r.v.) as a function
X : Ω → R, given a a probability space (Ω,P). A collection {X(t), t ∈ T} of r.vs. forms a
stochastic process.

Definition 1.1. A stochastic (or random) process is a mapping that associates to each index t ∈ T

a r.v. X(t) defined on a probability space (Ω,P) and taking value in the set R:

∀t ∈ T 7→ X(t) : Ω→ R

The realization of a stochastic process {X(t), t ∈ T} is an assignment to each t ∈ T of a possible
value of X(t) (Figure 1.1).

Figure 1.1
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CHAPTER 1. TIME DEPENDENT NETWORKS

Let S be the space in which the possible values of each X(t) lie. S is called the state space
of the process. The index t is often interpreted as time and, as a consequence, X(t) is the state of
the process at time t. For example X(t) can be the number of telephone calls that have arrived at
a switchboard of a company at time t, the amount of money that a Gambler has after each cards
game, and so on.
The main elements distinguishing stochastic process are related to the nature of the state space S,
the index set T and the dependence relations among the r.vs. X(t). In the following pages we will
consider continuous-time Markov chains, i.e. finite state processes evolving in continuous time
and which have the Markov property1.

1.1 Continuous-time Markov chains

Definition 1.2. A stochastic process {X(t), t ∈ T} has the Markov property if for any ti ∈ T the
conditional distribution of the future, {X(t)| t > ti}, given the present and the past {X(t)| t ≤ ti},
is a function only of the present X(ti). This implies that for any state x ∈ S, and for any pair of
time points ti < t j

P(X(t j) = x(t j)| X(t) = x(t) for all t ≤ ti) = P(X(t j) = x(t j)| X(ti) = x(ti))

Roughly speaking, the Markov property states that the probability of any particular future be-
havior of the process, when its present state is known exactly, is not altered by additional knowl-
edge concerning his past behavior. In other words the process retains no memory of where it has
been in the past. Thus, only the current state of the process can influence where it goes next.

Definition 1.3. A Continuous-time Markov chain {X(t), t ≥ 0} is a finite state, continuous-time
stochastic process having the Markovian property.

Example 1.4. Let X(t) equals the number of goals that a given soccer player scores by time t ∈ T.
Let us assume that T = [0,∞) describe the time the soccer player played in official matches. Then
{X(t), t ≥ 0} is a continuous-time Markov chain.

It is not difficult to understand why.

1. The state space of the process {X(t), t ≥ 0} is a countable set since at the end of his career
the soccer player will have scored a certain number of goals B. The state space of the process
is then described by the set

S= {0,1,2, . . . ,B}

2. The time is continuous since we are taking into account the time played in official games
and the player can score at any time.

3. The process {X(t), t ≥ 0} has the Markov property. To see this let us consider one of the
possible realization of the process (Figure 1.2). If we want to determine the probability
that the player will score the fifth goal at 269’ (future), the only information we need is the
number of goals that the player has scored till the 268’ 59” (present, red circle) and it is not
relevant to know the time at which each of the previous four goals was scored (past, blue
box).

1If S is a countable set (e.g. S= {0,1, . . .}), we refer to the process as “finite state” process. If S is an uncountable
set (e.g. S= R), we refer to the process as “continuous state” process.
When T is a countable set, the stochastic process is said to be a discrete-time process. If T is an interval of the real line,
the stochastic process is said to be a continuous-time process. For instance, the process {X(t), t = 0,1, . . .} indexed
by the nonnegative integers is a discrete-time process, while the process {X(t), t ≥ 0} indexed by the nonnegative real
numbers is a continuous-time process.
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1. PRELIMINARIES

Figure 1.2

There are different ways we can describe continuous-time Markov chains. Here we consider
the approach based on holding times and jump chain.

Holding times and the jump chain

The idea behind the definition of holding times and the jump chain is that if we want to describe
the process, we should characterize its realizations. In Figure 1.3 one realization of a continuous-
time Markov chain is depicted. To describe it, we can list the times at which a change in the state
happens and the corresponding state taken by the chain: the process starts in state 1 at time t = 0,
then it jumps from 1 to 3 at time t = 3, from 3 to 2 at time t = 12, from 2 to 1 at time 20, and so
on. In order to probabilistically describe this series of changes we should model the probability of
staying in a state for a certain amount of time (e.g. the probability of remaining in state 1) and the
probability of jumping from a state to another (e.g. the probability of jumping from state 1 to state
3).
Regarding the former, for each state i, the amount of time we spend in that state (i.e. the holding
time) is modeled by an exponential r.v. T with parameter λi > 0. Then, the probability that the
chain spends less than t time in the state i is provided by the following function:

P(T ≤ t) = 1− e−λit

The parameter λi can be interpreted as the speed at which the process leaves state i. Its inverse
1
λi

is the mean of the Exponential distribution and it is interpreted as the expected waiting time
the process spends in state i. The Exponential r.v. is also the only r.v. that has the memoryless
property.
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CHAPTER 1. TIME DEPENDENT NETWORKS

Figure 1.3

Definition 1.5. A r.v. T is memoryless if

P(T > s+ t | T > t) = P(T > s) ∀ s, t > 0

It is easy to prove the memoryless property for the Exponential r.v.

Proof.

P(T > s+ t | T > t) = P(T>t+s ∩ T>t)
P(T>t) = P(T>t+s)

P(T>t) = 1−P(T≤t+s)
1−P(T≤t) =

= 1−1+e−λi(t+s)

1−1+e−λit
= e−λis = P(T > s)

The memoryless property justifies the use of the Exponential r.v. for modeling the time a
process spends in state i, in fact the Markov property is a “forgetting” property. We can observe
that if λi = 0 we never leave the state i once we enter.
The probability of jumping from a state to another is described by a jump matrix P = (pi j : i, j ∈ S)
which satisfies the following properties:

1. pi j ≥ 0 ∀i, j ∈ S

2. ∑
j∈S

pi j = 1 ∀i ∈ S

P is a stochastic matrix (i.e., a matrix where each row sums to one) on the state space S, which
describes the next state we will go to when we leave a state i. In particular, pi j gives the probability
of going to state j when we make a jump out a state i. Formally:

pi j = P(X(t ′) = j | X(t) = i, given the opportunity to leave state i), t ′ > t

The following matrix is an example of transition matrix for the process whose trajectory is repre-
sented by Figure 1.3

P =


0.1 0 0.6 0.3
0.8 0.1 0.1 0
0.05 0.5 0.05 0.4
0.6 0.1 0.15 0.15
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The rows of P sum to 1 and each cell gives the probability of going from a state to another. For
instance, the probability of going from state 1 to state 3 is equal to 0.6, while it is not possible to
go directly from state 1 to state 2 (p12 = 0), but we can reach 2 from 1 through 3. When each state
of a chain is reachable (directly or indirectly) from any other state of the chain, the chain is said to
be irreducible.
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Chapter 2

The Stochastic actor-oriented model

Networks are dynamic by nature. Ties may change over time: they can be established or they
can be broken. These changes can be explained by the position of the actors within the network, as
well as by their individual or dyadic characteristics. The stochastic actor-oriented model (SAOM)
has the purpose to describe network evolution over time according to these potential explanatory
sources.

1 Notations and data

Let us focus the attention on a set N = {1, · · · ,n} of actors over which a relation R is defined.
We assume that the relations are non reflexive (i.e. i 9 i ∀i ∈ N ) and directed (i.e. i→ j does
not imply that j→ i ) The two sets N and R define a network which is described by its adjacency
matrix x = (xi j, i, j ∈N), where

xi j =


1 if i→ j

0 otherwise

We observed the network at M ≥ 2 time points t1, · · · , tM. The corresponding networks will be
denoted by x(t1), · · · ,x(tM). Furthermore, some actors’characteristics can be collected, such as
gender, seniority rank, and so forth. These characteristics are called actors’attributes or covariates
and will be denoted by V1, · · · , VH where H is the number of collected attributes. The network
observations x(t1), · · · ,x(tM) and the covariates V1, · · · ,VH constitutes the longitudinal panel data
that we want to analyze to determine the leading forces which govern the network evolution.
In more detail, the network evolution is the dependent variable and we want to describe it as a
function of structural effects, explanatory random variables and explanatory dyadic variables.

2 Assumptions

To statistically define the model some assumptions concerning the evolving process should be
formulated.

1. Ties are state. A network tie represents a state with a tendency to endure over time, rather
than a brief event. For instance, if we consider ties determined by friendship, trust or co-
operation, they can change but they endure over time. On the contrary, telephone calls or
e-mail exchanges among a group of actors at any given time point are brief events, which
start and finish in a short time.
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3. THE FORMULATION OF THE MODEL

2. Distribution of the process. The changing network is the outcome of a continuous-time
Markov chain. The state space X of the model is the set of all possible adjacency matrices
(digraphs) defined on the set of actors N. Since each dyad can take value 0 or 1 and the
number of possible ties in a network is n(n−1) (we are considering directed relations!), the
cardinality of X is 2n(n−1) and X is a countable set.
The continuous-time assumption means that the network evolves in continuous time, even
if we observed it only at discrete time points t1, · · · , tM. Formally we will say that there is a
“latent process” (i.e. not observable) going on between network observations.
The Markovian property suggests that for any point in time, the current state of the network
determines probabilistically its further evolution, and there are no additional effects of the
earlier past. This hypothesis allows us to consider the dependencies between network ties
as the result of processes where one tie is formed as a reaction to the existence of other ties.

3. Opportunity to change. At a given moment one probabilistically selected actor has the
opportunity to change one of his outgoing tie or not to change.

4. Absence of co-occurrence. It is assumed that no more than one tie can change at any given
moment t, i.e. only one actor has the opportunity to change one of his outgoing ties at t. This
implies that tie changes are not coordinated, and depend on each other only sequentially, via
the changing configuration of the whole network.

5. Actor-oriented perspective. Actors control their outgoing ties, i.e. they decide to change
one of their outgoing ties according to their position in the network, their attributes and
the characteristics of the other actors. This means that the actors do not change their ties
at will but they want to maximize a utility function under the structural configuration of
the network (i.e. actors are looking for the best rewarding in changing their outgoing ties
given the current configuration of the network). This explains the “actor-based” nature of
the model. Moreover it is assumed that actors have complete knowledge about the network
and all the other actors, so that they can maximize the utility function. This maximization
is based on immediate returns and not on long-run rewarding.

3 The formulation of the model

According to the previous assumptions, the evolution process can be decomposed into its
smallest possible components, which are called micro-steps. At each micro-step one probabilis-
tically selected actor might have the opportunity to change one of his outgoing ties, so that the
utility function is maximized. Formally we can describe each micro-step as a pair of elements:
the time at which one actor has the opportunity to change and the precise change he made. The
sequence of all micro-steps represents the complete data of the process.
The network evolution process can be then decomposed into two sub-processes: the change oppor-
tunity process, which describes how fast the opportunities for change are and the change determi-
nation process, which describes the precise tie that is changed when an actor has the opportunity to
make a change. This two sub-processes should remind the definition of a continuous-time Markov
chain according to the holding times and the jump chain (i.e. the waiting time until the next op-
portunity for a change made by an actor i corresponds to the holding time, while the probability
of changing the link xi j given the opportunity for changing is described by the transition matrix).
The distribution of the waiting time and the transition matrix of the jump chain are modeled by
the rate function and the objective function respectively.

7



CHAPTER 2. THE STOCHASTIC ACTOR-ORIENTED MODEL

3.1 The rate function

The waiting time between one opportunity of change for actor i and another is modeled by
an exponential distribution with parameter given by the rate function. This function describes the
average frequency at which each actor has the opportunity to change and its simplest specification
is obtained assuming that all actors have the same rate of change λ between two consecutive
observation moments, so that1

P(i has the opportunity of change) =
1
n
∀i ∈N

The rate parameter λ can assume nonnegative values and we can interpret it as the speed at which
an opportunity to change occurs. In particular the higher its value, the greater the number of
changes between two observation moments is.
A more complex (and realistic) specification of the rate function takes into account that actors may
change their ties at different frequencies, according to the position they have in the network and
their covariates. For instance, we can imagine that “younger individuals might change their ties
more frequently than older individuals, or that more central actors might change their ties more
frequently than peripheral actors”. In order to take into account this distinct aptitude we denote
by λi(α,x,v) the rate of changes of the actor i, where x is the current state of the network, v are
actors attributes and α is a vector of parameter. This notation expresses the dependence of the rate
function from structural effects and actor covariates. The waiting times until the next opportunity
for change by any actors follows an exponential distribution with parameter:

λ (α,x) =
n

∑
i=1

λi(α,x,z)

Thus, given that an opportunity for change occurs, the probability that it is the actor i who has the
opportunity to change is given by:

P(i has the opportunity of change) =
λi(α,x,z)
λ (α,x,z)

3.2 The objective function

To define the transition matrix and the jump chain we should spend some words on the choice
that an actor i must face once he has the opportunity to change. Given the current state of the
network x, i can decide not to change anything or to change one of his outgoing ties, for instance
the tie xi j directed to an actor j, into its opposite. In the following we will denote the network in
which the tie from i to j is turned into its opposite by x(i ; j). Since a tie can assume values 1 or
0, according to the fact that it is present or it is absent, changing a tie into its opposite means that
the tie variable changes from 1 to 0 or from 0 to 1. In the first case the tie is terminated, while in
the second the tie is created.
This suggests that the set of admissible choices has cardinality equal to n: n−1 changes and 1 non-
change. Consequently, the set of possible reachable states of the Markov chain that describes the
network evolution contains n elements: n−1 networks which are equal to that of the current state
except for the value assumed by the changed tie xi j and 1 equal to the current state. It turns out that
each actor can choose between a discrete finite set of alternatives, which are mutually exclusive
(the selected actor can make only one change) and exhaustive (the actor can decide among all the
other actors).

1Intuitively, since the actor has the same rate of changing, it is reasonable to assume that at each time point t each
actor has the same probability to be selected to change one of his outgoing tie.
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3. THE FORMULATION OF THE MODEL

Just to clarify, we can consider Figure 2.1. Let us assume that actor 1 has the opportunity of
changing. He can change his outgoing tie towards actor 2 (a)), or actor 3 (b)) or actor 4 (c)) or
do nothing (d)). Then the corresponding Markov chain can jump from x to x(1 ; 2), x(1 ; 3),
x(1 ; 4) or stay in x, respectively. These are the only four possible states that the chain can
reach. In fact, if we consider for example the two adjacency matrices depicted in e) it immediately
appears that they are not admissible. On one hand the first matrix does not respect the “opportunity
to change” assumption (actor 1 changed two of his outgoing ties) the second is against the “absence
of co-occurrence assumption” (even actor 3 changed one of his outgoing ties). It follows that the
transition matrix must assign probability 0 to the states represented by matrices differing in more
than one element and positive probabilities to the states represented by situations from a) to d). At
this point we need a rule on how to determine this nonzero probabilities.

Figure 2.1

The idea is to use a random utility model, usually applied in situations where there are decision
makers who face a choice between n alternatives. Each decision maker chooses the alternative that
assures him the highest pay-off. The reward of an actor i facing the choice j is quantified by the
utility function

Ui j = Fi j +Ei j (2.1)

where Fi j is the deterministic part of the utility (i.e. the part of utility that a researcher can observe),
and Ei j is a random term indicating the part of the actor’s preference that is not represented by the
systematic component Vi j. For a suitable choice of the distribution2 of εi j the probability that an
actor i faces the choice j can be expressed by

pi j =
eFi j

n
∑
j=1

eFi j

(2.2)

2It is assumed that Ei j is distributed as a Type I Extreme (or Gumbel) distribution:

fEi j (ε) = e−ε e−e−ε

ε ∈ R

The choice of this distribution is mainly related to the mathematical tractability of the model.
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In the SAOM, the utility function expresses the degree of satisfaction of an actor i towards a
particular configuration of a network. According to (2.1), the utility of actor i deriving from the
network configuration in which the tie form i to j is changed into its opposite, is defined as

ui(x(i ; j)) = fi(β ,x(i ; j))+Ei(t,x, j) (2.3)

The quantity fi(β ,x(i ; j)) is the deterministic part of the utility and is called objective function.3

The objective function is defined as a linear combination

fi(β ,x(i ; j)) =
K

∑
k=1

βksik(x(i ; j)) (2.4)

where βk are statistical parameters and sik(x(i ; j)) are the effects. The effects sik(x(i ; j)) are
relevant functions of the digraph which are supposed to play a key role in the network evolution.
In other words they represent the leading forces of the underlying process that governs network
changes from an observation moment to another. It is fundamental to specify that network effects
are aspects of the network as perceived by the focal actor i.
The strength of each effect is represented by the corresponding parameter βk, which should be
estimated on the basis of the longitudinal network data observed. βk can assume any real value
and can be interpreted as follows. If βk is equal to 0, it means that the corresponding effect plays
no role in the network dynamics. If it assumes a positive value, then there is higher probability of
moving into networks where the corresponding effect is higher. Vice versa if the parameter takes a
negative value there is higher probability of moving into networks where the corresponding effect
is lower.
The last term εi(t,x, j) of the objective function is the random term, distributed as a Gumbel
distribution. Thus, according to equation (2.2), the probability that an actor i changes his outgoing
ties towards j or leaves his outgoing tie variables unchanged is:

pi j =
exp( fi(β ,x(i ; j)))

n
∑

h=1
exp( fi(β ,x(i ; h)))

(2.5)

If i = j, then equation (2.5) represents the probability of not changing anything.

The objective function effects

Several effects are proposed in order to specify the objective function. They can be determined
endogenously or exogenously, according to the fact that they regard the structure of the network
or actor attributes, i.e. covariates. A complete list of effects can be found in [1], but here only the
basic ones are considered.
Each effect is characterized by a subscript i to remind that these network aspects are determined
from the point of view of the actor i, who has the opportunity to change. Furthermore, we use a
more compact notation, denoting by x′ the resulting network instead of x(i ; j).
Let us start considering endogenous effects which depend on network structure.

3The notation fi(β ,x(i ; j)) must be interpreted in the following way: the subscript i underlines that this is the
utility function for the focal actor i, while the two quantities between parentheses express the idea that the objective
function is a function of the state of the network obtained when i changes his outgoing tie towards j, x(i ; j), and of
statistical parameters β .
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3. THE FORMULATION OF THE MODEL

Endogenous effects
In this paragraph a short description of the main endogenous effect is given.

- The outdegree effect corresponds to the number of outgoing ties of actor i and is defined as:

si out(x′) = ∑
j

x′i j

The corresponding parameter βout reflects the preference of activity for actor i. It takes
negative values if the network is sparse (very low density).

- The reciprocity effect represents the number of mutual dyads in which the actor i is involved:

si rec(x′) = ∑
j

x′i jx
′
ji

Denoting by βrec the associated parameter, βrec reflects the preference of reciprocal relations.
It often assumes positive values, since a lot of social relations show a tendency towards
reciprocation.

- The transitive effect can be modeled according to different effects. Each of them interprets
a different situation. The more common structure is represented by the transitive triads,
whose related effect counts the number of transitive patterns in which an actor i is involved:

si trans(x′) = ∑
j,h

x′i jx
′
ihx′jh

The corresponding parameter βtrans reflects the preference of having relations to others who
are related among themselves.

- The three cycle-effect is a sort of a generalized reciprocity which involves three actors i, j
and h. It expresses the idea that it is not important if j directly reciprocates the tie from i,
but it is important that he sends a tie to an actor h, who has an outgoing tie towards i.

si cyc(x′) = ∑
j,h

x′i jx
′
jhx′hi

The corresponding parameter βcyc reflects the preference of having reciprocated relations in
an indirect way through actor h.

- The in-degree related popularity effect is defined as the sum of the in-degrees of whom i is
related to:

si pop(x′) = ∑
j

x′i j

√
∑
h

x′h j

and the related parameter βpop expresses the idea that a very popular actor is more chosen.
This means that popularity reinforce itself.

- The out-degree related activity effect represents the sum of the out-degrees of the others to
whom i is related:

si act(x′) = ∑
j

x′i j

√
∑
h

x′jh

The interpretation of these effects is similar to the previous one but it regards the out-degree.

- The indirect ties effect is the number of actors j to whom i is indirectly tied to, through at
least one intermediary:

si ind(x′) = #{ j : x′i j = 0,max
h

(x′ih,x
′
h j)> 0}

11



CHAPTER 2. THE STOCHASTIC ACTOR-ORIENTED MODEL

- The balance effect may also be called structural equivalence with respect to outgoing ties.
It expresses a preference of actors to have ties to those other actors who have a similar set of
outgoing ties as they have. It is defined by the similarity between the outgoing ties of actor
i and the outgoing ties of the other actors j to whom i is tied, to

si bel(x′) =
n

∑
j=1

x′i j ∑
h6=i, j

(
b0− | xih− x jh |

)
where b0 is a constant included to reduce the correlation between this effect and the density
effect.

There are many other effects that are not considered here which regard very specific structural
network properties. One can wonder how to choose among them. From a practical point of view,
the choice of effects that should be included in the model is guided by theory. In fact, according to
the kind of network in analysis, different hypotheses about the leading forces of network dynamics
can be formulated. In order to test them one should include the related effects in the objective
function.
For instance, if we consider “friendship”, we know that transitivity (“the friend of my friend is
also my friend”) is a well-established network structure, and so we should include it in the model.
Instead, if we are studying an advice network, we can imagine that people to whom a lot of other
people ask advice are chosen the most. Thus, other people decide to ask him as well. In this case,
the in-degree related popularity effect plays a key role and should be tested.
Like all the other statistical models each effect is controlled for all the other effects included in the
model. For this reason, one practical suggestion is to always include the density effect, since all
the structural effects are related to the presence or absence of ties. Reciprocity is also fundamental
in social relationships, and for this reason it should not be forgotten.

Exogenous effects
Let us now consider some effects related to actor attributes. Let V be a covariate, such as gender,
ethnicity, seniority rank, etc. We denote by vi and v j the values or the categories assumed by the
covariate on the actor i and on the actor j, respectively. Some interesting effects are represented
by:

- the covariate-alter defined as the sum of the covariate over all actors to whom i has a rela-
tion:

si calt(x) = ∑
j

xi jv j

The corresponding parameter βcpop reflects the aspiration of the actor to have relations with
others who score high on V .

- the covariate-ego defined by i’s outdegree weighted by his covariate values

si cego(x) = ∑
j

xi jvi

The corresponding parameter βcact reflects the aspiration of actors with attribute vi to have
relations.

- the covariate-related similarity defined as the sum of measure of covariate similarity be-
tween i and j:

si csim(x) = ∑
j

xi j

(
1−

∣∣vi− v j
∣∣

RV

)

12



4. THE PARAMETER INTERPRETATION

where RV is the range of V . It must be observed that the formulation of the covariate-related
similarity reduce to:

si csim(x) = ∑
j

xi jI
{

vi = v j
}

in the case of binary covariate, where I{vi = v j} is the indicator function which takes the
two values:

I{vi = v j}
{

1 vi = v j

0 otherwise

Again, the choice of exogenous covariates to be included in the objective function should be
determined according to hypotheses derived from theory. If we consider friendship network data
collected from adolescent groups, sociological theory suggests that girls trust girls and boys trust
boys, showing evidence towards homophily with respect to this attribute. Thus, covariate-related
similarity effect plays a key role and should be included in the objective function.
A positive parameter βk, associated to popularity/activity effects will lead to association between
the covariate and the receiver/sender tendency of an actor, respectively. In the same way a positive
parameter related to the covariate-related similarity will lead to relations being formed particularly
between actors who have similar values on the covariate.

3.3 Remarks

1. It is assumed that the frequency at which actors have the opportunity to make a change
depends on time. To model the different speed of the change opportunities we should spec-
ify as many rate functions as the number of periods between two consecutive observation
moments. Thus, if we observed a network at M time points, we must specify M− 1 rate
functions, i.e. M−1 rate parameters λ1, · · · ,λM−1.

2. It is assumed that the preferences that drive the action of the actors have the same intensities
over time, i.e. the parameters β1, · · · ,βk of the objective function are constant over time.

4 The parameter interpretation

To explain how to interpret the parameters of the SAOM model, we consider the results deriv-
ing from the Rscript “estimation.R”. The analyzed data are an excerpt from the “Teenage Friends
and Lifestyle Study” data set. The network is defined by friendship relations among pupils in a
school in the West of Scotland. Only the 129 actors present at all three measurement points are
considered in the analysis.
To find out whether it makes sense to analyze the data with the SAOM we need to check if the data
are sufficiently informative, i.e. if the total number of changes between consecutive observations
is large enough to provide the information for estimating the parameters. To express quantitatively
whether the data contain enough information, we can use the Jaccard index. The Jaccard index J
is defined by:

J =
N11

N11 +N01 +N10

where N11 is the number of ties present at both wave, N01 is the number of newly created ties and
N10 is the number of ties terminated. Based on experience, the Jaccard values between consecutive
waves should preferably be higher than 0.3. In our case the Jaccard indexes take value 0.304 for
the first period and values 0.351 for the second period, thus data provide enough information for
estimating parameters.
For illustrative purposes, we start considering a very simple model. Since the network was ob-
served at three time points, two rate parameters are specified. Then, outdegree and reciprocity

13
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effects are included in the objective function. The out-degree effect always must be included in
the model, while the reciprocity effect practically almost always must be included since most re-
lations show a tendency towards reciprocity.

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.5948 ( 0.7091 )
Rate parameter period 2 7.2115 ( 0.5751 )

Other parameters:
outdegree (density) -2.4147 ( 0.0387 ) -62.3875
reciprocity 2.7106 ( 0.0811 ) 33.4061

Table 2.1: A simple model

Table 2.1 shows first the estimated rate parameters. The rate parameter is the expected frequency,
between two consecutive network observations, with which actors get the opportunity to change a
network tie. Rate parameters suggest that pupils had about 9 opportunities for change in the first
period and about 7 in the second period (perhaps due to a higher friendship turnover between the
first and the second school years). We should observe that the estimated rate parameters will be
higher than the observed number of changes per actor for two main reasons. The former is that an
actor can decide not to make any change when he has the opportunity to change a tie. The latter is
that an actor may add and then withdraw the same tie during the period between two observation
moments.
The parameters for the objective function, which the table shows next, are more interesting for the
interpretation. In fact, they provide information about the leading forces of network evolution. In
the previous pages, we pointed out that the strength of each effect sik is represented by the value
assumed by the corresponding parameter βk. The parameter βk can assume any real value and
can be interpreted as follows. If βk is equal to 0, it means that the corresponding effect plays no
role in the network dynamics. If it assumes a positive value, then there is higher probability of
moving into networks where the corresponding effect is higher. Vice versa if the parameter takes a
negative value there is higher probability of moving into networks where the corresponding effect
is lower. Therefore, the first thing to do when interpreting the parameters of the SAOM is to estab-
lish which parameters are “significantly” different from 0, i.e.which effects are really important
to explain network evolution. To do this we use hypothesis test. Several steps are necessary to
perform a hypothesis test.

1. State the hypotheses.

Definition 4.1. A statistical hypothesis is a statement about the parameters of a model.
There are two different kind of hypothesis, which in the context of the SAOM model can be
described in the following way:

- The null hypothesis, denoted by H0, is usually the hypothesis that the observed increase
or decrease in the number of network configurations related to a certain effect results
purely from chance. This means that the considered effect plays no role in the network
dynamics and the null hypothesis can be expressed by:

H0 : βk = 0

- The alternative hypothesis, denoted by H1, is the hypothesis that the observed increase
or decrease in the number of network configurations related to a certain effect is in-
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fluenced by some non-random cause. This means that there is a tendency towards or
against the considered effect and the alternative hypothesis can be expressed by:

H1 : βk 6= 0

The hypotheses are stated in such a way that they are mutually exclusive. The observed data
are used in ordered to decide between the two hypotheses, i.e. to decide if the data give
evidence to the null or the alternative hypothesis.

2. Define a decision rule that allows discriminating between the null and the alternative hy-
pothesis.

Definition 4.2. The decision rule is defined by the test statistic
∣∣∣ βk

s.e.(βk)

∣∣∣≥ 2 reject H0∣∣∣ βk
s.e.(βk)

∣∣∣< 2 fail to reject H0

The logic behind this decision rule is based on the standard error concept. The standard
error s.e.(βk) is a measure of the accuracy associate to an estimate βk that takes into account
the randomness introduced in the estimation process using simulations and only one set
of data: different set of simulations and slightly different set of data can lead to slightly
different estimates. For instance, let us assume that βk = 0.13. The question is: is this value
far enough from 0, so that we can conclude that the effect is important to explain network
evolution? If we consider its s.e.(βk) = 0.9, we can assume that a more or less plausible set
of values that the parameter can assume is approximately [0.04,0.22]. Therefore, in order
to decide if a parameter βk is significantly different from 0, we should take into account its
standard error.
The decision rule suggests that if the estimate of a parameter in its standard error unit is
“small” enough (i.e. close enough to 0), then we can conclude that the data support H0 and
the effect is not important (or not significant) for explaining the observed network evolution.
On the contrary, if the estimate of a parameter in its standard error unit is “big” enough (i.e.
far enough from 0) then we can conclude that the data support H1 and the effect is important
(or significant) for explaining the observed network evolution. In our context the “enough”
is expressed by 2, and it is established using specific statistical tools.
The ratio between the estimate and their standard error is reported in the “t-score” column
of Table 2.1.

At this point we can continue in interpreting Table 2.1. The t-scores related to outdegree and
reciprocity effects are in absolute value greater than 2, thus these two effects are significant in
explaining network evolution. Their interpretation takes into account that the objective function
expresses the attractiveness of the network for a given actor. Thus, the objective functions are used
to compare how attractive various different tie changes are.
The parameter of the outdegree effect is negative and suggests that the observed networks have
low density. This means that on average the cost of establishing a friendship tie is higher than its
benefit. The positive parameters related to reciprocity effect, suggests that there is strong tendency
towards reciprocated ties. In more detail, let us consider the contribution to the objective function:

βout

n

∑
j=1

xi j +βrec

n

∑
j=1

xi jx ji =−2.4147
n

∑
j=1

xi j +2.7106
n

∑
j=1

xi jx ji
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where βout and βrec are the parameters associated to the considered effects. Adding a reciprocated
tie (i.e., for which x ji = 1) gives a positive contribution to the objective function

−2.4147+2.7106 = 0.2959

while adding a non-reciprocated tie (i.e., for which x ji = 0) gives a negative contribution to the
objective function (-2.4147). This means that reciprocated ties are valued positively and non-
reciprocated ties are valued negatively by actors. Consequently actors will be reluctant to form
non-reciprocated ties. Such ties will be formed nevertheless by chance and these are the basis
on which reciprocation by others can start. We consider now a more detailed specification of the
objective function. The effects related to the objective function must be determined according to
hypotheses derived from theory.
In friendship context, sociological theory suggests that friendship relations tend to be reciprocated
and the statement “the friend of my friend is also my friend” is almost always true. Thus, the tran-
sitive triplets effect is included in the model. Furthermore, it is well-known from psychological
theory that pupils prefer to establish friendship relations with others that are similar to themselves.
For this reason we include two covariate-related similarity effects with respect to gender and smok-
ing behavior, respectively (i.e. sex similarity and smoke similarity). These effects are controlled
for the sender (i.e., sex ego, smoke ego) and receiver (i.e. sex alter, smoke alter) effects of the two
attributes. The graphical interpretation and the verbal description of these effects are reported in
Table 2.5.

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
sex ego 0.1571 ( 0.1072 ) 1.4659
sex similarity 0.9191 ( 0.1076 ) 8.5440
smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

Table 2.2: A more complex model

The interpretation of the rate, outdegree and reciprocity parameters was provided before. There-
fore, we focus our attention on the effects added to the previous model.
The parameter related to transitivity is significant and positive. It indicates a preference for being
friends with friends’friends.
To interpret the three effects of the actor covariates related to gender, it is more useful to consider
them simultaneously. The sender (ego) and receiver (alter) effect of gender are not significant,
meaning that the activity or the popularity of the node does not depend on gender. On the con-
trary, the same gender effect is significant, suggesting that actors’similarity plays a key role on
network evolution. To establish if gender similarity support or prevent tie formation we should
look to the sign of the parameter. The parameter is positive, thus there is a tendency to choose
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4. THE PARAMETER INTERPRETATION

friends with the same gender. To be more precise, we can consider again the contribution of gen-
der to the objective function.
Gender was coded originally with 1 for male and with 2 for female. All actor covariates are
centered, i.e. their mean value is subtracted from the original values. For instance, the vari-
able for gender has mean v = 1.434 (73 boys and 56 girls), which leads to the centered values
vi− v = −0.434 for boys and vi− v = 0.566 for girls. For this variable, the model includes the
ego, alter and same covariate effects. Let us denote the corresponding parameters by βego, βalter
and βsame. The contribution of the single tie xi j to the objective function is provided by4:

βego(vi− v)+βalter(v j− v)+βsame (I{vi = v j}− simv) =

= 0.1571(vi− v)−0.1513(v j− v)+0.9191(I{vi = v j}−0.5048)

where simv is the mean similarity value. It is defined by the mean of all similarity scores 1− |vi−v j|
RV

.
The value of simv is computed directly by the RSiena program through the sienaDataCreate func-
tion and here simv = 0.5048. Substituting the values −0.434 for boys and 0.566 for girls yields
the following table:

Male Female
Male 0.4526 -0.618
Female -0.309 0.4584

Table 2.3: Gender-related contributions to the objective function

Table 2.3 shows the preference for similar alters: in all rows, the highest value is at the diagonal
(v j = vi). This result can be explained by the fact that the ego and alter parameters are close to 0
(not significant), therefore the similarity effect is dominant. The interpretation is that pupils prefer
to nominate friends of the same gender denoting segregation (or homophily) with respect to this
actor covariate.
We can proceed in the similar way for the smoking behavior. Only the similarity in smoking
behavior is significant and the positive value of the parameter suggests the pupils’preference in
choosing friends with the same smoking behavior. The smoking behavior covariate is centered
using the overall mean value from the original values of the covariate. In more detail, the smoking
covariate has mean v1 = 1.233 (109 no-smokers, 10 occasional smokers and 10 regular smokers)
in the first period and v2 = 1.388 (100 no-smokers, 8 occasional smokers and 21 regular smok-
ers) in the second period. The overall mean of the two periods is given by the mean of these
values, i.e. v = 1.310. Thus, the centered values for the smoking covariate are: vi− v = −0.310
for no-smokers, vi− v = 0.690 for occasional smokers and vi− v = 1.690 for regular smokers.
The contribution of the single tie xi j to the objective function is provided by the more complex
expression:

βego(vi− v)+βalter(v j− v)+βsame

(
1− |vi−v j|

Rv
− simv

)
=

= 0.0714(vi− v)+0.1055(v j− v)+0.3724
(

1− |vi−v j|
2 −0.7415

)

4The alter and ego effects are not significant so they can be excluded by the following expression. For illustrative
purposes, we does not concern about their significance.
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Substituting the centered values for the smoking covariate yields the following table:

no occasional regular
no 0.0414 -0.0734 -0.1882
occasional -0.0393 0.2183 0.1035
regular -0.1200 0.1376 0.3952

Table 2.4: Smoking-related contributions to the objective function

We observe preference for similar alters with respect to smoking behavior. Furthermore, Table 2.4
shows that the resulting preference for similar others is strongest for actors (egos) high on smoking
behavior.
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5 Simulating network evolution

Simulating network evolution is meaningful, e.g., for the estimation of the parameter. This
section presents a probabilistic algorithm to simulate the network evolution for fixed parameter
values. Since the simulation can be done separately for each time period (tm−1, tm), it is not
restrictive to describe the simulation process only between two consecutive time points t0 and t1.
In the following we will assume that all actors have the same rate of change λ , t will index the
time and dt will represent the holding time between consecutive changes.
The simulation algorithm is as follows:

1. Set the time t = 0 and x = x(t0)

2. Generate dt according to an exponential distribution with parameter nλ

The n actors are acting independently given the current state of the network5. Assuming
that each actor has the same individual change rate λ , the time until the next change by any
actor has the exponential distribution with parameter nλ .

3. Select randomly the actor i ∈N, who makes the changes, with probability

P(i has the opportunity of change) =
1
n
∀i ∈N

4. Select randomly the actor j ∈N, to whom i changes his outgoing tie, with probability given
by:

pi j =
exp( fi(β ,x(i ; j)))

n
∑

h=1
exp( fi(β ,x(i ; h)))

5. Set the time t = t +dt and if i 6= j then x = x(i ; j). If i 6= j then x = x .

6. Repeat step 2. to 5. until a stopping criterion is satisfied.

There are two different stopping rules.
In the unconditional simulation, the simulation of the network evolution carries on until the prede-
termined time length (chosen as 1 for each time period between consecutive observation moments)
has elapsed.
In the conditional simulation, the simulation runs on until a stopping criterion is reached that is
calculated from the observed data. Conditioning is possible for each of the dependent variables
and conditional means conditional on the observed number of changes on this dependent variable.
For instance, conditioning on the degree means running simulations until the number of different
entries between the initially observed network of this period and the simulated network is equal
to the number of entries in the adjacency matrix that differ between the initially and the finally
observed networks of this period.
The algorithm for simulating the network evolution is summed up in Algorithm 1.

5This is another way of interpreting the Markov property.
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Algorithm 1: Network evolution
Input: x(t0), λ , β , n
Output: xsim(t1)
t← 0
x← x(t0)
while condition = T RUE do

dt ∼ Exp(nλ )
i ∼Uni f orm(1, . . . ,n)
j ∼ Multinomial(pi1, . . . , pin)
if i 6= j then

x← x(i ; j)

else
x← x

xsim(t1)← x
return xsim(t1)

6 The parameter estimation

The formulation of the SAOM is based on the rate function and on the objective function and
depends on M−1+K statistical parameters. The aim of this section is to provide a description of
the available estimation methods for estimating the parameter of the SAOM. Roughly speaking,
estimating a parameter means determining its plausible value on the basis of the information de-
riving by the data collected by observation. In some situations finding an estimate is an easy and
intuitive task, but this is not always the case. For this reason we need methods to properly assign a
value to a parameter. In the following we will consider the Method of Moments and the Maximum
Likelihood Estimation.

6.1 The Method of Moments

The logic of the Method of Moments (MoM) is quite straightforward.
Let X be a random variable with distribution fX(x;θ), which depends on a parameter θ and Eθ [X ]
be its expected value. Let us assume that we have n observations (x1, . . . , xn) from the r.v. X . The
sample counterpart of Eθ [X ] is defined as the mean of the observed values, i.e.,

µ =
1
n

n

∑
i=1

xi

To estimate θ , one can observe that the theoretical moment of a certain distribution usually de-
pends on the statistical parameter θ which fully specify the distribution. Thus, the idea of the
MoM is to estimate the parameter θ with the value that assures that the theoretical expected value
is equal to its sample counterpart.

Definition 6.1. Let (x1, . . . ,xn) be a random sample from a probability distribution fX(x;θ). The
method of moment estimator for θ is found by equating the expected value Eθ [X ] to its sample
counterpart µ

Eθ [X ] = µ

and solving the resulting equation for the unknown parameter.

Let us consider again the (G)(n, p) model (without fixing the number of edges m) as an exam-
ple of application of the MoM.
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Example 6.2. 10 undirected, simple, loopless graphs are generated according to G(30, p) distri-
bution. The number of edges yi in each graph is reported in the following table:

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

yi 37 40 35 32 39 34 25 28 41 32

Find an estimation for the parameter p using the MoM.

Let us consider the space of all the undirected, simple and loopless graph that can be defined on
a set of 30 actors. According to the assumptions of the G(30, p) model and denoting by Y the r.v.
describing the number of edges in a network, the probability distribution of sampling a graph with
y edges is given by the binomial distribution:

P(Y = y) =
(

N
y

)
py(1− p)N−y

where N = n(n−1)
2 .

The theoretical expected value of the number of edges is:

Eθ [Y ] =
N

∑
y=0

yP(Y = y)

=
N

∑
y=0

y
(

N
y

)
py(1− p)N−y

=
N

∑
y=1

y
(

N
y

)
py(1− p)N−y

=
N

∑
y=1

y
N!

y!(N− y)!
py(1− p)N−y

= N p
N

∑
y=1

(N−1)!
(y−1)!(N−1− (y−1))!

py−1(1− p)N−1−(y−1)

= N p
N−1

∑
i=0

(
N−1

i

)
pi(1− p)N−1−i = N p

The sample counterpart is:

µ =
1
10

10

∑
i=1

yi = 34.3

Thus, the MoM equation is:

Eθ [Y ] = µ

N p = µ

and the estimate for p is

p̂ =
µ

N
=

34.3
435

= 0.079

It is easy to imagine that the estimate of the parameter can vary according to the selected
sample. Looking again at Example 5.3, we can assume that other 10 generated graphs result in the
following number of edges:

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

yi 34 28 23 31 32 36 33 41 26 39
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The new estimate for p is now
p̂ = 0.074

This value is close to that obtained in Example 5.3, but it is not the same. For this reason, we
usually associate to an estimator its standard error, which is a measure of the variation of the
estimates with respect to the different selected sample.

Remark

1. The principle of the MoM can be easily generalized to any function s(X) of the r.v. X . We
define the expected value of s(X) as

Eθ [sk(X)] = ∑
x

s(x) fX(x;θ)

and the corresponding sample moment as

γ =
1
n

n

∑
i=1

s(xi)

The functions s(X) are usually called statistics. Of course, they cannot be chosen at random,
but they must be sensitive to the parameter θ in the sense that higher values of θ lead to
higher values of s(X).

2. The MoM can be also applied in situations where the parameter θ is a p-dimensional pa-
rameter (θ1, . . . , θp), e.g. in the SAOM. In this context, the MoM requires the definition
of p statistics (s1(X), . . . , sp(X)), one for each component of the vector θ . The MoM es-
timator for θ is found by equating the expected values of the p statistics to their p sample
counterparts:

Eθ [s1(X)] = γ1

Eθ [s2(X)] = γ2

· · ·
Eθ [sp(X)] = γp

and solving the resulting equations for the unknown parameters.

The MoM for estimating the parameter of the SAOM

Let
θ = (λ1, · · · ,λM−1,β1, · · · ,βK)

be the M− 1+K-dimensional parameter vector of the SAOM. From the previous paragraph it
follows that, if we want to estimate θ , we must find M−1+K statistics, set the theoretical expected
value of each statistic equal to its sample counterpart, and solve the resulting system of equations
with respect to θ .
Since each parameter is related to a specific effect, the statistics are defined as functions of the
corresponding effects. For simplicity, let us assume to have observed a network at two time points
t0 and t1. Estimation is done conditional on the first observation x(t0). This has the advantage
that no model assumptions need to be invoked concerning the probability distribution that may
have led to the first observed network x(t0), and the estimated parameters refer exclusively to the
dynamics of the network.
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- The rate parameter λ describes the frequency at which changes can potentially happen.
Thus, a suitable statistic for the MoM is the total amount of changes between t0 and t1 and
can be computed as follows:

sλ (X(t1),X(t0)|X(t0) = x(t0)) =
n

∑
i, j=1
ı 6= j

∣∣Xi j(t1)−Xi j(t0)
∣∣ (2.6)

- The rate parameter βk quantifies the role played by each effect in the network evolution.
As already mentioned, if βk is positive, there is higher probability of moving into networks
where the corresponding effect is higher (and vice versa if βk is negative). Thus, a suitable
statistic for the parameter βk of the objective function is the number of the corresponding
effect sik(X(t1)):

sk(X(t1)|X(t0) = x(t0)) =
n

∑
i=1

sik(X(t1)) (2.7)

This statistic will be sensitive to βk because higher values of βk will lead to higher values of
sk.

Having determined the statistics for two time points, it is easy to derive the corresponding statistics
for more than two network observations. In order to do this, one should keep in mind that the rate
parameter λ is assumed to be constant within each time period, so that one should specify M−1
statistics sλm for the M− 1 rate parameters λm. Then, we can generalize Equation (2.6) in the
following way:

sλm(X(tm),X(tm−1)|X(tm−1) = x(tm−1)) =
n

∑
i, j=1
ı 6= j

∣∣Xi j(tm)−Xi j(tm−1)
∣∣ , m = 1, . . . ,M−1 (2.8)

Regarding the parameters βk of the objective function, it is assumed that they are constant over the
whole observation period. Thus, a general statistic for βk is the sum over all the observation time
points of the corresponding configurations6 sk(X(tm)):

M−1

∑
m=1

smk (X(tm)|X(tm−1) = x(tm−1)) =
M−1

∑
m=1

smk(X(tm)) (2.9)

Consequently, the MoM estimator for θ is defined as the solution of the system of equations:
Eθ

[
sλm (X(tm),X(tm−1)|X(tm−1) = x(tm−1))

]
= sλm(x(tm),x(tm−1)) m = 1, · · · ,M−1

Eθ

[
M−1
∑

m=1
smk (X(tm)|X(tm−1) = x(tm−1))

]
=

M−1
∑

m=1
smk(x(tm)) k = 1, · · · ,K

(2.10)
where a small x denotes the observed networks.
In the following, we will use a more compact notation. Let S be the (M− 1+K)-dimensional
vector of statistics involved in the estimation process and s be its sample counterpart (i.e. the
(M− 1+K)-dimensional vector of the observed values of the statistics). Then, the system of
equations (2.10) can be written in the following way:

Eθ [S] = s

6A note on notation: the two indexes in (2.9) refer respectively to the observation period (m) and the effects (k),
wheresk(X(tm)) is defined by (2.7). The definition in (2.7) allows the use of a straightforward notation.
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6. THE PARAMETER ESTIMATION

or equivalently as
Eθ [S− s] = 0 (2.11)

At this point, the problem consists in solving the system (2.11) with respect to the parameter θ .
Analytical and usual numerical procedures cannot be applied, since the theoretical expected values
of the statistics cannot be calculated explicitly. However, it is rather straightforward to simulate
random digraphs with the desired distributions. Therefore, stochastic approximation methods can
be used to approximate the estimates.

Definition 6.3. Stochastic approximation methods are a family of iterative simulations-based (i.e.
stochastic) algorithms that attempt to find zeros or extrema of functions which cannot be computed
in an analytical way.

In the context of the parameter estimation of the SAOM, the stochastic approximation method
consists of:

- approximating the moment equations using simulations of network evolution for fixed val-
ues of the parameter θ

- updating the value of θ step by step, according to some fixed rule, ubtil a certain criterion is
satisfied

Given an initial guess θ0 for the parameter θ , the procedure can be roughly depicted as follows:

θ0
simulation−−−−−→ Eθ0 [S− s] rule−−→ θ1

θ1
simulation−−−−−→ Eθ1 [S− s] rule−−→ θ2

...
simulation−−−−−→ ...

rule−−→ ...

θi−1
simulation−−−−−→ Eθi−1 [S− s] rule−−→ θi

...
simulation−−−−−→ ...

rule−−→ ...

stochastic part iterative step

The moment equations are approximated via Monte Carlo methods which require the simulation
of the network evolution, while the updating rule is performed using the Robbins-Monro step.

The Monte Carlo Method

Definition 6.4. Let X be a random variable with distribution function fX(x) and let us assume to be
interested in estimating the expected value E[s(X)], where s is a real valued function. The Monte
Carlo methods requires generating a sample (X1, · · · ,Xq) from the distribution function fX(x) and
approximating the expected value with the empirical average, i.e.:

S =
1
q

q

∑
l=1

s(xl)

It can be proved that S converge to the true value of E[s(X)] as q→ ∞.
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Therefore, we can approximate the expected value of the vector of statistics S simulating
the network evolution q times, given a fixed value for θ , and computing the mean of the values
assumed by the statistics during each simulation.
For instance, the Monte Carlo approximation of the expected value for the rate parameter βout can
be obtained in the following way:

1. Given x(t0) and θ , simulate the sequence of the observed networks at time t1, . . . , tM q times.
Denote these sequences by

x(1)(t1), x(1)(t2), . . . , x(1)(tM)

. . .

x(q)(t1), x(q)(t2), . . . , x(q)(tM)

2. For each sequence compute the value taken by the statistics S(i)out =
M−1
∑

m=1

n
∑

i=1

n
∑
j=1

x(l)i j (tm):

3. Approximate the expected value by

Sout =
1
q

q

∑
l=1

S(l)out

The Robbins-Monro step

The iterative step for updating the value of θ is based on the Robbins-Monro step.

Definition 6.5. Let θ ∈Θp be a p-dimensional vector of parameters and g(θ ;x)∈Rp some vector-
valued function which depends on θ . The focus is to find the root θ̂ ∈Θp of the equation

g(θ ;x) = 0 (2.12)

Let θ1 be an initial guess of θ . Then the Robbins-Monro algorithm to solve equation (2.12) is
based on a sequence θi generated by the recursion:

θi+1 = θi−aig(θ ;x)

where the gain ai is a sequence of positive numbers such that:

lim
i→∞

ai = 0
∞

∑
i=1

ai = ∞

∞

∑
i=1

a2
i < ∞

Remarks

1. The conditions related to the sequence of gain provide a careful balance in having the gain
ai decay neither too fast nor too slow. In particular, the gain should approach zero suffi-

ciently fast
(

lim
i→∞

ai = 0,
∞

∑
i=1

a2
i < ∞

)
, but should also approach it at a sufficiently slow rate(

∞

∑
i=1

ai = ∞

)
to avoid premature (false) convergence of the algorithm.

2. The sequence {θi} converges (almost sure) to the true value of θ as i→∞. It can be proved
that optimal convergence of the Robbins-Monro algorithm can be achieved including in the
iterative step a positive diagonal matrix D:

θi+1 = θi−aiD−1g(θi;x)
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and estimating the value of the parameter θ not by the last value θi, but by the average of
the consecutively generated θi values7.
Usually D is the diagonal matrix of the first order derivative of g(θ ;x). Different methods
can be used to estimate the diagonal elements of D. One possibility is the finite difference
method, which estimates the j− th diagonal element by

∂g(θ ;x)
∂θ j

= lim
ε j→0

g(θ + e jε j;x)−g(θ ;x)
ε j

where e j is the j-th unit vector in p-dimension and ε j is a suitable constant.

We can use the Robbins-Monro step to find the root of the system of equations represented by
(2.11). In the estimation algorithm D denotes the diagonal matrix of the first order derivative
matrix of S with respect to θ :

D =
∂

∂θ
Eθ [S|X(t0) = x(t0)]

and the general step of the Robbins-Monro algorithm is:

θ̂i+1 = θ̂i−aiD−1(Si− s)

At the end of the estimation procedure, the standard error associated to the estimates is computed.
The algorithm is divided into three phases.

1. Phase 1. A small number q1 = 7+3∗ (M−1+K) of steps is made to estimate D, using the
Monte Carlo method, and to provide a first update to the parameter θ .
Let e j be the j-th unit vector in (M− 1+K) dimensions (thus, j = 1, . . . ,M− 1+K) and
ε a constant vector in (M−1+K) dimensions whose components take values between 0.1
and 1 (but often are equal to 1).
In step i (i = 1,2, . . . ,q1), given the network at time t0, the network evolution is simulated
from the initial value θ0 and from the values θ j = θ0+εe j and the (M−1+K)-dimensional
vectors of statistics are computed according to the simulated networks. We denote by Si0 and
Si j such vectors, where the first index (i) refers to the step and the second index (0 or j) to
the element of θ used for the simulation. Then, the difference quotients di j = ε

−1
j (Si j−Si0)

are computed. di j is the approximation of the derivative of the statistics S j at step i (i.e. the
approximation of the j-th element on the diagonal of D) using the finite difference method.
At the end of this phase the expected value S and the j− th diagonal element d̂ j of D are
estimated using the following formulas:

S =
1
q1

q1

∑
i=1

Si0 d̂ j =
1
q1

q1

∑
i=1

di j

Finally a new value of θ is estimated via the Robbins-Monro step with ai = 1:

θ̂q1 = θ0− D̂−1(S− s)

Phase 1 is summed up by Algorithm 2. The symbol ∼ means “generated from”.

7The choice of averaging over the generated θi values relies on a work by Ruppert [3]. In his technical report,
Ruppert proved that the optimal convergence rate of the algorithm can be achieved when D is a diagonal matrix and
the sequence ai is a sequence of positive numbers converging to zero at the rate i−c, 0.5 < c < 1. To obtain this
optimal convergence rate, the solution to (2.11) must be estimated not by the last value θi, but by the average of the
consecutively generated θi values
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Algorithm 2: Robbins-Monro algorithm - Phase 1
Input: θ0, s, q1,ε
Output: θ̂q1 , D̂

i← 0
d← 0
S0← 0
while i < q1 do

i← i+1
Si0 ∼ θ0
S0← S0 +Si0
for j=1, . . . (M+K-1) do

Si j ∼ θ1 + εe j

di j← ε
−1
j (Si j−Si0)

d← d +di je j

S← 1
q1

S0

d̂← 1
q1

d

D̂← diag(d̂)
θ̂q1 ← θ0− D̂−1(S− s)
return θ̂q1 , D̂

2. Phase 2. This is the main phase, consisting of c sub-phases. The number of iteration per
sub-phase is determined by a stopping rule but bounded for sub-phase h between q−h =
24((M−1+K)−1)/3(7+(M−1+K)) and q+h = q−h +200. In each sub-phase ai is constant and
equal to ah. The only difference between the sub-phases is ai.
Each sub-phase is ended after less than q+h steps, as soon as the number of steps in this sub-
phase exceeds q−h while, for each coordinate Sih, the sum within this sub-phase of successive
products (Sih− s)(S(i−1)h− s) is negative. It can be proved that as long as (Sih− s)(S(i−1)h−
s) is positive, it must be assumed that the sequence θi is still drifting toward the limit point
rather then wandering around the limiting point, so that is not desirable decrease the gain ai.
If the upper bound q+h is reached, then the sub-phase is terminated anyway. In each iteration
step within each sub-phase h, Sih is generated according to the current parameter value θ̂i .
After each step, this value is updated according to the formula

θ̂i+1 = θ̂i−ahD̂−1(Si− s)

At the end of each sub-phase, the average of θ̂i over this sub-phase is used as the initial
value θ̂h of the parameter for the next sub-phase. The value of ah is divided by 2 when a
new sub-phase is entered.
The average of θ̂i over the last sub-phase is the eventual estimate for θ .
Phase 2 is summed up by Algorithm 3.
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Algorithm 3: Robbins-Monro algorithm - Phase2

Input: θ̂q1 , D̂, s
Output: θ̂

h← 1
θ̂1← θ̂q1

while h≤ c do
i← 0
θ0← θ̂h
if i >= q+h OR (i > q−h AND (Sih− s)(S(i−1)h− s)< 0) then

i← i+1
Si ∼ θ̂i

θ̂i+1← θ̂i−ahD̂−1(Si− s)
θ ← θ̂i+1 +θ

θ̂h← 1
i θ

ah+1← ah/2
h← h+1;

θ̂ ← θc

return θ̂

3. Phase 3. A number q3 = 500 is used to estimate the variance-covariance matrix Σθ of the
estimator of θ .The standard error is the square root of the diagonal elements of the variance-
covariance matrix Σθ . We will denote by Σ̂θ the estimate of Σθ . It can be proved that the
estimate of Σθ is given by

Σ̂θ = D̂−1
[

1
q3

(Si−S)′(Si−S)
]

D̂−1

and the squared root of the diagonal matrix The square root of the diagonal value of Σθ are
the standard errors associate to the estimates obtained through the Phase 2. The value θ̂ is
left unchanged during Phase 3 and it is equal to the value obtained after the last subphase
of Phase 2. It is used to provide the new estimate D̂ of D and of the expected value of the
statistics S. Therefore, Phase 3 is similar to Phase 1.
Phase 3 is summed up by Algorithm 4.

6.2 The Maximum likelihood estimation

The Maximum likelihood (ML) estimation for the parameter of the SAOM is more complex
and require more advanced statistical concepts with respect to the MoM. For this reason, the aim
of this paragraph is to provide only an intuitive idea of the algorithm.
The model assumptions allow us to decompose the process in a series of micro-steps. Each micro-
step can be described by the sequence {(Tr, ir, jr),r = 1, . . . ,R}, where Tr is the time point for an
opportunity for change, ir denotes the actor who has the opportunity to change and jr is the actor
towards whom the tie is changed. We denote by R the total number of micro-steps between t0 and
t1 and we assume that the time point Tr are ordered increasingly, i.e. t0 = T0 < T1 < .. . < TR < t1.
If we knew the complete data of the network evolution process, then we could write down the
likelihood of the network evolution process and compute the maximum likelihood estimation for
θ .
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Algorithm 4: Robbins-Monro algorithm - Phase 3

Input: θ̂ , s, q3,ε
Output: Σ̂θ

i← 0
d← 0
S0← 0
while i < q3 do

i← i+1
Si0 ∼ θ̂

S0← S0 +Si0
for j=1, . . . M+K-1 do

Si j ∼ θ̂ + εe j

di j← ε
−1
j (Si j−Si0)

d← d +di je j

S = 1
q3

S0

d̂ = 1
q3

d

D̂ = diag(D)

Σ̂θ = D̂−1
[

1
q3
(Si0−S)(Si0−S)

]
D̂−1

return Σ̂θ

Definition 6.6. Given the sequence of micro-steps {(Tr, ir, jr),r = 0, . . . ,R}, the likelihood func-
tion of the network evolution process is defined by:

L(θ) =
R

∏
r=1

P((Tr, ir, jr))

Then, the estimate for θ is the vector of values θ̂ such that:

θ̂ = argmax
θ∈Θ

L(θ)

or equivalently, the vector of values θ̂ such that:

U(θ) =
∂

∂θ
log(L(θ)) = 0 (2.13)

where ∂

∂θ
log(L(θ)) is the score function.

Since we cannot observe the complete data, the likelihood of the observed data (x(t1), . . . ,x(tM))
conditional on x(t0) cannot generally be computed. Again, the parameter estimation requires find-
ing the root of a system of equations represented by (2.13) in which the functions that are set equal
to 0 cannot be computed analytically. Thus, a stochastic approximation method must be applied.
In order to approximate the score-function, the general data augmentation principle is employed.
The idea is to augment the observed data so that an easily computable likelihood is obtained. Since
the data augmentation can be done separately for each time period (tm−1, tm) it is not restrictive to
describe it only for two observations x(t0) and x(t1).
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Definition 6.7. The augmented data (or sample path) consist of the sequence (i1, j1), . . . ,(iR, jR),
without the time points Tr, that specifies the sequence of tie changes that brings the network from
x(t0) to x(t1). Formally we will denote the augmented data by

v = {(i1, j1), . . . ,(iR, jR)}

and the set of all sample paths connecting x(t0) and x(t1) is denoted by V.

The probability of the augmented data v conditional on X(t0) = x(t0) and X(t1) = x(t1) is
proportional to

P(v|x(t0),x(t1)) ∝
(nλ )R

R!
e−nλ

R

∏
r=1

1
n

pir jr(β ,x(Tr−1)) (2.14)

and can be used to approximate the likelihood of the network evolution process (and then the score
function). Thus, we need a method to properly sample the augmented data from the distribution
in (2.14). This is done through a Markov chain simulation defined on the state space V. Roughly
speaking the Markov chain defines the transition probabilities from a sample path v ∈ V to an-
other, so that the long-run distribution of the Markov-chain is equal to the distribution in (2.14).
The transition probability from a sample path to another is defined by the Metropolis-Hastings
algorithm.

Definition 6.8. The Metropolis-Hastings algorithm is defined by the following transition proba-
bilities:

1. Given vi = v, generate ṽ form the proposal distribution u(ṽ |vi )

2. Take

vi+1 =


ṽ with probability ρ(ṽ,v)

v with probability 1−ρ(ṽ,v)

where

ρ(ṽ,v) = min
{

P(ṽ)u(v |̃v)
P(v)u(ṽ |v)

,1
}

Then, the transition probabilities of the chain generated by the Metropolis-Hastings algo-
rithm are given by ρ(ṽ,v)u(ṽ |v).

The proposal distribution u(ṽ |v) is defined so that the admitted changes from a state to another are
the following:

- Pairwise deletions: one pair of indexes r1 and r2 such that (ir1 , jr1) = (ir2 , jr2) is selected
and the corresponding pairs (ir1 , jr1) and (ir2 , jr2) are deleted from v

- Pairwise insertions: one pair of (i, j) ∈N2 and two indexes r1 and r2 are randomly chosen.
The element (i, j) is inserted in v immediately before r1 and r2

- Single deletion: one pair (ir, jr) satisfying ir = jr is randomly selected and deleted from v

- Single insertion: one actor i ∈ N and an index r are selected. The element (i, i) is inserted
immediately before r

- Permutations: for randomly chosen indexes r1 < r2, the sequence (ir1 , jr1), . . . ,((ir2 , jr2)) is
randomly permuted
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Theorem 6.9. The Metropolis-Hastings algorithm leads to an irreducible, aperiodic and reversible
Markov-chain whose stationary distribution is given by (2.14).

Proof. bla

- The Markov chain is irreducible.
Pairwise deletions and insertions and single deletion and insertion are sufficient for all v∈V
to communicate.

- The Markov chain is aperiodic.
The graph associated to the resulting Markov-chain contains all the loops and thus the great-
est common divisor of all cycles is one.

- The Markov chain is reversible. The detailed balance condition:

ρ(ṽ,v)u(ṽ |v)P(v) = ρ(v, ṽ)u(v |̃v)P(ṽ)

is satisfied.
ρ(ṽ,v)u(ṽ |v)P(v) = min

{
P(ṽ)u(v|̃v )
P(v)u(ṽ|v ) ,1

}
u(ṽ |v)P(v) =

= min
{

P(ṽ)u(v|̃v )
u(ṽ|v ) ,P(v)

}
u(ṽ |v) =

= min
{

u(v|̃v )
u(ṽ|v ) ,

P(v)
P(ṽ)

}
u(ṽ |v)P(ṽ) =

= min
{

1, P(v)u(ṽ|v )
P(ṽ)u(v|̃v )

}
u(v |̃v)P(ṽ) =

= ρ(v, ṽ)u(v |̃v)P(ṽ)

The ML estimation algorithm then can be sketched in the following way:

1. For each m = 1, . . . ,M− 1 makes a large number of Metropolis-Hastings steps yielding
v(i) = (v(i)1 , . . . ,v(i)M−1)

2. Compute the score function:
∂

∂θ
log(L(θ̂i;x;v(i)m ))

3. Update the parameter estimate using the Robbins-Monro step

θi+1 = θi +aiD−1U(L(θ̂i;x;v(i)m ))

The estimate θ̂ is calculated as the average of the θi+1 values generated by this algorithm.

The Robbins-Monro algorithm and the ML estimation are implemented in the Siena (Simula-
tion Investigation for Empirical Network Analysis) program, available now as an R library called
RSiena (see the Rscript “estimation.R” for the practical implementation of the estimation proce-
dure).
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Chapter 3

Modeling the co-evolution of networks
and behaviors

1 The interdependence of network and behaviors

One of the natural extensions of the SAOM is related to the kind of changes that can hap-
pen in a social system represented by a network. Together with ties, also actors’characteristics
can change over time. In the following, the term “behavior” will denote any changeable actor
attribute (including opinions, attitudes, intentions, performances etc.).
Changes in ties and in actor’s attributes are two interdependent processes. On the one hand, social
network dynamics can depend on actor’s characteristics. This is the result of a selection process
in which relationship partners are selected according to their characteristics. The best known ex-
ample of such process is the homophily mechanism, i.e. the formation of relations based on the
similarity of two actors. On the other hand, changeable actors’characteristics can depend on the
social network. This is the outcome of an influence process, in which actors adjust their character-
istics according to the characteristics of other actors to whom they are tied. A classical example is
the assimilation process, by which connected actors become increasingly similar over time. Since
homophily and assimilation give rise to the same outcome (similarity of connected individuals),
researchers have known for long time that the study of influence requires the consideration of se-
lection and vice versa. A fundamental question is then whether this similarity is caused mainly by
influence or mainly by selection. The answer to this question is then provided by the extension
of the SAOM to a structure where the dependent variables consist of both tie variables and actor’s
behavior variables.

2 Data

In this section we follow the notation used in Chapter 2. Let x be a binary adjacency matrix
representing a network. The network is defined by a relation R collected over a set N of actors.
For each actor we collected also a series of actor attribute’s. Let V1, · · · ,VH denote the H constant
covariates (such as gender, ethnicity, and so on) and Z1(t), · · · ,ZL(t) the L behavior covariates
(such as, smoking or drinking behaviors). It is assumed that the behavior variables are ordinal
categorical variables, with values 1,2, etc.1

Networks and behaviors are observed at M ≥ 2 time points t1, · · · , tM. The corresponding time

1A categorical variable is a variable with modalities in the form of categories, such as, for example, “man” and
“woman” of the variable “sex”. When it is possible to order the modalities of a categorical variable, the variable is said to
be an ordinal categorical variable. Examples are the professional variable with categories “qualified”, “semiqualified”,
and “nonqualified” or the smoking behavior with categories “no” “occasional” and “regular”.
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series of observed networks and behaviors will be denoted by:

(x,z)(t0), (x,z)(t1), · · · , (x,z)(tM)

This time series together with the constant actor’s attribute V1, · · · ,VH constitutes the longitudi-
nal network-behavior panel data that we want to analyze in order to determine the leading forces
which govern network and behavioral changes and to distinguish between selection and influence
mechanism. In more detail the time series of observed networks and behaviors is the dependent
variable of the model and our aim is to explain it as a function of structural effects and individ-
uals’characteristics (constant or time-varying covariates). For simplicity in the next sections we
will considered L = 1.

3 Assumptions

The assumptions for the actor-based model for the dynamics of networks and behaviors are
extensions of the assumptions of network dynamics for the SAOM.

1. Distribution of the process. Changes between observational time points are modeled accord-
ing to a continuous-time Markov chain. The state space C of the chain is comprised of all
possible configurations arising from the combination of network and behaviors. The num-
ber of possible networks based on a set of n actors is 2n(n−1), while the possible distribution
over the n actors of a behavior variable with B categories is Bn. Therefore the cardinality of
C is |C|= 2n(n−1)×Bn.
The continuous-time assumption expresses the idea that the changes reflected in the longi-
tudinal data typically accrue over the unobserved periods between the observation moments
in continuous time. The importance of this consideration in explaining the co-evolution of
networks and behaviors becomes clear when looking at Figure 3.1a. Let us assume, at t0,
actor i considers actor j a friend but they are not behaviorally similar, whereas at t1, i again
considers j a friend but now they are behaviorally similar. Then, one is tempted to conclude
that this is the result of an influence process. However, the unobserved process that gener-
ated these data may have looked very different, as illustrated in the brackets. The relation
between i and j may have ended, and i may have changed his behavior in the absence of a
relation with j. After the behavior of i changed, i may have renewed is the friendship with
j. According to this scenario, the change in behavior happened in the absence of a tie from
i to j and the configuration observed at time t1 is actually the result of a selection process.
Figure 3.1b illustrates how social influence can be misdiagnosed as homophilous selection.
The Markov-chain assumption means that the changes actors make are assumed to depend
only on the current state of the network and the behaviors, not on previous configurations.

2. Opportunity to change. At any given moment one probabilistically selected actor has the
opportunity to change one of his outgoing ties or his behavior. The moments at which an
actor has the opportunity for a tie change or a behavior change are modeled by two distinct
rate functions.

3. Absence of co-occurrence. No more than one tie or one behavior can change at any given
moment, i.e., only one actor has the opportunity to change (an outgoing time or one behav-
ior) at each instant t.

4. Actor-oriented perspective. Actors control their outgoing ties as well as their own behavior,
i.e., the changes in outgoing ties and behavior are determined by the position of the actor
in the network, his individual characteristics, as well as the characteristics and the behavior
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Figure 3.1: Selection and influence as alternative mechanisms

of the other actors in the network. This means that actors do not change ties and behavior
at will but they act in order to improve their preferences towards the resulting network and
behavior configuration. These preferences are modeled by two distinct objective functions:
one for the network and one for the behavior change.
As already mentioned the behavior variables are ordinal discrete variables. It is assumed that
once an actor i has the opportunity to change his behavior, he can increase or decrease the
level of its behavior only by one unit. For instance, let us suppose that the current behavior
level of actor i is zi = l. Once i gets the opportunity to change his behavior, he can decide
to increase his level by one unit (zi = l +1), to decrease his level by one unit (zi = l−1) or
not to change zi = l

Assumptions 2 and 4 suggest that network evolution and behavioral evolution are modeled accord-
ing to two distinct processes: a network process and a behavior process. This does not mean that
network and behavior interdependence is neglected. As it will be shown in the following section,
the interdependence of networks and behaviors is modeled through the effects that specify the
objective function for the network change and the behavioral change.

4 Model formulation

According to the previous assumptions, the network-behavior co-evolution process is decom-
posed into a series of micro-steps that consist of either the opportunity of changing one network
tie and the corresponding tie changed or by the opportunity of changing a behavior and the corre-
sponding unit changed in behavior. Consequently, every micro-step requires the identification of
a focal actor who gets the opportunity to make a change and the identification of the outcome of
the change.
To take into account the double nature of the micro-steps, the basic co-evolution model is de-
scribed by four components, expressing the amount of opportunities for a change (modeled by the
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Occurrence Preference
Network changes Network rate function Network objective function
Behavioral changes Behavioral rate function Behavioral objective function

Table 3.1: Model components of the SAOM for network change

rate functions) and the direction of a change (modeled by the objective functions). This structure
is represented in Table 3.1.
The first observations of network x(t0) and behavior z(t0) serve as starting values of the evolution
process, so that we do not concern about the process that may have generated the first network and
behavior observation and only the subsequent changes of network ties and behavior are modeled.

4.1 The rate functions

The frequency by which actors have the opportunity to make a change is modeled by the rate
functions, one for each type of change. The main reason for having two different rate functions
for the behavioral and the network changes is that practically always, one type of decision will be
made more frequently than the other. For instance, in the joint study of friendship and smoking
behavior at high school, we would expect more frequent changes in the network than in behavior,
because of the addictive nature of substance use and the high friendship turnover in adolescence.
The Markov chain assumption requires that the waiting times between micro steps must have
exponential distributions. For each actor i, we denote by T net

i and by T beh
i the waiting time until i

gets the opportunity to make a network or a behavioral change, respectively. Therefore, T net
i and

T beh
i are exponentially distributed with parameters λ net

i and λ beh
i , respectively. These parameters

indicate the speed at which the respective change is likely to occur. The parameters λ that govern
the rate functions are indexed by a i, because we assume that actors may change their network ties,
or their behavior, at different frequencies. We can incorporate such activity differences between
actors by letting the parameters λ depend on actor attributes and network positions.
The Markov-property suggests that all waiting times are independent, given the current state of
network and behavior. Thus, properties of the exponential distribution imply that, starting from
the moment of the preceding micro step, the waiting time until the occurrence of the next micro
step of either kind by any actor is exponentially distributed with parameter:

λtot = ∑
i
(λ net

i +λ
beh
i )

It follows that the probability of a network micro-step is taken by actor i is given by

P(i has the opportunity to change one of his tie) =
λ net

i
λtot

and the probability of a behavioral micro-step is taken by actor i is given by

P(i has the opportunity to change his behavior) =
λ beh

i
λtot

If we consider the simplest specification of the rate functions, that assumes that all actors have
the same rate of change between two observational moments, T net

i and T beh
i are exponentially dis-

tributed with parameters λ net and λ beh, respectively. Therefore, the waiting time until occurrence
of the next micro step of either kind by any actor is exponentially distributed with parameter:

λtot = ∑
i
(λ net

i +λ
beh
i ) = n(λ net +λ

beh)
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4. MODEL FORMULATION

It follows that the probability of a network micro-step is given by

P(network micro-steps) =
nλ net

λtot
=

λ net

λ net +λ beh

and the probability of a behavioral micro-step is given by

P(behavioral micro-step) =
nλ beh

λtot
=

λ beh

λ net +λ beh

and as a consequence

P(i has the opportunity to change one of his tie) =
λ net

λtot

P(i has the opportunity to change his behavior) =
λ beh

λtot

In the following we assume that both types of rate functions are constant across actors, and depend
only on the observational period.

4.2 The objective functions

The probability of going from one state to another state of the co-evolution Markov chain is
defined by the objective functions. Since we are considering the co-evolution of networks and
behaviors, we use a slightly different notation. We denote the objective function for the network
changes by f net

i (β ,x(i ; j),z,v). The definition and the interpretation of f net
i (β ,x(i ; j),z,v)

were described deeply in Chapter 2. In this section we will focus on the objective function for
behavioral change.
We denote the behavioral objective function by f beh

i (γ,z(l ; l′),x,v). The three quantities be-
tween brackets express the dependence of the objective function on the statistical parameters γ ,
the behavior of actor i when he changes his behavior from l to l′ ∈ {l−1, l, l +1} and the current
network configuration x.
The mathematical formulation of the utility ubeh

i (γ,z(l ; l′),x,v) is again a linear combination of
a vector γ of statistical parameters and a vector of effects denoted by sbeh(x,z,v) plus a random
utility term εi(t,z, l, l′)

ubeh
i (γ,z(l ; l′),x,v) = f beh

i (γ,z(l ; l′),x,v)+ εi(t,z, l, l′)

where

f beh
i (γ,z(l ; l′),x,v) =

W

∑
w=1

γwsbeh
iw (x,z,v)

This function will be different from the objective function for network change since it needs to
represent primarily how likely it is for the actor to change the current level of its behavior. There-
fore, effects which are supposed to play a key role in the behavioral evolution must be different
from those important for describing network evolution.
The strength of each effect is represented by the corresponding parameter γw, which should be
estimated on the basis of the longitudinal network data. γw can assume any real value and its in-
terpretation is equivalent to that of the parameters of the objective function for network change.
The term εi(t,z, l, l′) is assumed to be distributed as a Gumbel distribution. Thus, according to
equation (2.2), the probability that an actor i changes his own behavior by one unit is:

pll′(γ,z(l ; l′),x,v) =
exp
(

f beh
i (γ,z(l ; l′),x,v)

)
∑

l′′∈{l+1,l−1,l}
exp
(

f beh
i (γ,z(l ; l′′),x,v)

) (3.1)

If l = l′, then equation (3.1) represents the probability that actor i does not change his behavior.
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4.3 The effects of objective function for behavioral change

Several effects are proposed to specify the objective function for behavioral change.

- Basic shape effects
The linear shape effect sbeh

i linear(x,z,v) and the quadratic shape effect sbeh
i quadratic(x,z,v) are

defined by the level of the behavior for the actor i and its quadratic value, respectively:

sbeh
i linear(x,z,v) = zi sbeh

i quadratic(x,z,v) = z2
i

The basic shape effects must be always included in the model specification, since they rep-
resent the relative preference for the specific value zi of the behavior. In the special case
in which the behavior variable is dichotomous, the linear shape effect suffices, since each
function of two values can be represented by a linear function.

- Classical influence effects
The influence effects describe the influence of alter’s behavior on ego’s behavior. There are
different ways to measure the influences from different alter:

1. The average similarity effect sbeh
i avsim(x,z,v) expressing the preference of actors to be

similar in behavior to their alters, in such a way that the total influence of the alters is
the same regardless of the number of alters (i.e., ego’s outdegree xi+):

sbeh
i avsim(x,z,v) =

1
xi+

n

∑
j=1

xi j(simz(i j)− simz)

where

simz(i j) = 1−
∣∣zi− z j

∣∣
Rz

Rz is the range of the behavior z and simz is the mean similarity value.
2. The total similarity effect sbeh

i totsim(x,z,v), expressing the preference of actors to be
similar in behavior to their alters, in such a way that the total influence of the alters is
proportional to the number of alters:

sbeh
i totsim(x,z,v) =

n

∑
j=1

xi j(simz(i j)− simz)

The choice among these different representations of social influence has to be made on
theoretical grounds.

- Position-dependent influence effects
Network position could also have an effect on the behavior of dynamics. Therefore the
outdegree effect sbeh

i out(x,z,v) or sbeh
i ind(x,z,v) indegree effect may be included in the objective

function for network behavior.

sbeh
i out(x,z,v) = zi

n

∑
j=1

xi j

sbeh
i ind(x,z,v) = zi

n

∑
j=1

x ji

- Effects of other actor variables.
For each actor’s attribute a main effect on the behavior can be included in the model. This
reflects the influence of the considered actor characteristics on changes in the behavior.
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5. THE PARAMETER INTERPRETATION

5 The parameter interpretation

In this section we consider the parameter interpretation of the SAOM model for the co-
evolution of networks and behaviors. The analyzed data are the excerpt from the “Teenage Friends
and Lifestyle Study” data set already used in Chapter 2.
In the literature there are several studies suggesting that the similarity in smoking behavior could
be caused by selection of similar others as friends as well as by influence processes where friends
adjust their smoking behavior to each other, or by a combination of these. Therefore, in the fol-
lowing we will use the SAOM for the co-evolution of networks and behaviors (see the Rscript
“coevolution.R”) to distinguish influence from selection. In particular we can try to answer these
two questions:

1. Do pupils select friends based on similar smoking behavior?

2. Are pupils influenced by friends to adjust their smoking behavior?

In this context, the dependent variables are represented by the friendship networks and the smoking
attitudes gathered at the three time points. To find out whether it makes sense to analyze the
data with a co-evolution model, we first need to check whether there is interdependence between
networks and behavioral variables. Second we should check whether the data are sufficiently
informative to allow for identification of effects.
One measure of interdependence is the Moran index I, defined as follows:

I =
n∑

i j
xi j(zi− z)(z j− z)(

∑
i j

xi j

)(
∑
i
(zi− z)2

) Moran index

where z is the mean of z over all the periods.
The Moran index can in theory range from -1 to +1, with values close to zero indicating indepen-
dence between networks and behaviors, and the values +1 or -1 indicating identity or perfect com-
plementarity of the behaviors of two friends (i.e. very strong interdependence). The computation
of the Moran index for the friendship networks and smoking behaviors at the three measurement
points leads to the values 0.244, 0.258 and 0.341. Since these values are greater than zero, there is
considerable dependence between networks and behaviors.
The Jaccard indexes for the two periods allow for checking whether the data provide enough in-
formation for estimating the parameters. The values taken by the Jaccard indexes are higher than
0.3 (0.304 and 0.351), revealing that the data are sufficiently informative to allow for identification
of effects. Since the two “preconditions” are satisfied, we can estimate the co-evolution model.
For illustrative purposes, we start considering a baseline model. Networks and behaviors were
observed at three time points, thus four rate parameters are specified: two for the network rate
functions and two for the behavioral rate functions. Then, outdegree and reciprocity effects are
included in the network objective function, and the linear and the quadratic shape effects are in-
cluded in the behavioral objective function2.
Table 3.2 shows the estimates of the parameters. The table is divided up into two parts. The former
concern to the network dynamics and we have already learned how to interpret it.
The latter refers to the behavioral dynamics. The behavioral rate parameter is the expected fre-
quency, between two consecutive network observations, with which actors get the opportunity to
change their behavior by one unit. The rate parameters suggest that pupils had about 4 oppor-
tunities for change in the two considered periods. We should observe that the behavioral rate
parameters are usually higher than the observed number of behavioral changes per actor for two

2The quadratic shape effect is included because the number of the smoking behavioral categories is higher than 2.
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Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 8.6287 ( 0.6666 )
constant friendship rate (period 2) 7.2489 ( 0.5466 )
outdegree (density) -2.4084 ( 0.0407 ) -59.1268
reciprocity 2.7024 ( 0.0823 ) 32.8337

Behavior Dynamics
rate smokebeh (period 1) 3.8922 ( 1.9689 )
rate smokebeh (period 2) 4.4813 ( 2.3679 )
behavior smokebeh linear shap -3.5464 ( 0.4394 ) -8.0712
behavior smokebeh quadratic shape 2.8464 ( 0.3628 ) 7.8447

Table 3.2: A baseline model

main reasons: an actor can decide not to make any change when he has the opportunity to change
his behavior; an actor may first increase and then decrease (or vice versa) by one unit his behavior
during the period between two observation moments. Comparing the rate parameters of the net-
work rate functions and the behavioral rate functions we note that the speed at which tie change
occur is higher than the speed at which behavioral change occur.
The interpretation of the parameters of the behavioral objective function is more complex. We
should keep in mind that the behavioral objective function expresses the attractiveness of differ-
ent behavioral levels taking into account the current structure of the network and the behavior of
the other actors. Both the linear and the quadratic shape effects are highly significant (absolute
t-scores > 2). To interpret the parameters it should be noted that all actors’covariates are internally
centered by RSiena, and that the mean values used for the centering are directly provided by the
program. The overall mean value of the smoking behavior is 1.377. In more detail, the smoking
covariate has mean z1 = 1.233 (109 no-smokers, 10 occasional smokers and 10 regular smokers)
at the first measurement point, z2 = 1.388 (100 no-smokers, 8 occasional smokers and 21 regular
smokers) at the second measurement point and z3 = 1.512 (93 no-smokers, 6 occasional smokers
and 30 regular smokers) at the third measurement point. The overall mean of the three observation
points is given by the mean of these values, i.e. z = 1.377. Thus, the centered values for the
smoking covariate are: zi− z =−0.377 for no-smokers, zi− z = 0.623 for occasional smokers and
zi− z = 1.623 for regular smokers.
The contribution to the behavioral objective function by actor i is:

f beh
i (γ,x,z,v) = γlinear(zi− z)+ γquadratic(zi− z)2 =

=−3.5464(zi− z)+2.8464(zi− z)2

and it is depicted in Figure 3.2
The behavioral objective function is a unimodal preference function, with the maximum/minimum
attained for zi = z− γlinear

2γquadratic
= 0.754. The U-shaped suggests that changes in the behavior are

drawn to the extreme of the range, with actors already low on the behavior to lower values and
actors already high on the behavior to higher values. This result reflects the U-shaped distribution
of the smoking behavior in the pupils’population.
The baseline model does not provide any information about selection and influence processes be-
cause the network dynamics are explained by the preference towards creating and reciprocating
ties and the behavior dynamic are described only by the distribution of the behavior in the popula-
tion. If we want to distinguish selection from influence a more complex model must be specified.
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5. THE PARAMETER INTERPRETATION

Figure 3.2: Shape of the behavioral objective function and distribution of the smoking behavior in the
pupils’population

This model should be able to simultaneously represent changes in friendship network structure and
changes in smoking behavior among pupils. Therefore, we consider the following model specifi-
cation.
The network objective function is specified according to the final specification of the SAOM pre-
sented in Chapter 2 (Table 2.5). The behavioral objective function includes, besides the baseline
effects, the indegree, outdegree and average similarity effects related to smoking behavior (Ta-
ble 3.5). The choice of the average similarity effect instead of the total similarity effect can be
justified by the (sociological) theory that each pupil is influenced by its own group of friends in
about the same way, so that it is not necessary to take into account the total amount of friends.
Table 3.3 shows the estimates of the parameters. The rate parameters suggest that actors’opportunity
to change their outgoing ties is higher in the first period than in the second period (11 vs. 9 op-
portunities), while actors’opportunity to change their behavior is nearly the same during the two
periods (nearly 4 opportunities).
The estimates for the network objective function parameters leads to the same conclusions of the
model estimated at the end of Chapter 2. The main result is related to the similarity based on
smoking behavior. Controlling for the influence process (i.e., including the behavior dynamics in
the model), the parameter related to the smoking similarity is still positive and significant. Thus,
there is evidence for smoking-based friendship selection.
The parameter estimates of the rate behavioral objective function reveal that the indegree and the
outdegree effects turned out not to be significant contributors to the behavior dynamics (absolute
t-scores ≤ 2). Therefore, the contribution to the behavioral objective function is given by:

γlinear(zi− z)+ γquadratic(zi− z)2 + γavsim
1

xi+

n
∑
j=1

xi j(simz(i j)− simz) =

=−3.3573(zi− z)+2.8406(zi− z)2 +3.4361 1
xi+

n
∑
j=1

xi j(simz(i j)−0.7415)
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Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 10.7166 ( 1.4036 )
constant friendship rate (period 2) 9.0005 ( 0.7709 )
outdegree (density) -2.8435 ( 0.0572 ) -49.6776
reciprocity 1.9683 ( 0.0933 ) 21.1077
transitive triplets 0.4447 ( 0.0322 ) 13.7964
sex ego 0.1612 ( 0.1206 ) 1.3368
sex alter -0.1476 ( 0.1064 ) -1.3871
sex similarity 0.9104 ( 0.0882 ) 10.3244
smoke ego 0.0665 ( 0.0846 ) 0.7857
smoke alter 0.1121 ( 0.0761 ) 1.4719
smokebeh similarity 0.5114 ( 0.1735 ) 2.9479

Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )
behavior smokebeh linear shap -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Table 3.3: A co-evolution model for the analysis of selection and influence mechanisms

Since the behavioral objective function depends generally on the average behavior of the actor’s
friends, here we present a table only for the special case of actors all whose friend have the same
behavior z j. The result is given in Table 3.4.

z j / zi no occasional regular
no 2.56 -1.82 -0.51
occasional 0.84 -0.10 1.20
regular -0.88 -1.82 2.92

Table 3.4: Smoking-related contributions to the behavioral objective function

Each row of Table 3.4 corresponds to a given common behavior of the focal actor’s friends; the
comparison of the different row values shows the relative attractiveness of the different potential
values of ego’s own behavior. The row maximum is assumed at the diagonal for the non-smokers
and for the regular smokers. This means that for low and high values of the common friends’
behavior z j, the focal actor prefers to have the same behavior as all these friends. The differences
in the bottom row are larger than in the top row, indicating that in the case where the friends do
not smoke at all, the preference (or social pressure) toward imitating their behavior is less strong
than in the case where all the friends smoke a lot. The second row of the table suggests that if all
the actor’s friend are occasional smokers, then it is more rewarding for the focal actor to adjust his
behavior towards a higher value of the smoking attitude.
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CHAPTER 3. MODELING THE CO-EVOLUTION OF NETWORKS AND BEHAVIORS

6 Simulating the co-evolution of networks and behaviors

This section presents a probabilistic algorithm to simulate the co-evolution of networks and
behaviors for fixed parameter values. Given a fixed parameter value, the initial network x(t0) and
the initial behavior z(t0), the simulation algorithm consists in reproducing a possible series of
micro-steps between two observation moments t0 and t1:

1. Set the time t = 0, x = x(t0) and z = z(t0)

2. Generate T net according to an exponential distribution with parameter λ net

3. Generate T beh according to an exponential distribution with parameter λ beh

4. If min
{

T net ,T beh
}
= T net a network micro-step is implemented:

- Select the actor i ∈N, who makes the changes, with probability

P(i has the opportunity to change one tie| network micro-steps) =
1
n

- Select the actor j ∈N, to whom i changes his outgoing tie, with probability:

pi j(β ,x(i ; j),z,v) =
exp( f net

i (β ,x(i ; j),z,v))
n
∑

h=1
exp( f net

i (β ,x(i ; h),z,v))

- If i 6= j then x = x(i ; j). If i = j then x = x

- Set t = t +T net

Otherwise if min
{

T net ,T beh
}
= T beh a behavioral micro-step is implemented:

- Select the actor i ∈N, who makes the changes, with probability

P(i has the opportunity to change his behavior|behavioral micro-steps) =
1
n

- Determine the behavioral change l′ ∈ {l +1, l−1, l} with probability:

pll′(γ,z(l ; l′),x,v) =
exp
(

f beh
i (γ,z(l ; l′),x,v)

)
∑

l′′∈{l+1,l−1,l}
exp
(

f beh
i (γ,z(l ; l′′),x,v)

)
- If l 6= l′ then z = z(l ; l′). If l = l′ then z = z

- Set t = t +T beh

5. Repeat step 2. to 4. until the stopping criterion is satisfied.
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7. THE PARAMETER ESTIMATION

The stopping rules for the algorithm of the co-evolution of network and behaviors are the same of
those for the algorithm of network evolution, but for the conditional simulation we can now define
a stopping rule based also on the behavior variable. Conditioning on the behavior variable means
running simulations until the number of different entries between the initially observed behavior
vector and the simulated behavior vector is equal to the number of entries in the vector of the
behavior variable that differ between the initially and the finally observed behavior variable of this
period.
The algorithm for the unconditional estimation is summed up in Algorithm 5.

Algorithm 5: Co-evolution of networks and behavior

Input: x(t0), z(t0), λ net , λ beh, β , γ , n
Output: xsim(t1), zsim(t1)
t← 0
x← x(t0)
z← z(t0)
while t < 1 do

T net ∼ Exp(λ net)
T beh ∼ Exp(λ beh)
if min

{
T net ,T beh

}
= T net then

i ∼Uni f orm(1, . . . ,n)

select j with probability pi j =
e f net

i (β ,x(i; j),z,v)

n
∑

h=1
e f net

i (β ,x(i;h),z,v)

if i 6= j then
x← x(i ; j)

else
x← x

t← t +T net

else
i ∼Uni f orm(1, . . . ,n)

select l′ with probability pll′ =
e f beh

i (γ,z(l;l′),x,v)

∑
l′′∈{l+1,l−1,l}

e f beh
i (γ,z(l;l′′),x,v)

if l 6= l′ then
z← z(l ; l′)

else
z← z

t← t +T beh

xsim(t1)← x
zsim(t1)← z
return xsim(t1), zsim(t1)

7 The parameter estimation

The estimation of the parameters of the SAOM for the co-evolution of network and behaviors
are obtained mainly using the Method of Moments. The Maximum likelihood estimation is cur-
rently too time-consuming and is still under construction.
We will denote by θ the 2(M-1)+K+W dimensional vector of parameters (M−1 parameters for the
network rate function, M−1 parameters for the behavior rate function, K parameters for the net-
work objective function, W parameters for the behavior objective function). For network-behavior
co-evolution the following four types of statistics for the model parameters were proposed:
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- Network rate parameters for the period m

snet
λm
(X(tm),X(tm−1)|X(tm−1) = x(tm−1)) =

n

∑
i, j=1
ı 6= j

∣∣Xi j(tm)−Xi j(tm−1)
∣∣

- Behavior rate parameters for the period m

sbeh
λm

(Z(tm),Z(tm−1)|Z(tm−1) = z(tm−1)) =
n

∑
i=1
|Zi(tm)−Zi(tm−1)|

- Network objective function effects

M−1

∑
m=1

snet
mk ((X ,Z,V )(tm)|(X ,Z,V )(tm−1) = (x,z,v)(tm−1)) =

M−1

∑
m=1

snet
mk ((X ,Z,V )(tm),(X ,Z,V )(tm−1))

- Behavior objective function effects

M−1

∑
m=1

sbeh
mw ((X ,Z,V )(tm)|(X ,Z,V )(tm−1) = (x,z,v)(tm−1)) =

M−1

∑
m=1

sbeh
mw((X ,Z,V )(tm),(X ,Z,V )(tm−1))

Consequently the MoM estimator for θ is provided by the solution of the system of equations:



Eθ

[
sλm (X(tm),X(tm−1)|X(tm−1) = x(tm−1))

]
= sλm(x(tm),x(tm−1)) m = 1, · · · ,M−1

Eθ

[
sλm (Z(tm),Z(tm−1)|Z(tm−1) = z(tm−1))

]
= sλm(z(tm),z(tm−1)) m = 1, · · · ,M−1

Eθ

[
M−1
∑

m=1
snet

mk ((X ,Z,V )(tm)|(x,z,v)(tm−1))

]
=

M−1
∑

m=1
snet

mk ((x,z,v)(tm),(x,z,v)(tm−1)) k = 1, · · · ,K

Eθ

[
M−1
∑

m=1
sbeh

mw ((X ,Z,V )(tm)|(x,z,v)(tm−1))

]
=

M−1
∑

m=1
sbeh

mw((x,z,v)(tm),(x,z,v)(tm−1)) w = 1, · · · ,W

This system of equation is solved using the Robbins-Monro algorithm, described in Chapter 2.
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