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Topic of this lecture.

Statistical models for social network data.



Topic of this lecture.

Statistical models for social network data.

Social networks consist of actors and relations among them.

I actors: persons, organizations, companies, countries, . . .
I relations: friendship, asking for advice, communication,

collaboration, trade, war, . . .



Topic of this lecture.

Statistical models for social network data.

Data availability improved largely over the last decade.

I traditional data collection, e. g., by questionaires
“please name your best friends”

I more and more automatically logged data from
electronic communication and collaboration:
telephone calls, email, online social networks, online
markets, recommender systems, wikis, . . .

⇒ opportunity and challenge for data-driven social science.



Topic of this lecture.

Statistical models for social network data.

Statistics can formulate precise statements about uncertainty.

What would happen, if we measured the data again?
I at a different point in time,
I on a different set of actors,
I with different environmental factors, . . .

estimate expected outcome ± variability

⇒ to explain and predict social relations and behavior.



Illustrative application: assessment of social influence.



Social influence and network-based marketing.



Social influence and network-based marketing.

Proposition is a bit too optimistic . . .
but approximate pattern might be empirically observable.



Social influence and network-based marketing.
Empirical validation.

Hill, Provost, and Volinsky (2006): Network-Based Marketing.
Statistical Science 21(2):256–276.

Data: Derived from a direct-mail marketing campaign of a
telecommunications firm to promote a new product/service.

I “Traditional” variables: loyalty to firm, interest in high-tech
products, early adopter, . . .

I Network variable: communicated with product adopter.
I Outcome: subsequently purchase or not.

Hypothesis: Customers connected to an adopter have a
higher probability to purchase the product.



Social influence and network-based marketing.
research question – graphically

One customer has already bought the product; some are
connected to this early adopter.

Do customers connected to an early adopter have a higher
probability to purchase the product?



Social influence and network-based marketing.
Empirical validation (continued).

Research question: do customers connected to an early
adopter have a higher probability to purchase the product?

Method: all potential customers are classified into marketing
segments determined by traditional variables.

For each segment separately, compare

P(purchase | connected to adopter)
P(purchase)



Social influence and network-based marketing.
Empirical validation (continued).

Method: all potential customers are classified into marketing
segments determined by traditional variables.

For each segment separately, compare

P(purchase | connected to adopter)
P(purchase)

Results: customers connected to product adopter have a
purchase probability that is 3 to 5 times higher.

Network analysis can identify prospective customers ignored by
traditional marketing strategies.



Social influence and network-based marketing.
results – graphically

Customers connected to an early adopter do have a higher
purchase probability!

So, there is social influence – isn’t it?



Other stories about social influence . . .



Spread of obesity.

Christakis and Fowler (2007): The Spread of Obesity in a Large
Social Network over 32 Years. New England Journal of
Medicine 357:370–379.

Data (Framingham Heart Study): health data about 12,000
people from 1971–2003, including body mass index and
various social relations.

Key result:

A person’s chances of becoming obese increased by
57% [. . . ] if he or she had a friend who became obese
[. . . ].

Is obesity contagious?



Spread of happiness and smoking behavior.

A person’s chances of becoming obese increased by 57% [. . . ]
if he or she had a friend who became obese [. . . ].

Other results on the same or similar datasets
I happy friends make an individual happier;
I individuals have a higher probability to start smoking if they

are friends of smokers; . . .

Everything seems to spread through networks.



Criticism of popular network analysis methods.

Cohen-Cole and Fletcher (2008): Detecting Implausible Social
Network Effects in Acne, Height, and Headaches. British
Medical Journal 337:a2533.

Data: Add Health Study.

Results: using popular SNA methods it can be validated that
I people whose friends have skin diseases tend to develop

skin diseases;
I individuals with tall friends become taller;
I the likelihood of headaches increases with the presence of

a friend with headaches.

Conclusion?



Revisiting social influence in purchase decisions.

One actor has
bought the product.

His/her friends
I become aware

of the product;
I receive recom-

mendation;
I and/or desire to

have it. Some of them buy
the product.

Detailed mechanism (middle) has not been validated.



Alternative explanation of observed network data.

(2) Similar actors have a higher probability to become friends.

(1) Actors have
different
characteristics
(e. g., age).

(4) Together it looks
like social influence.

(3) Actors’ characteristics influence purchase probabilities.



Alternative explanations for network effects.

Smokers’ friends are often smokers.
individuals are influenced by their friends;

OR individuals chose those that are like them as friends.

Chances of becoming obese increase with obese friends.
individuals are influenced by their friends (e. g., eating
behavior or acceptance of obesity);

OR individuals chose those that are like them as friends;
OR there are more fast-food restaurants in some regions;

these cause obesity; and people living in the same region
are more likely to become friends.



Social influence cannot be treated in isolation.

Actors who adopt a behavior might just have a higher probabiliy
to be friends of early adopters. (not the other way round)

Need to model the relations as well—not just the behavior.

network(t)

behavior(t)

network(t + 1)

behavior(t + 1)

social selection

social influence

Ignoring some of these dependencies may lead to spurious
conclusions.



Statistical dependencies in network data.

Social influence.
I Network ties influence actors’ behavior.
I E. g., friends of smokers start smoking.

Social selection.
I Actor characteristics influence network ties.
I E. g., smokers choose smokers as friends (homophily).

Network dependency.
I Ties influence other ties.
I E. g., friends of friends become friends (transitivity).

Correlation of individual attributes.
I E. g., eating behavior causes obesity.



Topic of this lecture.

Statistical models for social network data.

Specify realistic probability distributions for social networks
(ties and behavior), where

I tie probabilities depend on other ties and behavior;
I behavior depends on social ties and behavior of others.



Statistical network models serve several purposes.

Explaining social relations and/or behavior
I search for rules that govern the evolution of social

networks.

Predicting social relations and/or behavior
I learn from given data and predict the data yet to come.

Random generation of networks that look like real data
I algorithm engineering; empirical estimation of average

runtime or performance;
I simulation of network processes (e. g., information

spreading, spread of disease).



Structure of this lecture.

Varying amount of time information in the data requires
different network models.

Networks observed at a single point in time
I model the probability of single networks P(G).

Networks observed at two or more points in time
I model the conditional probability of later networks, given

the previous ones P(Gt |Gt−1).

Continuously observed network changes or events
I model the next network event, given the network of

previous events P(et |G<t ).

Treated in three parts of this lecture.
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Background: finite probability space.

Definition
A finite probability space is a pair (Ω,P), where

I Ω is a finite set (possible outcomes)
I P : Ω→ [0,1] a function satisfying

∑
ω∈Ω P(ω) = 1.

Notation
I P(ω) is called the probability of ω ∈ Ω.
I The probability of a subset Ω′ ⊆ Ω is defined by

P(Ω′) =
∑

ω∈Ω′ P(ω).

Example (dice)
Ω = {1,2,3,4,5,6} (possible outcomes when throwing a die)
P(ω) = 1/6 for all ω ∈ Ω (uniform probability)
Ω′ = {1,3,5} (throwing an odd number)



Background: finite probability space.

Definition
A finite probability space is a pair (Ω,P), where

I Ω is a finite set (possible outcomes)
I P : Ω→ [0,1] a function satisfying

∑
ω∈Ω P(ω) = 1.

Notation
I P(ω) is called the probability of ω ∈ Ω.
I The probability of a subset Ω′ ⊆ Ω is defined by

P(Ω′) =
∑

ω∈Ω′ P(ω).

Example (lottery)
Ω = {X ⊂ {1, . . . ,49} ; |X | = 6} (sets of 6 different numbers)

P(ω) =
(49

6

)−1
= 6!43!

49! for all ω ∈ Ω (uniform probability)



Background: graphs.

Definition
A graph is a pair G = (V ,E), where V is a finite set of vertices
and E the set of edges.

I undirected graph: E ⊆
(V

2

)
= {{u, v} ; u, v ∈ V}

I directed graph: E ⊆ V × V = {(u, v) ; u, v ∈ V}
I loop: edge from a vertex to itself

Interpretation:
I vertices correspond to actors
I edges form the relation among

them



Random graph models.

Definition
A random graph model is a probability space (G,P), where G is
a (finite) set of graphs.

Example (uniform random graph model)
Let G be the set of all undirected, loopless graphs with vertex
set V = {1, . . . ,n} and let

P : G → R; P(G) =
1

2
n(n−1)

2

.

Then (G,P) is a random graph model.



Random graph models: notation.

I We consider only random graph models (G,P) in which all
graphs in G have the same set of vertices;
usually V = {1, . . . ,n}.

I The set of dyads D consists of all elements that can be
edges in a graph in G.

I For undirected, loopless graphs:
D = {{u, v} ; u, v ∈ V , u 6= v}.

I For directed, loopless graphs:
D = {(u, v) ; u, v ∈ V , u 6= v}.

I A dyad e ∈ D is associated with a subset

Ge = {G ∈ G ; e ∈ EG} .

When we say “probability of an edge e”, we mean P(Ge),
that is, the probability of Ge.



Random graph models: edge probability.

A dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

When we say “probability of an edge e”, we mean P(Ge).

Thus, assigning a probability to each graph also determines the
probability of individual edges.

Does this also hold the other way round?



Independence and non-independence of edges.

In some cases the existence of an edge (or several edges)
changes the probability of other edges.

P1(e) P2(e)

For instance: does P(e) change when the nodes incident to e
are indirectly connected via a third node? How? Why?



Independence and non-independence of edges.
small facebook network

769 nodes, 16 656 edges⇒ average edge probability is 0.056

186 722 dyads are indirectly connected via a third node;
16 556 of these are edges⇒ average conditional edge
probability for indirectly connected nodes is 0.089



Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
.

Example (probability space: dice)
Aodd = {1,3,5} and A≤4 = {1,2,3,4} are independent.



Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
.

Example (probability space: dice)
Aodd = {1,3,5} and A≤3 = {1,2,3} are not independent.



Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
.

Example (probability space: dice)
P(Aodd|A≤4) = 1/2, but P(Aodd|A≤3) = 2/3



Independence of dyads in random graph models.

A dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

I if Ge1 and Ge2 are independent, we say that “the dyads e1
and e2 are independent”

Definition
Let D′ ⊂ D. A dyad e ∈ D \ D′ is said to be independent of D′ if
for all partitions D′ = D+ ∪ D−, the subset Ge is independent of

GD+∪D− = {G ∈ G ; D+ ⊆ EG and D− ∩ EG = ∅}

(all dyads in D+ are edges in G and no dyad in D− is an edge).



Structural balance theory (illustrating dependence).

Structural balance theory (Heider 1946) applies to triplets of
3 actors mutually connected by positive or negative ties:

balanced not balanced

SBT claims that actors prefer balanced networks.

In an appropriate random graph model, it holds that
I all edges are pairwise independent;
I every edge depends on the two others.



For illustration, we treat in the following
I edge probability,
I independence of dyads,
I and expected number of edges

of the uniform random graph model.



Uniform graph model: edge probability.

Lemma
The edge probability of a dyad e ∈ D in the uniform random
graph model is equal to 1/2.

Proof.
The two sets

Ge = {G ∈ G ; e ∈ EG},
Ge = {G ∈ G ; e 6∈ EG}

I have the same cardinality⇒ P(Ge) = P(Ge),
I are disjoint⇒ P(Ge) + P(Ge) = P(Ge ∪ Ge),
I and their union equals G ⇒ P(Ge ∪ Ge) = 1.
⇒ P(Ge) = 1/2.



Uniform graph model: independence.

Lemma
The edge probability of a dyad e ∈ D in the uniform random
graph model is 1/2, independent of all sets of dyads.

Proof.
Let D+,D− ⊆ D \ {e} be two disjoint subsets of dyads, not
containing e. Consider

G′ = {G ∈ G ; D+ ⊆ EG, and D− ∩ EG = ∅}

(all dyads in D+ are edges in G and no dyad in D− is an edge).

Then, with G′e = {G ∈ G′ ; e ∈ EG} it follows P(G′e|G′) = 1/2 (as
on the previous slide).



Background: random variable and expectation.

Let (Ω,P) be a probability space.

Definition
A random variable is a function X : Ω→ R.

Let S = X (Ω) be the set of values of X .

The expectation of the random variable X is defined by

E(X ) =
∑
x∈S

x · P(X = x) =
∑
ω∈Ω

X (ω) · P(ω) .

Example
The prize assigned to lottery numbers is a random variable.
Its expectation is the average gain that could be expected after
“many” lottery draws (to be compared with the cost of a ticket).



Background: linearity of expectation.

E(X ) =
∑
ω∈Ω

P(ω) · X (ω) .

Lemma
If X ,Y : Ω→ R are two random variables and α a real number,
then it is

E(X + Y ) = E(X ) + E(Y )

E(α · X ) = α · E(X ) .



Background: density.

The density of a graph is the ratio

number of edges
number of dyads

.

The density is between zero and one.

For undirected, loopless graphs with n vertices the denominator
is equal to n(n − 1)/2.
For directed, loopless graphs with n vertices the denominator is
equal to n(n − 1).



Uniform graph model: expected density.

Lemma
The expected density of graphs in G(n) equals 1/2.

Proof.
The number of edges of a graph G can be written as

m(G) =
∑
e∈D

χe(G)

where χe : G → {0,1} is defined by

χe(G) =

{
1 if e ∈ EG
0 else.



Uniform graph model: expected density.

Lemma
The expected density of graphs in G(n) equals 1/2.

Proof.
The number of edges of a graph G can be written as

m(G) =
∑
e∈D

χe(G)

From the linearity of the expectation it follows that

E[m] =
∑
e∈D

E[χe] =
∑
e∈D

P(e) · 1 + (1− P(e)) · 0

=
∑
e∈D

1
2
· 1 =

1
2

n(n − 1)

2



Uniform graph model: summary.

Characterizing properties:
I edges are mutually independent;
I all edges are equally likely;
I no preference for edges over non-edges or vice versa.

It has been found that empirical networks typically violate all of
these properties:

I edges are not independent;
I have varying probabilities;
I networks are typically sparse (i. e., most dyads are

non-edges).
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G(n,p) definition.

G(n,p) is a model for undirected, loopless graphs.

Two parameters
n ∈ N≥1 (number of vertices)
p ∈ [0,1] (edge probability)

Definition of probability P : G → [0,1]

Probability of graphs defined by specifying
I edge probability of each dyad is equal to p,
I each dyad is independent of all sets of dyads.



Probability of a graph in G(n,p).

Lemma
The probability of a graph G = (V ,E) with m edges is

P(G) = pm(1− p)
n(n−1)

2 −m

Proof.
For dyad e ∈ D it is P(e ∈ E) = p, P(e 6∈ E) = 1− p;
multiply these probabilities over all dyads . . . done.
(multiplication is valid since edge probabilities are
independent)

Remark
The uniform random graph model is identical with G(n, 1

2).



G(n,p) probability of a graph.

P(G) = pm(1− p)
n(n−1)

2 −m

Proof.
(extended version)

P(G) = P({G})

= P

 ⋂
d∈EG

Gd ∩
⋂

d∈D\EG

Gd


=

∏
d∈EG

P(Gd ) ·
∏

d∈D\EG

P(Gd )

=
∏

d∈EG

p ·
∏

d∈D\EG

1− p

= pm(1− p)
n(n−1)

2 −m .



Remark.

If every dyad is independent of all sets of dyads, then the
probability of each graph is determined by the edge
probabilities of all dyads.

In general (without independence), the edge probabilities do
not uniquely determine the graph probability.
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Task: design of a probabilistic algorithm returning a graph G
with probability as in G(n,p).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

enumerate dyads
d1

d2 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d1 an edge?
(draw a random number. . . )

d1?

d2 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d1 an edge?
→ NO (for instance)

d1

d2 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d2 an edge?
(draw a random number. . . )

d1

d2? d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d2 an edge?
→ YES (for instance)
⇒ turn d2 into the first edge

d1

e1 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d3 an edge?
(draw a random number. . . )

d1

e1 d3?

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d3 an edge?
→ NO (for instance)

d1

e1 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

go on . . . d1

e1 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d6 an edge?
(draw a random number. . . )

d1

e1 d3

d4 d5 d6?

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d6 an edge?
→ YES (for instance)
⇒ turn d6 into the second edge

d1

e1 d3

d4 d5 e2

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

to be continued . . .
d1

e1 d3

d4 d5 e2

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Background: sparse graphs and dense graphs.

Let n be the number of vertices and m the number of edges.

In undirected, loopless graphs it is
0 ≤ m ≤ n(n − 1)/2 ∈ Θ(n2).

A family of graphs with unbounded n = 1,2,3, . . . is called
I dense if m ∈ Θ(n2);
I sparse if m ∈ O(n);
I (in between: notation depends on context).

Density of sparse graphs tends to zero: p ∈ O(1/n).
Average degree of sparse graphs is bounded by constant:
d ∈ O(1).

Empirical observation: social networks are typically sparse.



Generating graphs from G(n,p).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Runtime: is in Θ(n2)
⇒ asymptotically larger than the expected graph size,
Θ(n + p · n2), if p is decreasing with n (sparse graphs).



G(n,p) efficient generation.

Better ask the question:

How many dyads shall be left out before the next
edge?

⇒ need only Θ(m) questions.

Randomly draw the number k of non-edges . . .

draw k = 1⇒ leave out one
dyad; turn the second dyad into
the first edge

draw k = 3⇒ leave out the
next three dyads (d3, d4, d5);
turn d6 into the second edge

d1

d2 d3

d4 d5 d6

d7 d8 d9 d10



G(n,p) efficient generation.

Better ask the question:

How many dyads shall be left out before the next
edge?

⇒ need only Θ(m) questions.

Randomly draw the number k of non-edges . . .

draw k = 1⇒ leave out one
dyad; turn the second dyad into
the first edge

draw k = 3⇒ leave out the
next three dyads (d3, d4, d5);
turn d6 into the second edge
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G(n,p) efficient generation.
How many dyads shall be left out?

(Notation: q = 1− p on the following slides.)

Observation: the next dyad that becomes an edge is
preceeded by exactly k non-edges with probability qkp.

⇒ randomly draw number k of
non-edges (out of 0,1, . . . ) with
probability qkp and add the
k + 1th dyad to the edge set.

draw k = 1 (happens with
probability qp)

draw k = 3 (happens with
probability q3p)

d1

d2 d3

d4 d5 d6

d7 d8 d9 d10
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Observation: the next dyad that becomes an edge is
preceeded by exactly k non-edges with probability qkp.

⇒ randomly draw number k of
non-edges (out of 0,1, . . . ) with
probability qkp and add the
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draw k = 1 (happens with
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draw k = 3 (happens with
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How to draw numbers k = 0,1, . . . with probability
qkp?

Associate k = 0,1, . . . with interval Ik ⊂ [0,1] of length qkp.

0 1p

I0

p + qp

I1 I2 I3 . . .

I0 = [0,p], I1 = [p,p + qp], I2 = [p + qp,p + qp + q2p], . . .

Note that
∞∑

k=0

qkp = p ·
∞∑

k=0

qk = p · 1
1− q

= 1 .

For r ← random([0,1]) choose k such that r is in Ik .



How to draw numbers k = 0,1, . . . with probability
qkp?

0 1p

I0

p + qp

I1 I2 I3 . . .

For r ← random([0,1]) choose k such that r is in Ik .

The interval Ik ends at

k∑
i=0

qip = p ·
k∑

i=0

qi = p · 1− qk+1

1− q
= 1− qk+1 .

For r ← random([0,1]) compute the minimum k such that Ik
ends after r , i. e., such that 1− qk+1 > r .



How to draw numbers k = 0,1, . . . with probability
qkp?

For r ← random([0,1]) compute the minimum k such that
1− qk+1 > r .

The following inequalities are equivalent.

r < 1− qk+1

qk+1 < 1− r
(k + 1) log q < log(1− r)

k >
log(1− r)

log q
− 1

Leave out k :=
⌊

log(1−r)
log q

⌋
dyads and insert the k + 1 dyad in the

edge set.



G(n,p) efficient generation (algorithm).

(Insert the
⌊

log(1−r)
log(1−p)

⌋
+ 1 dyad in the edge set.)

E ← ∅
v ← 1 w ← −1
while v < n do

r ← random([0,1])

w ← w + 1 +

⌊
log(1− r)

log(1− p)

⌋
while w ≥ v and v < n do

w ← w − v ; v ← v + 1
if v < n then

E ← E ∪ {{v ,w}}

return G = (V ,E)

0

v w

n − 1

0 n − 1

If w ≥ v then w is reduced by v and the row index v is
incremented by one.



G(n,p) efficient generation (runtime).

E ← ∅
v ← 1 w ← −1
while v < n do

r ← random([0,1])

w ← w + 1 +

⌊
log(1− r)

log(1− p)

⌋
while w ≥ v and v < n do

w ← w − v ; v ← v + 1
if v < n then

E ← E ∪ {{v ,w}}

return G = (V ,E)

Outer while loop is executed
m + 1 times (m is the number
of edges of G).

Inner while loop is executed
(in total) n − 1 times.

⇒ runtime in O(m + n).



Outline.
Introduction.

Random graph models.

G(n,p).
Definition of G(n,p).
Sampling from G(n,p).
Plausibility of G(n,p) as a model for social networks.

Towards more structured models.
Planted partition models.
Preferential attachment.

Exponential random graph models.
Definition and examples.
Sampling from an ERGM.
Hammersley-Clifford Theorem.
Near-degeneracy and multi-modality of ERGMs.
Hypothesis testing.



Can such a network be drawn from a G(n,p) model?

Graph has 769 vertices and about 16 600 edges.

Which G(n,p)?
What is the most likely value for the parameter p?



Statistical inference of model parameters.

Problem: given a graph G generated from some parameterized
random graph model (without knowing the parameter value).

What is the most likely parameter value?

Definition (maximum likelihood)
(G,Pθ) random graph model parameterized by θ ∈ Θ ⊆ Rk ;
Gobs ∈ G a graph (observation).
Likelihood function associated with Gobs

L : Θ→ R; θ 7→ Pθ(Gobs)

A parameter vector θ̂ maximizing L, i. e.,

θ̂ = arg max
θ

L(θ)

is called a maximum likelihood estimate (MLE) for θ.



Maximum likelihood estimate of p in G(n,p).

Assume that Gobs has exactly m edges; let M = n(n−1)
2 .

L(p) = Pp(Gobs) = pm(1− p)M−m .

L′(p) = m · pm−1 · (1− p)M−m − pm · (M −m) · (1− p)M−m−1 .

Setting L′(p) = 0 for 0 < p < 1 yields

m · pm−1 · (1− p)M−m = pm · (M −m) · (1− p)M−m−1

m · (1− p) = p · (M −m)

m − pm = pM − pm
m
M

= p

L(p) indeed assumes a maximum at p̂ := m
M since [. . . ].



Both graphs have 769 vertices and about 16 600 edges

⇒ both have the same probability in G(n,p).

Maximum likelihood estimate for p is 0.056

Which graph is drawn from a G(n,p) model?



Which graph is drawn from a G(n,p) model?

Address this question by looking at two network properties:
1. inhomogeneity of the graph density;
2. skewness of the degree distribution.



Inhomogeneity of the graph density

Colors encode the dorm variable (gray for missing value).



Inhomogeneity of the graph density

Density of the whole network is 0.056

The subnetworks induced by the eight dorms have much higher
densities, namely: 0.21, 0.37, 0.20, 0.35, 0.31, 0.24, 0.37, 0.25.

Can this happen in a G(n,p) model?



Which graph is drawn from a G(n,p) model?

Comparing degree distributions.



Which graph is drawn from a G(n,p) model?

Plotting vertex degree (y -axis) vs. rank of vertex degree.

max degree is 65
min degree is 21

max degree is 248
min degree is 1



Which graph is drawn from a G(n,p) model?

Plotting number of vertices (y -axis) with given degree (x-axis).
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G(n,p) probability of degree k .

Lemma
Let v ∈ {1, . . . ,n} be any vertex. The probability that v has
degree equal to k ∈ {0, . . . ,n − 1} in a graph drawn from
G(n,p) is

P(d(v) = k) =

(
n − 1

k

)
· pkqn−1−k

Proof.
There are exactly

(n−1
k

)
different neighborhoods of v that have

cardinality k . Each of them has probability pkqn−1−k .



G(n,p) probability of degree k .

details on the proof: let

Nk (v) = {{v1, . . . , vk} ⊆ V \ {v}}

be the set of k -element subsets of V \ {v} (potential
neighborhoods of size k of v ).
Define for U ∈ Nk (v) the subset

GU = {G ∈ G ; ∀u ∈ U : {u, v} ∈ EG and ∀u 6∈ U : {u, v} 6∈ EG}

(all graphs in which the neighborhood of v equals U).
Important fact: GU and GU′ are disjoint for U 6= U ′. Thus

P[d(v) = k ] =
∑

U∈Nk (v)

P(GU) =

(
n − 1

k

)
· pkqn−1−k



P[d(v) = k ] =

(
n − 1

k

)
· pkqn−1−k
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Degree distribution in G(n,p) (limit n→∞).

Theorem
Let λ ∈ R>0, pn := λ/(n − 1) a sequence of edge probabilities,
defined for n ≥ λ+ 1,
k ∈ N0, Pn[d(v) = k ] probability that d(v) = k in G(n,pn) for
fixed v.

Then it is

lim
n→∞

Pn[d(v) = k ] = e−λ · λ
k

k !
.

(Is called Poisson distribution.)



Degree distribution in G(n,p) for large n.
Degree distribution of a graph drawn from G(n,p) with n = 107

and p = 10/(n − 1); maximum observed degree is 30.
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lim
n→∞

Pn[d(v) = k ] = e−λ · λ
k

k !
.
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Two simple approaches to define more structured models.

1. Planted partition models: allow varying density between
different classes of vertices (but keeping dyad
independence as in the G(n,p) model).

2. Incrementally defined models: nodes and edges are
incrementally added to the network; probability of later
edges may depend on earlier ones (but not the other way
round). Example: preferential attachment.
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Recall: inhomogeneity of the graph density

Density of the whole network is 0.056

The subnetworks induced by the eight dorms have much higher
densities, namely: 0.21, 0.37, 0.20, 0.35, 0.31, 0.24, 0.37, 0.25.



Planted partition models.

Definition
A planted partition model is defined by

I A partition of the vertex set V = V1 ∪ · · · ∪ Vk into k disjoint
classes.

I Probabilities pij ∈ [0,1] assigned to each pair (Vi ,Vk ) of
classes.

I Two vertices u ∈ Vi and v ∈ Vj are connected by an edge
with probability pij .

I Every dyad is independent of any set of dyads.



Planted partition models: example.

Matrix of edge probabilities for three vertex classes.

p1 · · · p1
...

...
p1 · · · p1

p2 · · · p2
...

...
p2 · · · p2

p3 · · · p3
...

...
p3 · · · p3

p2 · · · p2
...

...
p2 · · · p2

p4 · · · p4
...

...
p4 · · · p4

p5 · · · p5
...

...
p5 · · · p5

p3 · · · p3
...

...
p3 · · · p3

p5 · · · p5
...

...
p5 · · · p5

p6 · · · p6
...

...
p6 · · · p6


For directed networks: matrix can be asymmetric.
For loopless networks: diagonal elements are zero.



Planted partition models.

Definition
A planted partition model is defined by

I A partition of the vertex set V = V1 ∪ · · · ∪ Vk into k disjoint
classes.

I Probabilities pij ∈ [0,1] assigned to each pair (Vi ,Vk ) of
classes.

I Two vertices u ∈ Vi and v ∈ Vj are connected by an edge
with probability pij .

I Every dyad is independent of any set of dyads.

Computation of probabilities and sampling in planted partition
models is (almost) as simple as in G(n,p).
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Recall: degree distributions.

sampled from G(n,p)
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Other empirical dist. (Barabasi and Albert, 1999).

Note: logarithmic scaling of axes.

A Actor collaboration network n = 212,250 and d = 28.78
B WWW n = 325,729 and d = 5.46
C Power grid n = 4,941 and d = 2.67



Preferential attachment: motivation and history.

Empirical observation: often a few nodes have very high
degrees; degree-distribution resembles a power-law:

P(d(v) = k) ≈ c · 1
kγ

Model idea (Barabási and Albert, 1999):
1. vertices are successively added to the network;
2. new vertices create a fixed number of edges to already

existing vertices;
3. probability of edge to vertex v is proportional to v ’s degree.

Interpretation high-degree vertices are more popular.

Experimental evidence for power-law distribution with γ ≈ 3.



Preferential attachment model.

Definition (Bollobás, Riordan, Spencer, and Tusnády)
Directed multi-graphs, including loops, with n ≥ 1 vertices and
constant outdegree equal to b ≥ 1.

Iterative definition:
start with empty graph G = (V ,E), V = E = ∅

foreach v = 0, . . . ,n − 1 do
put v into V
foreach j = 0, . . . ,b − 1 do

attach an outgoing edge e = (v , ·) to v ;
randomly select target w of e with probability

dG(w)∑
w ′∈V dG(w ′)

;

put e = (v ,w) into E ;



Preferential attachment (algorithm).
uses: uniform random sampling of integer from {0, . . . , k}

input : number of nodes n ∈ N≥1, out-degree b ∈ N≥1
data : array A[0 . . . 2nb − 1] //collects endpoints of edges
output
:

multi-graph G = ({0, . . . ,n − 1},E)

E ← ∅; m← 0 //edge set and edge counter

foreach v = 0, . . . ,n − 1 do
foreach j = 0, . . . ,b − 1 do

A[2m]← v //v is source of next edge
w ← A[random({0, . . . ,2m})] //randomly select target
A[2m + 1]← w ; //put target in A
E ← E ∪ {(v ,w)}; m← m + 1 //update edges

Note: number of occurences of v in A equals degree of v
⇒ correct probability in selecting targets.



Preferential attachment leads to power law for low
degree vertices.

Theorem (Bollobás, Riordan, Spencer, and Tusnády)
For a,b ∈ N let δ be defined by

δ(a,b) =
2b(b + 1)

(a + b)(a + b + 1)(a + b + 2)
.

For n,a,b ∈ N with 0 ≤ a ≤ n
1

15 and ε ∈ R>0 it holds in the
preferential attachment model that

P

[
(1− ε) · δ(a,b) ≤

|{v ∈ Vn : d−G (v) = a}|
n

≤ (1 + ε) · δ(a,b)

]
−→
n→∞

1
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Exponential random graph models (informal).

Exponential random graph models (ERGMs) are a class of
random graph models.

Concrete ERG-model is specified by two components:
1. A set of network characteristics (statistics) that (may)

have an influence on the probability of a graph.
2. A set of parameters (associated with statistics) that

determine how network statistics increase or decrease the
probabilities of graphs.

Choice of statistics often motivated by social science theory.

Parameters can be fitted to an observed network⇒ hypothesis
testing.



Exponential random graph models (ERGM).

Definition
The ERGM class consists of random graph models (G,Pθ)
whose probability function Pθ can be written as

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

with
I gi : G → R for i = 1, . . . , k (statistics);
I θi ∈ R for i = 1, . . . , k (parameters); θ = (θ1, . . . , θk );
I normalizing constant κ defined by

κ(θ) =
∑

G′∈G

exp

(
k∑

i=1

θi · gi(G′)

)
.



ERGM (example).

Consider undirected graphs with 3 vertices.

P(G) =
1
κ

exp [− log(2) ·m(G) + log(16) · triangles(G)]

m(G) 0 1 2 3

triangles(G) 0 0 0 1

P(G) · κ 1 1
2

1
22

16
23

# isomorphic graphs 1 3 3 1

⇒ κ = 1 + 3 · 1/2 + 3 · 1/4 + 2 = 21/4



Relation between statistics and probability.

Probability function

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)
.

Isolating the effect of one specific statistic gi0 :

Pθ(G) = exp[θi0 · gi0(G)] · 1
κ(θ)

exp

∑
i 6=i0

θi · gi(G)

 .

⇒ if gi0(G′) = gi0(G) + c and gi(G′) = gi(G) for all i 6= i0,
then P(G′) = exp(θi0)c · P(G).

It is exp(θi0) > 1⇔ θi0 > 0 and exp(θi0) < 1⇔ θi0 < 0.



Relation between statistics and probability (example).

Let gi0 count the number of triangles in G.

Pθ(G) = exp[θi0 · gi0(G)] · 1
κ(θ)

exp

∑
i 6=i0

θi · gi(G)

 .

1

2

3

4 Edge between 1 and 3 is
exp(θi0)-times as likely as
between 1 and 4.

If other statistics change
identically!

Positive θi0 ⇒ more likely; negative θi0 ⇒ less likely.



Remark.

In this lecture we consider only ERGMs (G,P) where G is the
set of all undirected, loopless graphs with vertex set
V = {1, . . . ,n}.



Example: G(n,p) belongs to the ERGM class.

Lemma
If p 6∈ {0,1}, then G(n,p) equals the ERGM defined by

P1(G) = exp [θ ·m(G)] · κ(θ)−1

where θ = log
(

p
1−p

)
.

Proof.
Let P2 denote the probability function of the G(n,p) model.

P2(G) = pm(G) · (1− p)(n
2)−m(G)

=

(
p

1− p

)m(G)

· (1− p)(n
2)

= exp [θ ·m(G)] · (1− p)(n
2)

Thus, P1(G)
P1(G′) = P2(G)

P2(G′) for any two graphs G, G′.



Example: G(n,p) belongs to the ERGM class.

Proof.
P1(G) = P2(G)P1(G′)

P2(G′) for any two graphs G, G′ implies that for
arbitrary but fixed G′ it is∑

G∈G

P1(G) =
∑
G∈G

P2(G) · P1(G′)
P2(G′)

1 = 1 · P1(G′)
P2(G′)

Hence, P1(G′) = P2(G′).



Interpretation of θ = log
(

p
1−p

)
.

Lemma
If p 6= 0,1, then G(n,p) equals the ERGM defined by

P1(G) = exp [θ ·m(G)] · κ(θ)−1

where θ = log
(

p
1−p

)
and m(G) is the number of edges.

Relation between θ and p
I θ < 0⇐⇒ expected density p < 1/2;
I θ = 0⇐⇒ expected density p = 1/2;
I θ > 0⇐⇒ expected density p > 1/2.

Does not hold in general (if the ERGM contains other statistics).



Commonly used network statistics (I).

Statistics gi counting specific subgraphs (configurations).

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

If a subgraph count is associated with a positive (negative)
parameter, then those subgraphs are more (less) likely.

Example

I m(G) defined as the number of edges

models preference for edges over non-edges or vice versa.



Commonly used network statistics (II).

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

Example
assuming that actors have attribute values a : V → {1, . . . , c},
such as age, gender, . . .

I ma(G) = |{{u, v} ∈ E ; a(u) = a(v)}|, i. e., the number of
edges connecting actors with the same attribute value

models tendency for (against) creating edges to similar actors
homophily (heterophily)



Commonly used network statistics (III).

Statistics gi counting specific subgraphs (configurations).

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

Example

I t(G) defined as the number of triangles

models preference (reluctance) to close triangles (transitivity).

1

2

3

4



Commonly used network statistics (IV).

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

Example

I s`(G) defined as the number of `-stars, ` = 2, . . . ,n − 1

models tendency for (against) connecting to high-degree
vertices.

1

2

3
4

5

Note: a vertex of degree d contributes
(d
`

)
to the `-star count.



Implication on dyad dependency.

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

number of edges

edges connecting same attribute

number of triangles

number of `-stars

1

2

3
4

5

Using some of these statistics make edge probabilities
dependent.



Implication on dyad dependency.

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)
gi(G) edge prob.

number of edges independent

edges connecting same attribute independent

number of triangles dependent

number of `-stars

1

2

3
4

5

dependent



Edge dependency (example).
Consider undirected graphs with 3 vertices; 2-star count s2.

P(G) =
1
κ

exp [log(2) · s2(G)]

s2(G) 0 0 1 3

P(G) · κ 1 1 2 23 = 8

# isomorphic graphs 1 3 3 1

Let e,e′ be two different dyads.

P(Ge|Ge′) = (2 + 8)/(1 + 2 · 2 + 8) = 10/13
P(Ge) = (1 + 2 · 2 + 8)/(1 + 3 · 1 + 3 · 2 + 8) = 13/18

Thus, dyads e and e′ are statistically dependent.
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Sampling from an ERGM: why is this difficult?

We want to design a probabilistic algorithm that
I returns at each call a graph G from G;
I with probability equal to P(G).

So far, algorithms for sampling from G(n,p) or the preferential
attachment model decided about the inclusion/exclusion of
edges one after the other.

(In general) this is not feasible for ERGMs
I we cannot compute edge probabilities

P(e ∈ E) = P(Ge) = P({G ∈ G ; e ∈ EG})

in an efficient way;
I we cannot even compute P(G) for a single graph G since

the normalizing constant has 2(n
2) terms.



Markov chain simulation (informal).

A Markov chain consists of a set of states and transition
probabilities to jump from one state to another.

Here, given an ERGM (G,P)

I the set of states is G (all graphs);
I transition probabilities π are a function of P
I in such a way that

I the probability to be on a graph G converges to P(G),
when the number of simulation steps tends to∞.

⇒ Simulate many steps and return the current graph.

G1 G2 G3

G4 G5 . . .

π12

π14



Finite stationary Markov chain (simplified definition).
Note: Markov chains are usually defined as random processes
that satisfy certain properties. The following is a more intuitive
definition for stationary Markov chains.

Definition
A (finite stationary) Markov chain is a pair (G, π), where

I G is a finite set G = {G1, . . . ,GN} (state space);
I π is a matrix π ∈ RN×N (transition matrix) satisfying

I for all i , j it is πij ∈ [0,1];
I for all i it is

∑N
j=1 πij = 1.

πij interpreted as the probability to jump from state Gi to Gj .

G1 G2 G3

G4 G5 . . .

π12

π14



How to define the transition probabilities.

Goal: given an ERGM (G,P)

I define transition probabilities π on the set of graphs G in
such a way that the probability to be on a graph G
converges to P(G), when the number of simulation steps
tends to∞.



Background: eigenvectors and eigenvalues.

Let A ∈ Rn×n be a matrix and x ∈ Cn be a vector.

If there is a λ ∈ C such that

A · x = λ · x ,

then x is called an eigenvector of A and (if x 6= 0) λ is called an
eigenvalue of A.



Stationary state space distributions.

A Markov chain is a pair (G, π), where πij is the probability to
jump from state Gi to state Gj .

P(G1) P(G2) P(G3)

P(G4) P(G5) . . .

π12 π32

π42
π52

A probability distribution P on G is called stationary if for all j it
is P(Gj) =

∑N
i=1 P(Gi)πij .

Satisfied if and only if (with P = [P(G1) . . .P(GN)] ∈ RN written
as a row vector) it is

P = Pπ ,

i. e., P is an eigenvector of π with eigenvalue one.



Irreducible and aperiodic Markov chains.
πij interpreted as the probability to jump from state Gi to Gj .

G1 G2 G3

G4 G5 . . .

π12

π14

A sequence of states Gi1 ,Gi2 , . . . ,Gik is called a (directed) path
if for all j = 1, . . . , k − 1 it is πij ij+1 > 0.

Definition
The Markov chain (G, π) is called

I irreducible if for any two states Gi ,Gj ∈ G there is a path
from Gi to Gj ;

I aperiodic if the greatest common divisor of the length of all
cycles (i. e., paths from a state to itself) equals one.



Stationary distribution of reversible Markov chains.

Theorem
If a probability distribution P on G satisfies for all graphs Gi , Gj

P(Gi)πij = P(Gj)πji

(Markov chain is then called reversible)
and the Markov chain is irreducible and aperiodic
then P is the unique stationary distribution of the Markov chain
and for any initial distribution P ′ it is

lim
K→∞

P ′πK = P .

Conditions will be used to find an appropriate π if P is given.



Background: Perron-Frobenius Theorem.

spectral radius ρ(A) = max{|λ| ; λ is eigenvalue of A}

Theorem (Perron-Frobenius)
The spectral-radius ρ(A) of a non-negative, irreducible,
aperiodic matrix A is an eigenvalue of multiplicity one, all
entries of an associated eigenvector are non-zero and have the
same sign, and the absolute values of all smaller eigenvalues
are strictly smaller than ρ.



Background: power iteration.

Theorem (power iteration)
Let A be a non-negative, irreducible, aperiodic matrix and x a
normalized eigenvector with associated eigenvalue ρ(A). For a
vector y (0) whose projection onto x is not zero define a
sequence of vectors by

y (i+1) =
A · y (i)

‖A · y (i)‖
.

Then limi→∞ y (i) = x.



Stationary distribution of reversible Markov chains.
Theorem
If a probability distribution P on G satisfies for all graphs Gi , Gj

P(Gi)πij = P(Gj)πji

and the Markov chain (G, π) is irreducible and aperiodic
then P is the unique stationary distribution of (G, π)
and for any initial distribution P ′ it is

lim
K→∞

P ′πK = P .

Proof.
Matrix π satisfies the conditions of the theorems on the
previous slides. We show that

I P is an eigenvector of π with eigenvalue one;
I the spectral radius ρ of π is one.



P is an eigenvector of π with eigenvalue one.

From
P(Gi)πij = P(Gj)πji

it follows that for all Gi ∈ G it is∑
Gj∈G

P(Gj)πji =
∑
Gj∈G

P(Gi)πij = P(Gi)

(since the rows of π sum up to one).

Thus, P and π satisfy the matrix equation Pπ = P, i. e., P is an
eigenvector of π with eigenvalue one.



The spectral radius ρ of π is one.

We have that for all i it is
∑N

j=1 πij = 1.

Let x be an eigenvector of π with eigenvalue ρ.

For all j it is ρxj =
∑N

i=1 xiπij . Thus

ρ

N∑
j=1

xj =
N∑

j=1

ρxj =
N∑

j=1

N∑
i=1

xiπij

=
N∑

i=1

N∑
j=1

xiπij =
N∑

i=1

xi

N∑
j=1

πij =
N∑

i=1

xi

Since
∑N

i=1 xi 6= 0, it must be ρ = 1.



Stationary distribution of reversible Markov chains.

Theorem
If a probability distribution P on G satisfies for all graphs Gi , Gj

P(Gi)πij = P(Gj)πji

(Markov chain is called reversible)
and the Markov chain is irreducible and aperiodic
then P is the unique stationary distribution of the Markov chain
and for any initial distribution P ′ it is

lim
K→∞

P ′πK = P .



Gibbs sampling.

Given P, define π such that

P(Gi)πij = P(Gj)πji .

Gibbs sampling: define π as follows
I πij = 0 if Gi and Gj differ in more than one dyad;
I if Gi and Gj differ in exactly one dyad, then

πij =
P(Gj)(n

2

)
(P(Gi) + P(Gj))

.

I πii =
∑ P(Gi )

(n
2)(P(Gi )+P(G))

(sum over all G that differ from Gi in exactly one dyad)

Show: π is normalized, irreducible, aperiodic, reversible.



Gibbs sampling.

Transition probabilities defined by

πij =
P(Gj)(n

2

)
(P(Gi) + P(Gj))

.

Didn’t we claim that it is intractable to compute P(G)?

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

κ(θ) =
∑

G′∈G

exp

(
k∑

i=1

θi · gi(G′)

)



Gibbs sampling (algorithm).

initialize G by any graph from G;
repeat many times

I select a dyad {i , j} uniformly at random;

I with probability P(G+ij )
P(G+ij )+P(G−ij )

I replace G = (V ,E) by G+ij = (V ,E ∪ {i , j})
I otherwise replace G = (V ,E) by G−ij = (V ,E \ {i , j});

return G;

Note: (in practice) the statistics g`(G+ij) and g`(G−ij) can be
efficiently derived by computing changes to the statistics g`(G).



The ability to sample from an ERGM enables us to efficiently
estimate quantities that are computationally intractable. For
instance,

I the expected number of edges, triangles, `-stars,. . . ;
I the normalizing constant κ;
I the probability P(G) of a specific graph G.



Estimation of the expected number of edges.

Let (G,P) be an ERGM. By definition it is

E(m) =
∑
G∈G

P(G) ·m(G) .

To approximate E(m) draw K random samples G1, . . . ,GK from
(G,P) and compute

Ê(m) =
K∑

i=1

1
K
·m(Gi) .

Ê(m) converges to E(m) in probability when K →∞.



Outline.
Introduction.

Random graph models.

G(n,p).
Definition of G(n,p).
Sampling from G(n,p).
Plausibility of G(n,p) as a model for social networks.

Towards more structured models.
Planted partition models.
Preferential attachment.

Exponential random graph models.
Definition and examples.
Sampling from an ERGM.
Hammersley-Clifford Theorem.
Near-degeneracy and multi-modality of ERGMs.
Hypothesis testing.



Recall: some statistics make edge probabilities
dependent – others not.

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)
gi(G) edge prob.

number of edges independent

edges connecting same attribute independent

number of triangles dependent

number of `-stars

1

2

3
4

5

dependent



Conditional independence of edges (informally).

Two dyads d1 and d2 are said to be conditionally independent
(given the rest of the graph) if—under the condition that all
other dyads are fixed—the state of the dyad d2 does not provide
any additional information about the probability P(d1 ∈ E).

d2 d1 d2 d1



Conditional independence of edges.

Let (G,P) be a random graph model where D is the set of
dyads of graphs in G and assume that P(G) > 0 for all G ∈ G.
Let d1,d2 ∈ D be two different dyads.

For a partition D+ ] D− = D \ {d1,d2} of the set of dyads
different from d1 and d2 let the subset GD+]D− be defined by

GD+]D− = {G ∈ G ; D+ ⊆ EG and D− ∩ EG = ∅} .

We say that d1 and d2 are conditionally independent (given the
rest of the graph) if for all partitions D+ ] D− = D \ {d1,d2} it is

P(Gd1 |GD+]D−) = P(Gd1 |GD+]D− ∩ Gd2) .

Informally: if we know the state of all dyads in D \ {d1,d2}, the
state of the dyad d2 does not provide any additional information
about the probability P(d1 ∈ E).



Markov random graphs.

Definition
Markov random graphs are a class of random graph models
satisfying (1) the probability of every graph is positive and
(2) for every set of four pairwise different vertices {i , j ,u, v}
the dyads {i , j} and {u, v} are conditionally independent, given
the rest of the graph.

Example
{i , j} and {u, v} conditionally
independent;

{i , j} and {j ,u} might be
conditionally dependent; I

J

U

V

We’ll see later that Markov graphs are a subclass of the ERGM
class.



Dependence graph (of a random graph model).

Definition
Let (G,P) be a random graph model and let D be the set of
dyads of graphs in G.

The dependence graph D = (D,E) of (G,P) has vertex set D,

{di ,dj} ∈ E if di and dj are conditionally dependent, given the
rest of the graph.

Example
the dependence graph of a
Markov graph on vertices
V = {1,2,3,4} is

{1,2}

{1,3}

{1,4}

{2,3}

{2,4}

{3,4}



Hammersley-Clifford Theorem; special case.

Theorem (first part)
Let (G,P) be a random graph satisfying P(G) > 0 for all G ∈ G,
let D be the set of dyads and D the dependence graph.

There are constants {αA ∈ R ; A ⊆ D}, satisfying αA = 0 if A is
not a clique in D, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where (1)

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 . (2)

Note: A is a clique in D if dyads in A are pairwise dependent.
A ⊆ E(G) means that all dyads in A are edges in G.



Hammersley-Clifford Theorem; special case.

Theorem (second part)
Conversely, if the probability P on G is defined by

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 ,

then two dyads d1 and d2 are conditionally independent in
(G,P), unless there is a subset A ⊆ D with d1,d2 ∈ A and
αA 6= 0.



Conclusion from the Hammersley-Clifford Theorem.

There are constants {αA ∈ R ; A ⊆ D}, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 .

Every random graph model (G,P) with P > 0 is an ERGM

I statistics: for A ⊆ D define gA(G) =

{
1 A ⊆ E(G)

0 else
I parameters: αA

P(G) =
1
κ

exp

∑
A⊆D

αA · gA(G)

 .



Cliques in the dependence graph of a Markov graph.

Markov random graphs: edges {i , j} and {u, v} are
conditionally independent, unless they have a vertex in
common.

Cliques in the dependence graph of a Markov graph are

edges

triangles

`-stars, for ` = 2, . . . ,n − 1

1

2

3
4

5

No other subgraphs are cliques in the dependence graph.



ERGM of general Markov graphs.

Corollary
Let (G,P) be a Markov random graph on vertices
V = {1, . . . ,n}. Then there are real constants

ηuv for all dyads {u, v}
τuvw for all triangles {u, v ,w}

σuv1...v` for all 2 ≤ ` ≤ n − 1, and all
`-stars (u, {v1, . . . , v`})

such that the probability of a graph G ∈ G can be written as

P(G) =
1
κ

exp

 ∑
uv∈E(G)

ηuv +
∑

uvw∈T (G)

τuvw +
n−1∑
`=2

∑
uv1...v`∈S`(G)

σuv1...v`





ERGM of general Markov graphs (remarks).

P(G) =
1
κ

exp

 ∑
uv∈E(G)

ηuv +
∑

uvw∈T (G)

τuvw +
n−1∑
`=2

∑
uv1...v`∈S`(G)

σuv1...v`


Each dyad, triangle, `-star can contribute differently to the
probability of a graph.

⇒ unreasonably high number of parameters.



Homogeneous random graph model.

Two graphs G = (V ,E) and H = (W ,F ) are called isomorphic
if there is a bijection ϕ : V →W such that

∀u, v ∈ V : {u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ F .

Definition
A random graph model (G,P) is called homogeneous if for any
pair of isomorphic graphs G and H it is P(G) = P(H).



ERGM of homogeneous Markov graphs.

Corollary
Let (G,P) be a homogeneous Markov random graph. Then
there are real constants η, τ , and σ` for ` = 2, . . . ,n − 1 such
that the probability of a graph G ∈ G can be written as

P(G) =
1
κ

exp

(
η ·m(G) + τ · t(G) +

n−1∑
`=2

σ` · s`(G)

)

Proof.
Start from the ERGM of a general Markov graph.
Show that any two edge parameters are equal. . .
For ` = 2, . . . ,n − 1, show that any two `-star parameters are
equal. . .
Show that any two triangle parameters are equal. . .



Example: dependence graph of G(n,p).

G(n,p) is a homogeneous random graph model whose
dependence graph has no edges. Thus,

P(G) =
1
κ

exp (η ·m(G)) .



Hammersley-Clifford Theorem; special case.
proof

Theorem (first part)
Let (G,P) be a random graph satisfying P(G) > 0 for all G ∈ G,
let D be the set of dyads and D the dependence graph.

There are constants {αA ∈ R ; A ⊆ D}, satisfying αA = 0 if A is
not a clique in D, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 .



Möbius Inversion Theorem.
Needed for the proof of the Hammersley-Clifford Theorem.

Let S be a finite set and

f : P(S)→ R; g : P(S)→ R;

two functions defined on the set of subsets of S.

Then, for all subsets A ⊆ S it is

f (A) =
∑
B⊆A

g(B)

if and only if for all subsets A ⊆ S it is

g(A) =
∑
B⊆A

(−1)|A\B|f (B) .



Proof of the Hammersley-Clifford Theorem.

Want to show P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 .

For a set B ⊆ D define GB = (V ,B) ∈ G to be the graph whose
edge set is equal to B.

For A ⊆ D define

αA :=
∑
B⊆A

(−1)|A\B| log P(GB) .

Motivation (Möbius Inversion Theorem)

f (A) =
∑
B⊆A

g(B)⇐⇒ g(A) =
∑
B⊆A

(−1)|A\B|f (B) .



Proof of the Hammersley-Clifford Theorem.
By definition we have

αA =
∑
B⊆A

(−1)|A\B| log P(GB) .

Möbius Inversion Theorem:

f (A) =
∑
B⊆A

g(B)⇐⇒ g(A) =
∑
B⊆A

(−1)|A\B|f (B) .

Thus, for A ⊆ D it is

log P(GA) =
∑
B⊆A

αB .

In particular, for A = E(G) we get

P(G) = exp

 ∑
B⊆E(G)

αB

 .



Proof of the Hammersley-Clifford Theorem.

We have

P(G) = exp

 ∑
A⊆E(G)

αA

 .

It remains to show that αA = 0 if A is not a clique in D; and we
are done with the first part of the theorem.



Proof of the Hammersley-Clifford Theorem.
Want to show that αA = 0 if A is not a clique in D.

Let d ,d ′ ∈ D be two conditionally independent dyads and
B ⊆ D with d ,d ′ 6∈ B. It is

P(GB∪{d ,d ′})

P(GB∪d ′) + P(GB∪{d ,d ′})
=

P(GB∪{d})

P(GB) + P(GB∪{d})
.

and, hence
P(GB∪{d ,d ′})

P(GB∪{d ′})
=

P(GB∪{d})

P(GB)
. (3)

d' d d' d



Proof of the Hammersley-Clifford Theorem.

αA =
∑
B⊆A

(−1)|A\B| log P(GB) .

Let A ⊆ D, contain two conditionally independent dyads d ,d ′.

αA =
∑
B⊆A

d,d′∈B

(−1)|A\B| log P(GB) +
∑
B⊆A

d∈B, d′ 6∈B

(−1)|A\B| log P(GB)

+
∑
B⊆A

d 6∈B, d′∈B

(−1)|A\B| log P(GB) +
∑
B⊆A

d,d′ 6∈B

(−1)|A\B| log P(GB)

=
∑

B⊆A\{d ,d ′}

(−1)|A\B| log
(

P(GB∪{d ,d ′})

P(GB∪{d ′})

/
P(GB∪{d})

P(GB)

)
= 0 , follows from (3)

Thus, αA = 0 if A is not a clique in D.



Hammersley-Clifford Theorem.

Theorem (second part)
Conversely, if the probability P on G is defined by

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 ,

then two dyads d and d ′ are conditionally independent in (G,P),
unless there is a subset A ⊆ D with d ,d ′ ∈ A and αA 6= 0.



Proof of the Hammersley-Clifford Theorem.

Suppose that d , d ′ are two dyads such that there is no subset
A ⊆ D with αA 6= 0 and d ,d ′ ∈ A.

We show that d and d ′ are conditionally independent.

Equivalently, for any B ⊆ D with d ,d ′ 6∈ B it is

P(GB∪{d ,d ′})

P(GB∪{d ′})
=

P(GB∪{d})

P(GB)
.

d' d d' d



Proof of the Hammersley-Clifford Theorem.

(d , d ′ are two dyads for which there is no subset A ⊆ D with
αA 6= 0 and d ,d ′ ∈ A; d ,d ′ 6∈ B)

log
(

P(GB∪{d ,d ′})

P(GB∪{d ′})

)
=

∑
A⊆B∪{d ,d ′}

αA −
∑

A⊆B∪{d ′}

αA

=
∑

A⊆B∪{d,d′}
d∈A

αA

=
∑

A⊆B∪{d}
d∈A

αA

=
∑

A⊆B∪{d}

αA −
∑
A⊆B

αA

= log
(

P(GB∪{d})

P(GB)

)
.



Hammersley-Clifford Theorem; special case.

Theorem
Let (G,P) be a random graph satisfying P(G) > 0 for all G ∈ G.

There are constants {αA ∈ R ; A ⊆ D}, satisfying αA = 0 if A is
not a clique in D, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 . (4)

Conversely, if P is defined by (4), then two dyads d ,d ′ ∈ D are
conditionally independent, unless there is a subset A ⊆ D with
d ,d ′ ∈ A and αA 6= 0.



Outline.
Introduction.

Random graph models.

G(n,p).
Definition of G(n,p).
Sampling from G(n,p).
Plausibility of G(n,p) as a model for social networks.

Towards more structured models.
Planted partition models.
Preferential attachment.

Exponential random graph models.
Definition and examples.
Sampling from an ERGM.
Hammersley-Clifford Theorem.
Near-degeneracy and multi-modality of ERGMs.
Hypothesis testing.



Near-degeneracy and multi-modality of ERGMs.

Many Markov random graphs give rise to multi-modal
probability distributions:

I probability mass centered on a small set of graphs
I other graphs are very unlikely.

For instance, only near-empty or near-complete graphs have a
non-vanishing probability.



Near-degeneracy and multi-modality of ERGMs.

Consider the following ERGM

P(G) =
1
κ

exp (η ·m(G) + τ · t(G)) with η < 0, τ > 0 .

Then, in very sparse networks
I there are few possibilities to close triangles;
I creation of edges is unlikely;
⇒ very unlikely to leave the set of near-empty graphs.

In contrast, in very dense networks
I an edge can close many triangles (up to n − 2);
I deletion of edges is unlikely;
⇒ very unlikely to leave the set of near-complete graphs.



Near-degeneracy and multi-modality of ERGMs.

Degeneracy is undesirable for two reasons.
1. Convergence of the Markov chain towards the stationary

distribution is very slow.
2. Degenerate models seem to be unreasonable models for

empirical networks.



Avoiding near-degeneracy of ERGMs.
Assumed linear marginal effect of closed triangles:

I closing one triangle contributes τ to the log-probability;
I closing two triangles contributes 2τ . . .

u

v

w1 w2 w3 . . . wk

Geometrically-weighted edgewise shared partner (GWESP)
statistic:

I a k -triangle counts more than a single triangle,
I but less than k -times as much.

Typically leads to less degenerate models.
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Testing hypotheses with ERGMs.

Given a hypothesis (e. g., transitivity) and an observed network
Gobs.

I Decide on a reasonable set of statistics gi , i = 1, . . . , k

P(G) =
1
κ

exp

(
k∑

i=1

θigi(G)

)

I including a statistic related to the hypothesis,
e. g., gk = number of triangles.

I Compute maximum likelihood estimates θ̂ = (θ̂1, . . . , θ̂k ).
I Compute probability of observing a network in the null

model defined by (θ̂1, . . . , θ̂k−1,0) that gives rise to θk as
large as θ̂k .



Estimation of ERGM Parameters.

Definition (maximum likelihood)
(G,Pθ) random graph model parameterized by θ ∈ Θ ⊆ Rk ;
Gobs ∈ G a graph (observation).
Likelihood function associated with Gobs

L : Θ→ R; θ 7→ Pθ(Gobs)

A parameter vector θ̂ maximizing L, i. e.,

θ̂ = arg max
θ

L(θ)

is called a maximum likelihood estimate (MLE) for θ.
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