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Where we are

Model Main feature Real data
G(n,p) ties are independent ties dependency

Planted partition intra/inter group density ties dependency

Preferential attachment degree distribution other structural properties

ERGM class of models reasonable representation

These are models for cross-sectional data



Where we are going

Network are dynamic by nature. How to model network evolution?

We need a model for longitudinal data



Networks are dynamic by nature: a real example

The Teenage Friends and Lifestyle Study analyzes smoking behavior and
friendship

Data collection: (available from http://www.stats.ox.ac.uk/∼snijders/siena/)

- One school year group monitored over 3 years;

- questionnaires at approximately one year interval:

1. Friendship relation: each pupil could name up to 12 friends
2. Individual information and lifestyle elements: gender, age,

substances use, smoking of parents and siblings etc.

arrows = friendship relation
gender: circle = girl, square = boy
smoking behavior: blue = non, gray = occasional, black = regular



Networks are dynamic by nature: a real example
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Networks are dynamic by nature: a real example



Some questions

Is there any tendency in friendship formation ...

- towards reciprocity?

- towards transitivity?



Some questions

Is there any homophily in friendship formation with respect to ...

- gender?

- smoking behavior?



Solution

Stochastic actor-oriented model (SAOM)

Aim

Explain network evolution as a result of

- endogenous variables: structural effects depending on the network only
(e.g. reciprocity, transitivity, etc.)

- exogenous variables: actor-dependent and dyadic-dependent covariates
(e.g. effect of a covariate on the existence of a tie or on homophily)

simultaneously



Background: random variables

Definitions

Let (Ω,P) be a probability space

Ω = is a set of possible outcomes

P : Ω→ [0,1] is a probability function
such that:

1. P(ω)≥ 0
2.
∑
ω∈Ω

P(ω) = 1

1. P((a,b)) =
1

36
, a,b ∈ {1,2, · · · ,6}

2.
∑
ω∈Ω

P(ω) = 1

A (real-valued) random variable (r.v.) is a function X : (Ω,P)→ (R,P).



Background: random variables (motivation)

Example



Background: random variables (motivation)

Example

Given P(ω) we can compute P(x):

P(X = 4) = P((1,3)) + P((2,2)) + P((3,1)) = 1/36 + 1/36 + 1/36 = 1/12



Background: random variables (motivation)

Example

N.b.:
- capital letters denote r.vs (e.g. X=sum of two dice)
- small letters denote the values assumed by a r.v. (e.g. x=2)
- The set of values that X can take is called range and will be denoted by S
(e.g. S = {2,3, . . . ,12} )



Background: discrete random variable

Definition
A r.v. X is defined to be discrete if S is countable.

The probability mass function (p.m.f) ϕX (x) : R→ [0,1] describes the values
that X can take along with the probability associated with each value

x ϕX (x)
2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36

10 3/36
11 2/36
12 1/36



Background: discrete random variable

Definition
A r.v. X is defined to be discrete if S is countable.

The probability mass function (p.m.f) ϕX (x) : R→ [0,1] describes the values
that a X can take along with the probability associated with each value

ϕX (x) = P(X = x)

The cumulative distribution function (c.d.f.) FX (x) : R→ [0,1] describes the
probability that X takes value lower than x

FX (x) = P(X ≤ x) =
∑
x ′<x

P(X = x ′)

Examples
X=Sum of two dice

P(X ≤ 3) = P(X = 2) + P(X = 3) = 1/36 + 2/36 = 1/12



Background: continuous random variable

Definition
A random variable X is called (absolutely) continuous if S is uncountable and
there exists a function fX (x) : R→ R+ such that

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (u)du ∀x ∈ R

P(X ∈ R) =

∫ +∞

−∞
fX (x)dx = 1

fX (x) is the probability density function (p.d.f)

Examples

- X = weight of people in a population
- X = waiting time at a post office clerk
- . . .



Background: continuous random variable

The p.d.f. fX (x) allows to compute all the probability statements about X . For
instance, the probability that X takes values in [a,b] is

P(a ≤ X ≤ b) =

∫ b

a
fX (x)dx

Geometrical interpretation

Intuition suggests that

P(X = x) =

∫ x

x
fX (u)du = 0

Thus, we cannot determine
a continuous random vari-
able via its “mass function”



Background: stochastic (or random) process

Definition
A stochastic process {X(t), t ∈ T} is a mapping

∀t ∈ T 7→ X(t) : Ω→ R



Background: stochastic process

T = index set (usually interpreted as time)
S = state space

Different stochastic processes can be defined according to S and T

S T

Countable (discrete) Uncountable (continuous)

Countable discrete-time with continuous-time with
(finite) finite state space finite state space

Uncountable discrete-time with continuous-time with
(continuous) continuous state space continuous state space



Background: stochastic process

Example
X(t) = the outcome of flipping a coin

S = {−1,1}, where −1 =tail 1 =head
T = {1,2, · · ·}

{X(t), t ∈ T} is a discrete-time stochastic process with a finite state space



Background: stochastic process

Example
X(t) = the number of telephone call at a switchboard of a company

from 8 a.m. to 8 p.m.

S = {0,1,2, · · ·}
T = [0,12]

{X(t), t ∈ T} is a continuous-time stochastic process with a finite state space



Background: continuous-time Markov Chain

Definition
{X(t), t ∈ T} has the Markov property if:

∀ x ∈ S and ∀ ti < tj

P(X(tj ) = x(tj ) | X(t) = x(t) ∀ t ≤ ti ) = P(X(tj ) = x(tj ) | X(ti ) = x(ti ))

Definition
A continuous-time Markov chain {Xt , t ≥ 0} is a stochastic process having

1. finite state
2. continuous-time
3. the Markovian property



Background: continuous-time Markov Chain

Example
X(t) = # of goals that a given soccer player scores by time t (time played

in official matches)

{X(t), t ≥ 0} is a continuous-time Markov chains

Why?

1. state space: S = {0,1,2, . . . ,B}
B = total number of goals scored during the career

2. the time is continuous: [0,T]
T = time of retirement

3. the process {X(t), t ≥ 0} has the Markov property



Background: Markov property



Background: describing a continuous-time Markov chain



Background: describing a continuous-time Markov chain

Holding time
T = amount of time the chain spends in state i (Exponential r.v.)

fT (t) = λi e−λi t , λi > 0, t > 0

fT (t) : R+→ R+ such that

P(T ≤ t′) =

∫ t′

0
fT (t)dt = 1− e−λi t′ ∀t ≥ 0



Background: describing a continuous-time Markov chain
Holding time
T = amount of time the chain spends in state i (Exponential r.v.)

fT (t) = λi e−λi t , λi > 0, t > 0

λi is the rate parameter

The Exponential r.v. has the memoryless property

P(T > s + t | T > t) = P(T > s) ∀ s, t > 0



Background: describing a continuous-time Markov chain



Background: describing a continuous-time Markov chain

Jump chain

P = (pij : i , j ∈ S) = jump matrix

pij = P(X(t′) = j|X(t) = i , the opportunity to leave i)

pij ≥ 0
∑
j∈S

pij = 1 ∀i , j ∈ S



Background: describing a continuous-time Markov chain

Example

P =

 0.1 0 0.6 0.3
0.8 0.1 0.1 0

0.05 0.5 0.05 0.4
0.6 0.1 0.15 0.15


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Recall: adjacency matrix and directed relations

Social network: a set of actors N + a relation R

Graph = G(N,R) Adjacency matrix=X

- 0 0 0 0
1 - 1 0 0
0 0 - 0 0
0 1 1 - 0
1 1 0 0 -

Directed relation:

6=⇒
i → j j → i



Data

Longitudinal (or panel) network data = M (≥ 2) repeated observations on a
network

x(t0), x(t1), . . . , x(tm), . . . , x(tM−1), x(tM)

- set of actors N = {1,2, . . . ,n}
- a non reflexive and directed relation R

- actor covariates V (gender, age,social status, ...)



Model definition: assumptions

Network evolution is the outcome of a stochastic process specified by the
following assumptions:

1. Ties are state:
a tie is a state with a tendency to endure over time

2. Distribution of the process:
{X(t), t ∈ T} is a continuous time Markov Chain defined on:

- the state space X

- the set of actors N



Model definition: assumptions
Finite state space: X is the set of all possible adjacency matrices defined on N

X = 2n(n−1)⇒X is a countable set



Model definition: assumptions

Continuous-time process

Latent process: the network evolves in continuous-time but
we observed it only at discrete time points



Model definition: assumptions

Markov property: the current state of the network determines probabilistically
its further evolution



Model definition: assumptions
3. Opportunity to change: at any given moment t one actor has the

opportunity to change



Model definition: assumptions
3. Opportunity to change: at any given moment t one actor has the

opportunity to change



Model definition: assumptions
4. Absence of co-occurrence: no more than one tie can change at any given

moment t
(Notation: x(i ; j) means that actor i changes his outgoing tie towards j)



Model definition: assumptions

5. Actor-oriented perspective: actors control their outgoing ties

- change in ties are made by the actor who sends the ties

- decisions are made according to the position of the actor in the
network, his attributes and the characteristics of the others

Aim: maximize a utility function

- actors have complete knowledge about the network and all the other
actors

- the maximization is based on immediate returns (myopic actors)



Model definition: assumptions (recap)

1. Ties are states

2. The evolution process is a continuous-time Markov chain

3. At any given moment t one probabilistically selected actor has the
opportunity to change

4. No more than one tie can change at any given moment t

5. Actor-oriented perspective



Model definition

Consequences of the assumptions

The evolution process can be decomposed into micro-steps

Micro-step Continuous-time Markov chain
- the time at which i had - the waiting time until the next opportunity
the opportunity to change for a change made by an actor i

(holding time)

- the precise change i made - the probability of changing the link xij
given that i is allowed to change
(jump chain)

Distribution of the holding time: rate function

Transition matrix of the jump chain: objective function



Model definition: rate function

How fast is the opportunity for changing?

Waiting time between opportunities of change for actor i ∼ Exp (λi )

λi is called the rate function

Simple specification: all actors have the same rate of change λ

P(i has the opportunity of change) =
1
n ∀i ∈N



Model definition: rate function

How fast is the opportunity for changing?

More complex specification

Actors may change their ties at different frequencies λi (α,x ,v)

Example
“Young girls might change their ties more frequently”

λi (α,x ,v) = αage ∗ vage +αgender ∗ vgender

It follows

P(i has the opportunity of change) =
λi (α,x ,v)

n∑
j=1

λj (α,x ,v)



Model definition: rate function

How fast is the opportunity for changing?

In the following we assume that:

- all actors have the same rate of change

=⇒ λ is constant over the actors

- the frequencies at which actors have the opportunity to make a change
depends on time

=⇒ λ is not constant over time

As a consequence, we must specify M−1 rate functions

λ1, · · · , λM−1



Model definition: objective function

Which tie is changed?

Changing a tie means turning it into its opposite:

xij = 0 is changed into xij = 1 tie creation

xij = 1 is changed into xij = 0 tie deletion

Given that i has the opportunity to change:

Possible choices of i Possible reachable states
n−1 changes n−1 networks x(i ; j)

1 non-change 1 network equal to x



Model definition: objective function



Model definition: objective function



Background: random utility model

Setting:
decision makers who face a choice between N-alternatives

Notation:
i denotes the decision maker
J = {1, . . . , j, . . . ,N} choice set
J is exhaustive and choices are mutually exclusive

Assumption:
the decision makers obtain a certain level of profit from each alternative.
The profit is modeled by the utility function Uij : J → R

Decision rule: i chooses the alternative j that assures him the highest profit, i.e.

j : maxj∈J Uij



Background: random utility model

The researcher does not observe the decision maker’s utility, but only:
- n×A matrix x of attributes of each alternative j (as faced by i)
- B×1 vector vi of attributes of i

Since, there are factors that the researcher cannot observe, the utility function
is decomposed as

Uij = Fij (β,γ,xij ,vi ) +Eij

where:
- Fij is the deterministic part of the utility (observed!)

Fij (β,γ,xij ,vi ) =
∑

a
βaxija +

∑
b=1

γbvib , βa, γb ∈ R,xij

- Eij : random term (not observed!)
The random term are independent and identically distributed.

Consequence: The researcher can only “guess” i ’s choice



Background: random utility model
Decision probabilities:
it is assumed that Eij is Gumbel distributed

fEij (ε) = e−εe−e−ε ε ∈ R

so that the probability that i chooses the alternative j is given by

pij = P(Uij > Uih, ∀ h ∈ J) =
eFij

N∑
h=1

eFih



Model definition: objective function

Actors change their ties in order to maximize a utility function

ui (β,x(i ; j)) = fi (β,x(i ; j),vi ,vj ) +Eij

- fi (β,x(i ; j),vi ,vj ) is the objective function
- Eij is assumed to be distributed as a Gumbel r.v.

Consequence: the probability that i changes his outgoing tie towards j is:

pij =
exp
(

fi (β,x(i ; j),vi ,vj ))
)

n∑
h=1

exp
(

fi (β,x(i ; h),vi ,vj )
)

Probabilities interpretation:
pij is the probability that i changes the tie towards j
pii is the probability of not changing



Model definition: objective function
Example



Model definition: objective function

The objective function is defined as a linear combination

fi (β,x(i ; j),vi ,vj ) =

K∑
k=1

βk sik (x(i ; j),vi ,vj )

- sik (x(i ; j),vi ,vj ) is called effect
- βk ∈ R is a statistical parameter

N.b.
In the following, we will write:

- x ′ instead of x(i ; j)
- sik (x ′,v) instead of sik (x(i ; j),vi ,vj )

to simplify the notation



Objective function specification

Endogenous effects = dependent on the network structures

- Outdegree effect

si out (x ′) =
∑

j
x ′ij

- Reciprocity effect

si rec (x ′) =
∑

j
x ′ij x ′ji



Objective function specification

Endogenous effects = dependent on the network structures

- Transitive effect

si trans (x ′) =
∑
j,h

x ′ij x ′ihx ′jh

- three cycle-effect

si cyc (x ′) =
∑
j,h

x ′ij x ′jhx ′hi



Objective function specification

Exogenous effects = related to actor’s attributes

Example

- Friendship among pupils:
Smoking: non, occasional, regular

Gender: boys, girls

- Trade/Trust (Alliances) among countries:
Geographical area: Europe, Asia, North-America,...

Worlds: First, Second, Third, Fourth



Objective function specification

Exogenous effects (individual covariate)
- covariate-ego

si cego(x ′,v) =
∑

j
x ′ij vi

- covariate-alter

si calt (x ′,v) =
∑

j
x ′ij vj



Objective function specification

Exogenous effects (dyadic covariate)
- covariate-related similarity

si csim(x ′,v) =
∑

j
x ′ij

(
1−

∣∣vi − vj
∣∣

RV

)

where RV is the range of V and
(

1− |vi−vj |
RV

)
is called similarity score

Remark:

when V is a binary covariate, the covariate-related similarity can be written in
the following way:

si csim(x ′,v) =
∑

j
x ′ij I
{

vi = vj
}



Objective function specification

Which effects must be included in the objective function?

Outdegree and Reciprocity must always be included.
The choice of the other effects must be determined according to
hypotheses derived from theory

Example
Friendship network

Theory Effect
the friend of my friend ⇒ transitive effect
is also my friend
girls trust girls ⇒ covariate-related
boys trust boys similarity



Parameter interpretation

1. Parameter interpretation: βk quantifies the role of sik (x ′) in the network
evolution.

- βk = 0: sik (x ′) plays no role in the network dynamics

- βk > 0: higher probability of moving into networks where sik (x ′) is higher

- βk < 0: higher probability of moving into networks where sik (x ′) is lower

2. The preferences driving the choice of the actors have the same intensities
over time

=⇒ β1, · · · ,βK are constant over time



Parameter interpretation

The procedures for estimating the parameters of the SAOM are implemented
in a R library called RSiena

(SIENA = Simulation Investigation for Empirical Network Analysis)

The R script “estimation.R” contains the R commands to implement the
estimation procedure in R and the folder “tfls.zip” includes the data files.

Example data: an excerpt from the “Teenage Friends and Lifestyle Study” data
set:

- Networks: relation = friendship
Networks: actors = 129 pupils present at all three measurement points

- Covariates: gender (1 = Male, 2 = Female)
Covariates: smoking behavior (1 = no, 2= occasional, 3 = regular)



Parameter interpretation: a very simple model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.5948 ( 0.7091 )
Rate parameter period 2 7.2115 ( 0.5751 )

Other parameters:
outdegree (density) -2.4147 ( 0.0387 ) -62.3875
reciprocity 2.7106 ( 0.0811 ) 33.4061

Rate parameter: expected frequency, between two consecutive network
observations, with which actors get the opportunity to change a network tie

- about 9 opportunities for change in the first period
- about 7 opportunities for change in the second period

The estimated rate parameters will be higher than the observed number of
changes per actor (why?)
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Parameter interpretation: a very simple model

Interpreting the objective function parameters:

The parameter βk quantifies the role of the effect sik in the network evolution.

βk = 0 sik plays no role in the network dynamics

βk > 0 higher probability of moving into networks where sik is higher

βk < 0 higher probability of moving into networks where sik is lower

Which βk are “significantly” different from 0?

E.g. βrec = 0.13 is “significantly” different from 0?



Parameter interpretation: a very simple model

Hypothesis test:

1. State the hypotheses.
- The null hypothesis (H0):

the observed increase or decrease in the number of network
configurations related to a certain effect results purely from chance

H0 : βk = 0

- The alternative hypothesis (H1):
the observed increase or decrease in the number of network
configurations related to a certain effect is influenced by some
non-random cause.

H1 : βk 6= 0



Parameter interpretation: a very simple model
Hypothesis test:

2. Define a decision rule
∣∣∣ βk

s.e.(βk )

∣∣∣≥ 2 reject H0∣∣∣ βk
s.e.(βk )

∣∣∣< 2 fail to reject H0

2 · s.e.(βk ) 2 · s.e.(βk )

H0 : βk = 0



Parameter interpretation: a very simple model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.5948 ( 0.7091 )
Rate parameter period 2 7.2115 ( 0.5751 )

Other parameters:
outdegree (density) -2.4147 ( 0.0387 ) -62.3875
reciprocity 2.7106 ( 0.0811 ) 33.4061

Objective function parameters:
- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties



Parameter interpretation: a very simple model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.5948 ( 0.7091 )
Rate parameter period 2 7.2115 ( 0.5751 )

Other parameters:
outdegree (density) -2.4147 ( 0.0387 ) -62.3875
reciprocity 2.7106 ( 0.0811 ) 33.4061

Objective function parameters:
- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties



Parameter interpretation: a very simple model

In more detail

βout

n∑
j=1

x ′ij +βrec

n∑
j=1

x ′ij x ′ji =−2.4147
n∑

j=1
x ′ij + 2.7106

n∑
j=1

x ′ij x ′ji

Adding a reciprocated tie (i.e., for which xji = 1) gives

−2.4147 + 2.7106 = 0.2959

while adding a non-reciprocated tie (i.e., for which xji = 0) gives

−2.4147

Conclusion: reciprocated ties are valued positively and non-reciprocated ties are
valued negatively by actors



Parameter interpretation: a more complex model

Specifying the objective function

In friendship context, sociological theory suggests that:
- friendship relations tend to be reciprocated → reciprocity effect

- the statement “the friend of my friend is also my friend” is almost always
true → transitive triplets effect



Parameter interpretation: a more complex model

Specifying the objective function

In friendship context, sociological theory suggests that:
- pupils prefer to establish friendship relations with others that are similar to

themselves → covariate similarity

This effect must be controlled for the sender and receiver effects of the
covariate.

- Covariate ego effect

- Covariate alter effect



Parameter interpretation: a more complex model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
sex ego 0.1571 ( 0.1072 ) 1.4659
sex similarity 0.9191 ( 0.1076 ) 8.5440
smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties
- transitivity parameter: preference for being friends with friends’friends



Parameter interpretation: a more complex model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
sex ego 0.1571 ( 0.1072 ) 1.4659
sex similarity 0.9191 ( 0.1076 ) 8.5440
smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

- sex alter: gender does not affect actor popularity
- sex ego: gender does not affect actor activity
- sex similarity: tendency to choose friends with the same gender



Parameter interpretation: a more complex model

- Gender: coded with 1 for boys and with 2 for girls.

- All actor covariates are centered: v = 1.434 is the mean of the covariate

vi − v =

{ −0.434 for boys

0.566 for girls

- The contribution of xij to the objective function is

βego(vi − v) +βalter (vj − v) +βsame
(
I{vi = vj}− simv

)
=

= 0.1571(vi − v)−0.1513(vj − v) + 0.9191
(
I{vi = vj}−0.5048

)
where simv is the average of the similarity score.



Parameter interpretation: a more complex model

Male Female
Male 0.4526 -0.618
Female -0.309 0.4584

Table : Gender-related contributions to the objective function

Conclusions: Preference for intra-gender relationships.



Parameter interpretation: a more complex model

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 10.6809 ( 1.0425 )
Rate parameter period 2 9.0116 ( 0.8386 )

Other parameters:
outdegree (density) -2.8597 ( 0.0608 ) -47.0288
reciprocity 1.9855 ( 0.0876 ) 22.6765
transitive triplets 0.4480 ( 0.0257 ) 17.4558
sex alter -0.1513 ( 0.0980 ) -1.5445
sex ego 0.1571 ( 0.1072 ) 1.4659
sex similarity 0.9191 ( 0.1076 ) 8.5440
smoke alter 0.1055 ( 0.0577 ) 1.8272
smoke ego 0.0714 ( 0.0623 ) 1.1469
smoke similarity 0.3724 ( 0.1177 ) 3.1647

- smoke alter: smoking behavior does not affect actor popularity
- smoke ego: smoking behavior not affect actor activity
- smoke similarity: tendency to choose friends with the same smoking

behavior



Parameter interpretation: a more complex model

- Smoking behavior: coded with 1 for “no”, 2 for “occasional”, and 3 for
“regular” smokers.

- The smoking covariate is centered: v = 1.310 is the mean of the covariate

vi − v =


−0.310 for no smokers

0.690 for occasional smokers

1.690 for regular smokers

- The contribution of xij to the objective function is

βego(vi − v) +βalter (vj − v) +βsame
(

1− |vi−vj |
Rv
− simv

)
=

= 0.0714(vi − v) + 0.1055(vj − v) + 0.3724
(

1− |vi−vj |
2 −0.7415

)



Parameter interpretation: a more complex model

no occasional regular
no 0.0414 -0.0734 -0.1882
occasional -0.0393 0.2183 0.1035
regular -0.1200 0.1376 0.3952

Table : Smoking-related contributions to the objective function

Conclusions:
- preference for similar alters
- this tendency is strongest for high values on smoking behavior



Simulating network evolution

Aim: given x(t0) and fixed parameter values, provide x sim(t1)
according to the process behind the SAOM

⇓

reproduce a possible series of micro-steps between t0 and t1

Input

n = number of actors
λ = rate parameter (given)
β = (β1, . . . ,βk ) = objective function parameters (given)
x(t0) = network at time t0 (given)

Output

x sim(t1) = network at time t1



Simulating network evolution

Algorithm 1: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)

t = time
dt = holding time between consecutive opportu-
nities to change
∼ = generated from

bla bla
bla bla

n = 4

λ= 1.5

β = (βout ,βrec ,βtrans )
βi=(-1,0.5,-0.25)



Simulating network evolution

Algorithm 1: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)

t = time
dt = holding time between consecutive opportu-
nities to change
∼ = generated from

bla bla
bla bla

Generate the time elapsed
between t0 and the first op-
portunity to change

The more intuitive way to generate
dt is:

- generate the waiting time for
each actor i

wi ∼ Exp(λ)

- dt = min
1≤i≤n

{wi}

but this requires the generation of
n numbers.



Simulating network evolution

Algorithm 1: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)

t = time
dt = holding time between consecutive opportu-
nities to change
∼ = generated from

bla
bla
bla
bla

Generate the time elapsed be-
tween t0 and the first opportu-
nity to change

To avoid the generation of n numbers,
we use the following result:
If

Wi ∼ Exp(λi ), 1≤ i ≤ n

and W1, . . . ,Wn are mutually indepen-
dent, then

DT = min{W1, . . . ,Wn} ∼ Exp(
n∑

i=1

λi )

e.g. dt = 0.0027



Simulating network evolution

Algorithm 1: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)

t = time
dt = holding time between consecutive opportu-
nities to change
∼ = generated from

bla
bla
bla
bla

Select the actor i who has the
opportunity to change

e.g. i = 1



Simulating network evolution

Algorithm 1: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)

t = time
dt = holding time between consecutive opportu-
nities to change
∼ = generated from

bla
bla
bla
bla

Select j, the actor towards i is
going to change his outgoing tie

i → j fi pij

1 → 1 -1.75 0.15
1 → 2 -1.00 0.31
1 → 3 -3.25 0.03
1 → 4 -0.5 0.51



Simulating network evolution

Algorithm 1: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)

t = time
dt = holding time between consecutive opportu-
nities to change
∼ = generated from

bla
bla
bla
bla

e.g. j = 4

x(1 ; 4)



Simulating network evolution

Algorithm 1: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)

t = time
dt = holding time between consecutive opportu-
nities to change
∼ = generated from

bla
bla
bla
bla

e.g. j = 1

x(1 ; 1)



Simulating network evolution

Algorithm 1: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)

t = time
dt = holding time between consecutive opportu-
nities to change
∼ = generated from

bla
bla
bla
bla

e.g. t = 0 + 0.0027



Simulating network evolution

Two different stopping rules:

1. Unconditional simulation:
the simulation of the network evolution carries on until a predetermined
time length has elapsed (usually until t = 1).

2. Conditional simulation on the observed number of changes:
Simulation runs on until

n∑
i,j=1
ı 6=j

∣∣∣xobs
ij (t1)− xij (t0)

∣∣∣=

n∑
i,j=1
ı 6=j

∣∣∣x sim
ij (t1)− xij (t0)

∣∣∣
This criterion can be generalized conditioning on any other explanatory
variable.



Simulating network evolution

Use of simulations:

- simulating the network evolution between two consecutive time points

N.b.
For simulations of 3 or more waves (M ≥ 2), the simulations for wave m + 1 start
at the simulated network for wave m.

- provide possible scenarios of the network evolution according to different values
of the parameters of the SAOM

- estimate the parameters of the SAOM

- evaluate the goodness of fit of the model



Estimating the parameter of the SAOM

Problem

Given the longitudinal network data

x(t0), x(t1), . . . , x(tM)

and a parametrization of the SAOM

θ = (λ1, . . . ,λM ,β1, . . . ,βK )

we want to estimate θ in a plausible way.

Solution

Different estimation methods are available:

1. Method of Moments (MoM)
2. Maximum Likelihood Estimation (MLE)



Background: Method of Moments (MoM)
Definition
Let X be a random variable with probability distribution depending on a
parameter θ.
Let (x1, . . . , xq) a sample of q observations from the r.v. X .

The expected value (mean or moment) of X , denoted by Eθ[X ], is defined
by:

Eθ[X ] =
∑
x∈S

x ·ϕ(x ,θ)

if X is discrete with p.m.f ϕ(x ,θ) and

Eθ[X ] =

∫
x∈S

x · f (x ,θ)dx

if X is continuous with p.d.f f (x ,θ)

The sample counterpart of Eθ[X ], denoted by µ, is defined by:

µ=
1
q

q∑
i=1

xi



Background: Method of Moments (MoM)

Definition
The method of moment estimator for θ is found by equating the expected
value Eθ[X ] to its sample counterpart µ

Eθ[X ] = µ

and solving the resulting equation for the unknown parameter.
The estimate for θ is denoted by θ̂.

In practice:
1. Compute the expected value Eθ[X ]

2. Compute the sample counterpart µ= 1
q

q∑
i=1

xi

3. Solve the moment equation Eθ[X ] = µ for θ

Motivation
One can observe that the expected value of a certain distribution usually
depends on the parameter θ



Background: Method of Moments (MoM)

Example
Let W be the r.v. describing the waiting times between two consecutive
opportunities for change for an actor in a network evolution process
described by the SAOM.
A sample is reported in the following table:

1 2 3 4 5 6 7 8 9 10
wi 0.33 0.08 0.06 0.01 0.04 0.11 0.03 0.18 0.02 0.07

Estimate the rate parameter λ according to the MoM.

From the assumptions of the SAOM follows that W ∼ Exp(λ)

fW (w) = λe−λw λ,w > 0



Background: Method of Moments (MoM)

Example
1. The expected value of W is:

Eλ[W ] =

+∞∫
0

w · fW (w)dw =

+∞∫
0

w ·λe−λw dw

=
[
−w · e−λw

]+∞

0
−

+∞∫
0

−e−λw dw

︸ ︷︷ ︸
integration by parts

= 0−
[
− 1
λ

e−λw
]+∞

0
=

1
λ



Background: Method of Moments (MoM)

Example

1 2 3 4 5 6 7 8 9 10
wi 0.33 0.08 0.06 0.01 0.04 0.11 0.03 0.18 0.02 0.07

2. The sample counterpart is:

µ=
1

10

10∑
i=1

wi =
0.93
10 = 0.093

3. The estimate for λ is the solution of:

Eλ[W ] = µ

1
λ

= µ

namely
λ̂=

1
µ

=
1

0.093 = 10.75



Background: Generalizations of MoM

The principle of the MoM can be easily generalized to any function s : S 7−→ R.
1. Expected value of s(X):

Eθ[s(X)] =
∑
x∈S

s(x)ϕ(x ,θ)

Eθ[s(X)] =

∫
x∈S

s(x)f (x ,θ)dx

2. Corresponding sample moment:

γ =
1
q

q∑
i=1

s(xi )

3. Moment equation:
Eθ[s(X)] = γ

The functions s(X) are called statistics



Background: Generalizations of MoM

The MoM can be applied also in situations where θ = (θ1, . . . , θp).

1. Definition of p statistics (s1(X), . . . , sp(X))

2. Definition of p moment conditions:

Eθ[s1(X)] = γ1

Eθ[s2(X)] = γ2

· · ·
Eθ[sp(X)] = γp

3. Solving the resulting equations for the unknown parameters



Estimating the parameter of the SAOM using MoM

Aim: estimate θ using the MoM

θ = (λ1, . . . , λM , β1, . . . , βK )

In practice:

1. find M + K statistics

2. set the theoretical expected value of each statistic equal to its sample
counterpart

3. solve the resulting system of equations with respect to θ.

For simplicity, let us assume to have observed a network at two time points t0 and t1
and to condition the estimation on the first observation x(t0)



1. Defining the statistics

The rate parameter λ describes the frequency at which changes
can potentially happen.

sλ(X(t1),X(t0)|X(t0) = x(t0)) =

n∑
i,j=1

∣∣Xij (t1)−Xij (t0)
∣∣

Reason

λ= 2 λ= 3 λ= 4
sλ 94 135 171

⇒ higher values of λ leads to higher values of sλ



1. Defining the statistics

The parameter βk quantifies the role played by each effect in the network
evolution.

sk (X(t1)|X(t0) = x(t0)) =

n∑
i=1

sik (X(t1))

Example
Let us consider the outdegree:

sout (X(t1)|X(t0) = x(t0)) =

n∑
i=1

si out (X(t1)) =

n∑
i=1

n∑
j=1

xij (t1)

βout =−2.5 βout =−2 βout =−1.5
sout 195 214 234

⇒ higher values of βout leads to higher values of sout



1. Defining the statistics

Generalizing to M periods:

- Statistics for the rate function parameters

sλ1 (X(t1),X(t0)|X(t0) = x(t0)) =
n∑

i,j=1

∣∣Xij (t1)−Xij (t0)
∣∣

. . .

sλM (X(tM),X(tM−1)|X(tM−1) = x(tM−1)) =
n∑

i,j=1

∣∣Xij (tM)−Xij (tM−1)
∣∣

- Statistics for the objective function parameters:

M∑
m=1

smk (X(tm)|X(tm−1) = x(tm−1)) =

M∑
m=1

smk (X(tm))



2. Setting the moment equations

The MoM estimator for θ is defined as the solution of the system
of M + K equations


Eθ
[
sλm (X(tm),X(tm−1)|X(tm−1) = x(tm−1))

]
= sλm (x(tm),x(tm−1))

Eθ
[ M∑

m=1
smk (X(tm)|X(tm−1) = x(tm−1))

]
=

M∑
m=1

smk (x(tm))

with m = 1, . . . ,M and k = 1, · · · ,K



2. Setting the moment equations

Example
Let us assume to have observed a network at two time points

We want to model the network evolution according to the outdegree, the
reciprocity and the transitivity effects

θ = (λ,βout ,βrec ,βtrans )



2. Setting the moment equations

Example
Statistics:

sλ(X(t1),X(t0)|X(t0) = x(t0)) =
4∑

i,j=1

∣∣Xij (t1)−Xij (t0)
∣∣

sout (X(t1)|X(t0) = x(t0)) =
4∑

i,j=1
Xij (t1)

srec (X(t1)|X(t0) = x(t0)) =
4∑

i,j=1
Xij (t1)Xji (t1)

strans (X(t1)|X(t0) = x(t0)) =
4∑

i,j,h=1
Xij (t1)Xih(t1)Xjh(t1)



2. Setting the moment equations

Example

Observed values of the statistics:

sλ = 5

sout = 6 srec = 4 strans = 2



2. Setting the moment equations

Example

We look for the value of θ that satisfies the system:



Eθ [sλ(X(t1),X(t0)|X(t0) = x(t0))] = 5

Eθ [sout (X(t1)|X(t0) = x(t0))] = 6

Eθ [srec (X(t1)|X(t0) = x(t0))] = 4

Eθ [strans (X(t1)|X(t0) = x(t0))] = 2



3. Solving the moment equations

Simplified notation:

- S: (M + K)-dimensional vector of statistics

- s: (M + K)-dimensional vector of the observed values of the statistics

Consequently, the system of moment equations can be written as

Eθ[S] = s

or equivalently as
Eθ[S− s] = 0

Problem: analytical procedures cannot be applied to solve this system

Solution: stochastic approximation method
i.e. an iterative stochastic algorithm that attempt to find zeros of functions
which cannot be analytically computed.



3. Solving the moment equations: stochastic approximation method

Given an initial guess θ0 for the parameter θ, the procedure can be roughly
depicted as follows:

θ0
approximation−−−−−−−−→ Eθ0 [S− s]

update−−−−→ θ1

θ1
approximation−−−−−−−−→ Eθ1 [S− s]

update−−−−→ θ2

...
approximation−−−−−−−−→ ...

update−−−−→ ...

θi−1
approximation−−−−−−−−→ Eθi−1 [S− s]

update−−−−→ θi

...
approximation−−−−−−−−→ ...

update−−−−→ ...

until a certain criterion is satisfied



3. Solving the moment equations: stochastic approximation method

Example

Let us consider the “Teenage Friends and Lifestyle Study” data set.

We model the network evolution according to the following parameter

θ = (λ1,λ2,βout ,βrec ,βtrans )

The MoM equations are:



Eθ
[
sλ1 (X(t1),X(t0)|X(t0) = x(t0))

]
= 477

Eθ
[
sλ2 (X(t2),X(t1)|X(t1) = x(t1))

]
= 437

Eθ [sout (X(t1)|X(t0) = x(t0))] = 909

Eθ [srec (X(t1)|X(t0) = x(t0))] = 548

Eθ [strans (X(t1)|X(t0) = x(t0))] = 1146



3. Solving the moment equations: stochastic approximation method

Example

- Guess θ0 = (7.45,6.83,−1.61,0,0)

- Simulate the network evolution 1000 times according to θ̂0

- Approximation of the expected values

Sλ1 = 605.745 Sλ2 = 573.715

Sβout = 1151.886 Sβrec = 141.406 Sβtrans = 270.118

- Approximation of the moment equation

Sλ1 −477 = 128.745 Sλ2 −437 = 136.715

Sβout −909 = 242.886 Sβrec −548 =−406.594 Sβtrans −1146 =−875.882



3. Solving the moment equations: stochastic approximation method

Example

- Guess θ1 = (7.1,6.75,−1.70,1.20,0.25)

- Simulate the network evolution 1000 times according to θ̂1

- Approximation of the expected values

Sλ1 = 549.787 Sλ2 = 532.551

Sβout = 1478.988 Sβrec = 517.450 Sβtrans = 1062.537

- Approximation of the moment equation

Sλ1 −477 = 72.787 Sλ2 −437 = 95.551

Sβout −909 = 569.988 Sβrec −548 =−30.550 Sβtrans −1146 =−83.463



3. Solving the moment equations: stochastic approximation method

Example

- Guess θ2 = (7.10,6.75,−2.20,1.40,0.35)

- Simulate the network evolution 1000 times according to θ̂2

- Approximation of the expected values

Sλ1 = 446.853 Sλ2 = 437.166

Sβout = 1025.729 Sβrec = 414.484 Sβtrans = 698.734

- Approximation of the moment equation

Sλ1 −477 =−30.147 Sλ2 −437 = 0.166

Sβout −909 = 116.729 Sβrec −548 =−133.516 Sβtrans −1146 =−447.266

and so on...



3. Solving the moment equations: stochastic approximation method

Example

- Guess θi = (10.71,8.79,−2.63,2.16,0.46)

- Simulate the network evolution 1000 times according to θ̂i

- Approximation of the expected values

Sλ1 = 476.022 Sλ2 = 436.983

Sβout = 906.809 Sβrec = 545.578 Sβtrans = 1147.795

- Approximation of the moment equation

Sλ1 −477 =−0.978 Sλ2 −437 =−0.017

Sβout −909 =−2.191 Sβrec −548 =−2.422 Sβtrans −1146 = 1.795



3. Solving the moment equations: stochastic approximation method

1. Approximation

Definition
Let X be a random variable with distribution function fX (x).
The Monte Carlo method consists in:

1. generating a sample (x1, · · · ,xq) from the distribution function fX (x)

2. computing s(xl ), l = 1, . . . , q
3. approximating the expected value with the empirical average, i.e.:

S =
1
q

q∑
l=1

s(xl )

Reason
It can be proved that

S→ E [s(X)]

as q→∞



3. Solving the moment equations: stochastic approximation method

1. Approximation

1. Given x(t0) and θ

x (1)(t1), x (1)(t2), . . . , x (1)(tM)

. . .

x (q)(t1), x (q)(t2), . . . , x (q)(tM)

2. For each sequence compute the value S(l) taken by S

3. Approximate the expected value by

S =
1
q

q∑
l=1

S(l)→ Eθ[S]



3. Solving the moment equations: stochastic approximation method

1. Approximation

Example
Approximating Eθ[sout (X(t1)|X(t0) = x(t0))] for the “Teenage Friends and
Lifestyle Study” data set

1. Given:

- x(t0)

- θ = (λ1 = 10.69,λ2 = 8.82,βout =−2.63,βrec = 2.17,βtrans = 0.46)

simulate the network evolution q = 1000 times

x (1)(t1), x (1)(t2), . . . , x (1)(tM)

. . .

x (q)(t1), x (q)(t2), . . . , x (q)(tM)



3. Solving the moment equations: stochastic approximation method

1. Approximation

Example

2. Compute the value assumed by Sout for each sequence of networks

S(l)
out =

M−1∑
m=1

n∑
i=1

n∑
j=1

x (l)
ij (tm)

sim 1 2 3 4 5 6 7 8 . . .
Nr. Edges 942 874 1047 881 865 866 999 948 . . .



3. Solving the moment equations: stochastic approximation method

1. Approximation

Example

3. Approximate the expected value by

Sout =
1
q

q∑
i=1

S(l)
out

Sout =
942 + 874 + 1047 + 881 + 865 + 866 + 999 + 948 + . . .

1000 ≈ 912



3. Solving the moment equations: stochastic approximation method
2. Updating rule

The (modified) Robbins-Monro (RM) algorithm
Iterative algorithm to find the solution to

Eθ[S] = s

The value of θ is iteratively updated according to:

θ̂i+1 = θ̂i −ai D̂−1
(

E
θ̂i

[S]− s
)

where:
- ai is a series such that

lim
i→∞

ai = 0
∞∑

i=1
ai =∞

∞∑
i=1

a2
i <∞

- D̂ is a diagonal matrix with elements

D̂ =
∂

∂θ̂i
E
θ̂i

[S]



3. Solving the moment equations: stochastic approximation method
2. Updating rule

θ̂i+1 = θ̂i −ai D̂−1
(

E
θ̂i

[S]− s
)

Intuitively:



3. Solving the moment equations: stochastic approximation method
2. Updating rule

θ̂i+1 = θ̂i −ai D̂−1
(

E
θ̂i

[S]− s
)

Intuitively:



3. Solving the moment equations: stochastic approximation method
2. Updating rule

θ̂i+1 = θ̂i −ai D̂−1
(

E
θ̂i

[S]− s
)

Intuitively:



3. Solving the moment equations: stochastic approximation method
2. Updating rule

θ̂i+1 = θ̂i −ai D̂−1
(

E
θ̂i

[S]− s
)

Intuitively:



Estimating the parameter of the SAOM

Issue

Given
x(t0), x(t1), . . . , x(tM)

and a parametrization of the SAOM

θ = (λ1, . . . ,λM−1,β1, . . . ,βK )

we want to estimate θ in a plausible way.

Different estimation methods are available:

1. Method of Moments:
an estimation for θ is the value θ̂ that solves:

Eθ[S− s] = 0

2. Maximum-likelihood estimation:
what is the most likely value of θ that could have generated the observed
data?



Background: the Maximum-likelihood estimation (MLE)

Definition
Suppose that X is a r.v. with p.m.f ϕ(x ,θ), if X is discrete, or with p.d.f.
f (x ,θ), if X is continuous, where θ ∈ΘRk . Let x = (x1,x2, . . . ,xq) be the
observed value of a random sample of size q.

The likelihood function associated with the observed data is:

L(θ) : Θ→ R; θ 7−→ Pθ(x1, . . . ,xq)

defined as:

L(θ) =

q∏
i=1

ϕ(xi ,θ)

if X is discrete

L(θ) =

q∏
i=1

f (xi ,θ)

if X is continuous

A parameter vector θ̂ maximizing L:

θ̂ = arg max
θ∈Θ

L(θ)

is called a maximum likelihood estimate for θ



Background: the Maximum-likelihood estimation (MLE)

In practice, it is easier to compute θ̂ using the log-likelihood function,
i.e. log(L(θ))

θ̂ = arg max
θ∈Θ

log(L(θ))

N.b.

The logarithm is a monotonic increasing function



Background: the Maximum-likelihood estimation (MLE)

Example
Let W be the r.v. describing the waiting times between two consecutive
opportunities for change for an actor in a network evolution process
described by the SAOM.
A sample is reported in the following table:

1 2 3 4 5 6 7 8 9 10
wi 0.33 0.08 0.06 0.01 0.04 0.11 0.03 0.18 0.02 0.07

Estimate the rate parameter λ according to the MLE.

From the assumptions of the SAOM follows that W ∼ Exp(λ)

fW (w ,λ) = λe−λw λ,w > 0



Background: the Maximum-likelihood estimation (MLE)

Example

Finding an estimate for θ requires:
1. computing the (log-)likelihood of the evolution process
2. maximizing the (log-)likelihood

1. Computing the likelihood of the evolution process

L(λ) =

q∏
i=1

fW (wi ,λ) =

q∏
i=1

λe−λwi = λqe
−λ

q∑
i=1

wi

log(L(λ)) = log

λqe
−λ

q∑
i=1

wi

= q · log(λ)−λ
q∑

i=1
wi



Background: the Maximum-likelihood estimation (MLE)
Example
Finding an estimate for θ requires:

1. computing the (log-)likelihood of the evolution process
2. maximizing the (log-)likelihood

2. Maximizing the (log-)likelihood

∂

∂λ
log(L(λ)) = 0

q
λ
−

q∑
i=1

wi = 0

λ =
q

q∑
i=1

wi

(stationary point)

Checking that this stationary point is a maximum

∂2

∂λ2 log(L(λ)) =− q
λ2 < 0

Therefore, λ̂= 10.75



Estimating the parameter of the SAOM using MLE

Let
-

F = {F (θ),θ ∈Θ⊆ Rk}

be a collection of SAOMs parametrized by θ ∈Θ⊆ Rk

- x(t0), . . . ,x(tM) be the observed network data
- V1, . . . ,VH be the observed actor attributes

The likelihood function associated with the observed data is:

L : Θ→ R; θ 7−→ Pθ(x(t0), . . . ,x(tM))



1. Computing the (log-)likelihood of the evolution process
For semplicity, let us consider only two observations x(t0) and x(t1)

The model assumptions allow to decompose the process in a series of
micro-steps:

{(Tr , ir , jr ), r = 1, . . . ,R}

- Tr : time point for an opportunity for change

t0 < T1 < .. . < TR < t1

- ir : actor who has the opportunity to change

- jr : actor towards whom the tie is changed

Given the sequence {(Tr , ir , jr ), r = 1, . . . ,R}, the likelihood of the evolution
process

logL(θ) = log

( R∏
r=1

Pθ((Tr , ir , jr ))

)
∝ log

(
(nλ)R

R!
e−nλ

R∏
r=1

1
n pir jr (β,x(Tr ))

)



2. Maximizing the (log-)likelihood

Example

Let us consider the “Teenage Friends and Lifestyle Study” data set.

We model the network evolution according to the following parameter

θ = (λ1,λ2,βout ,βrec ,βtrans )

We look for θ̂ such that:



∂
∂λ1

log(L(θ)) = 0

∂
∂λ2

log(L(θ)) = 0

∂
∂βout

log(L(θ)) = 0

∂
∂βrec

log(L(θ)) = 0

∂
∂βtrans

log(L(θ)) = 0



2. Maximizing the (log-)likelihood

Problem:
we cannot observe the complete data, i.e., the complete series of micro-steps
that lead from x(t0) to x(t1), from x(t1) to x(t2), . . .

⇓
we cannot compute the L of the observed data

⇓
a stochastic approximation method must be applied.



2. Maximizing the (log-)likelihood

Given an initial guess θ0 for the parameter θ, the procedure can be roughly
depicted as follows:

θ0
approximation−−−−−−−−→ ∂

∂θ log(L(θ0))
update−−−−→ θ1

θ1
approximation−−−−−−−−→ ∂

∂θ log(L(θ1))
update−−−−→ θ2

...
approximation−−−−−−−−→ ...

update−−−−→ ...

θi−1
approximation−−−−−−−−→ ∂

∂θ log(L(θi−1))
update−−−−→ θi

...
approximation−−−−−−−−→ ...

update−−−−→ ...

until a certain criterion is satisfied



2. Maximizing the (log-)likelihood

1. Approximation

To approximate the (log-)likelihood we use the augmented data method

Definition
The augmented data (or sample path) consist of the sequence of tie changes
that brings the network from x(t0) to x(t1)

(i1, j1), . . . ,(iR , jR )

Formally:
v = {(i1, j1), . . . ,(iR , jR )} ∈V

where V is the set of all sample paths connecting x(t0) and x(t1).

We can approximate the (log-)likelihood function (and then the score function)
of the observed data using the probability of v

logP(v |x(t0),x(t1))∝ log

(
(nλ)R

R!
e−nλ

R∏
r=1

1
n pir jr (β,x(Tr ))

)



2. Maximizing the (log-)likelihood

2. Updating rule

We would like to solve the equation:

∂

∂θ
log(L(θ)) = 0

Given θ̂i and the corresponding approximation of the score function:

∂

∂θ
log(L(θ̂i ;v (i)

m ))

we update the parameter estimate using the Robbins-Monro step

θi+1 = θi + ai D−1 ∂
∂θ

log(L(θ̂i ;v (i)
m ))

where D is a diagonal matrix with elements

D−1 =

[
∂2

∂θ2 log(L(θ̂i ;v (i)
m ))

]−1



Outline

Introduction

The Stochastic actor-oriented model

Extending the model: analyzing the co-evolution of networks and behavior
Motivation
Selection and influence
Model definition and specification
Simulating the co-evolution of networks and behavior
Parameter interpretation
Parameter estimation

Something more on the SAOM

ERGMs and SAOMs



Networks are dynamic by nature: a real example
Ties and actors’characteristics can change over time.
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Networks are dynamic by nature: a real example
Ties and actors’characteristics can change over time.



Motivation

1. Social network dynamics can depend on actors’characteristics.

Selection process: relationship partners are selected according to their
characteristics

Example
Homophily: the formation of relations based on the similarity of two actors

E.g. smoking behavior

t0 t1



Motivation

2. Changeable actors’characteristics can depend on the social network

E.g.: opinions, attitudes, intentions, etc. - we use the word behavior for all of
these!

Influence process: actors adjust their characteristics according to the
characteristics of other actors to whom they are tied

Example
Assimilation/contagion: connected actors become increasingly similar over time

E.g. smoking behavior

t0 t1



Competing explanatory stories

Homophily and assimilation give rise to the same outcome (similarity of
connected individuals)

⇓

study of influence requires the consideration of selection and vice versa.

Fundamental question: is this similarity caused mainly by influence or mainly by
selection?

Extending the SAOM for the co-evolution of networks and behaviors



Competing explanatory stories

Example
Similarity in smoking:

Selection: “a smoker may tend to have smoking friends because, once
somebody is a smoker, he or she is likely to meet other smokers in smoking
areas and thus has more opportunities to form friendship ties with them”

Influence: “the friendship with a smoker may have made an actor smoking in
the first place”



Longitudinal network-behavior panel data

1. a network x represented by its adjacency matrix

2. a series of actors’ attributes:
- H constant covariates V1, · · · ,VH

- L behavior covariates Z1(t), · · · ,ZL(t)
Behavior variables are ordinal categorical variables.

Longitudinal network-behavior panel data: networks and behaviors observed at
M ≥ 2 time points t1, · · · , tM

(x ,z)(t0), (x ,z)(t1), · · · , (x ,z)(tM)

and the constant covariates V1, · · · ,VH .



Assumptions

1. Distribution of the process.
Changes between observational time points are modeled according to a
continuous-time Markov chain.

- State space C: all the possible configurations arising from the
combination of network and behaviors

|C |= 2n(n−1)×Bn

where B is the number of categories for the behavior variable.

- Markovian assumption: changes actors make are assumed to depend
only on the current state of the network

- Continuous-time:



Assumptions

1. Distribution of the process.
Changes between observational time points are modeled according to a
continuous-time Markov chain.

- State space C: all the possible configurations arising from the
combination of network and behaviors

|C |= 2n(n−1)×Bn

where B is the number of categories for the behavior variable.

- Markovian assumption: changes actors make are assumed to depend
only on the current state of the network

- Continuous-time:
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- State space C: all the possible configurations arising from the
combination of network and behaviors

|C |= 2n(n−1)×Bn

where B is the number of categories for the behavior variable.
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- Continuous-time:



Assumptions

1. Distribution of the process.
Changes between observational time points are modeled according to a
continuous-time Markov chain.

- State space C: all the possible configurations arising from the
combination of network and behaviors

|C |= 2n(n−1)×Bn

where B is the number of categories for the behavior variable.

- Markovian assumption: changes actors make are assumed to depend
only on the current state of the network and behavior

- Continuous-time:



Assumptions
2. Opportunity to change.

At any given moment one probabilistically selected actor has the
opportunity to change one of his outgoing ties or his behavior.
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Assumptions

2. Opportunity to change.
At any given moment one probabilistically selected actor has the
opportunity to change one of his outgoing ties or his behavior.



Assumptions

3. Absence of co-occurrence.
At each instant t, only one actor has the opportunity to change (one of his
outgoing ties or his behavior)

4. Actor-oriented perspective.
Actors control their outgoing ties as well as their own behavior.

- the actor decide to change one of his outgoing ties or his behavior
trying to maximize a utility function

- two distinct objective functions: one for the network and one for the
behavior change

- actors have complete knowledge about the network and the behaviors
of all the the other actors

- the maximization is based on immediate returns (myopic actors)



Model definition

The co-evolution process is decomposed into a series of micro-steps:

- network micro-step: the opportunity of changing one network tie and the
corresponding tie changed

- behavior micro-step: the opportunity of changing a behavior and the
corresponding unit changed in behavior

⇓

every micro-step requires the identification of a focal actor who gets the
opportunity to make a change and the identification of the change outcome

Occurrence Preference

Network changes Network rate function Network objective function

Behavioral changes Behavioral rate function Behavioral objective function



The rate functions

The frequency by which actors have the opportunity to make a change is
modeled by the rate functions, one for each type of change.

Why must we specify two different rate functions?

Practically always, one type of decision will be made more frequently than the
other

Example
In the joint study of friendship and smoking behavior at high school, we would
expect more frequent changes in the network than in behavior



The rate functions

Network rate function
T net

i = the waiting time until i gets the opportunity to make a network change

T net
i ∼ Exp(λnet

i )

Behavior rate function
T beh

i = the waiting time until i gets the opportunity to make a behavior change

T beh
i ∼ Exp(λbeh

i )

Waiting time for a new micro-step
T net∨beh

i = the waiting time until i gets the opportunity to make any change

T net∨beh
i ∼ Exp(λtot )

where
λtot =

∑
i

(λnet
i +λbeh

i )



The rate functions (simplest specification)

Network rate function
T net

i = the waiting time until i gets the opportunity to make a network change

T net
i ∼ Exp(λnet )

Behavior rate function
T beh

i = the waiting time until i gets the opportunity to make a behavior change

T beh
i ∼ Exp(λbeh)

Waiting time for a new micro-step
T net∨beh

i = the waiting time until i gets the opportunity to make any change

T net∨beh
i ∼ Exp(λtot )

where
λtot = n(λnet +λbeh)



The rate functions (simplest specification)

Probabilities for an actor to make a micro-step

P(i can make a network micro− step) =
λnet

λtot

P(i can make a behavioral micro− step) =
λbeh

λtot

Probabilities for a micro-step

P(network micro− step) =
nλnet

λtot
=

λnet

λnet +λbeh

P(behavioral micro− step) =
nλbeh

λtot
=

λbeh

λnet +λbeh



The objective functions

Why must we specify two different objective functions?

- The network objective function represents how likely it is for i to change
one of his outgoing ties

- The behavioral objective function represents how likely it is for the actor i
the current level of his behavior

Network utility function

unet
i (β,x(i ; j),z,v) = f net

i (β,x(i ; j),z,v) +Eij

=

K∑
k=1

βk snet
ik (x ,z,v) +Eij



The objective functions
Behavioral utility function

ubeh
i (γ,z(l ; l ′),x ,v) = f beh

i (γ,z(l ; l ′),x ,v) +Ell′

=

W∑
w=1

γw sbeh
iw (x ,z(l ; l ′),v) +Ell′

where
- sbeh

iw (x ,z(l ; l ′),v) are effects
- γw are statistical parameters
- Ell′ is a random term (Gumbel distributed)

The probability that an actor i changes his own behavior by one unit is:

pll′(i) =
exp
(

f beh
i (γ,z(l ; l ′),x ,v)

)∑
l′′∈{l+1,l−1,l}

exp
(

f beh
i (γ,z(l ; l ′′),x ,v)

)
pll (i) is the probability that i does not change his behavior.

N.b. In the following we will write z′ instead of z(l ; l′)



The objective functions
The specification of the behavioral objective function

- Basic shape effects

sbeh
i linear (x ,z ′,v) = z ′i sbeh

i quadratic (x ,z ′,v) = (z ′i )2

The basic shape effects must be always included in the model specification

γquad (z′i )2 +γlinear z′i γquad (z′i )2 +γlinear z′i

γquad < 0 γquad > 0



The objective functions

The specification of the behavioral objective function

- Classical influence effects

1. The average similarity effect

sbeh
i avsim(x ,z ′,v) =

1
xi+

n∑
j=1

xij (simz′(ij)− simz )

where

simz′(ij) = 1−

∣∣z ′i − z ′j
∣∣

Rz
Rz is the range of the behavior z and simz is the mean similarity
value

2. The total similarity effect

sbeh
i totsim(x ,z ′,v) =

n∑
j=1

xij (simz′(ij)− simz )

N.b.: z′j = zj



The objective functions

The specification of the behavioral objective function

- Classical influence effects

1. The average similarity effect

sbeh
i avsim(x ,z ′,v) =

1(
n∑

j=1
xij

) n∑
j=1

xij (simz′(ij)− simz )

where

simz′(ij) = 1−

∣∣z ′i − z ′j
∣∣

Rz
Rz is the range of the behavior z and simz is the mean similarity
value

2. The total similarity effect

sbeh
i totsim(x ,z ′,v) =

n∑
j=1

xij (simz′(ij)− simz )

N.b.: z′j = zj



The objective functions

The specification of the behavioral objective function

- Position-dependent influence effects

Network position could also have an effect on the behavior of dynamics

1. outdegree effect

sbeh
i out (x ,z ′,v) = z ′i

n∑
j=1

xij

2. indegree effect

sbeh
i ind (x ,z ′,v) = z ′i

n∑
j=1

xji

- Effects of other actor variables.
For each actor’s attribute a main effect on the behavior can be included in
the model



Simulating the co-evolution of networks and behavior

Aim: given (x ,z)(t0) and fixed parameter values, provide (x ,z)sim(t1)
according to the process behind the SAOM

⇓

reproduce a possible series of network and behavior micro-steps
between t0 and t1

Input

n = number of actors
λnet = network rate parameter (given)
λbeh = behavior rate parameter (given)
β = (β1, . . . ,βK ) = objective function parameters (given)
γ = (γ1, . . . ,γW ) = objective function parameters (given)
(x ,z)(t0) = network and behavior at time t0 (given)

Output

(x ,z)sim(t1) = network and behavior at time t1



Simulating the co-evolution of networks and behavior

Algorithm 2:
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet )

dtbeh ∼ Exp(nλbeh)

if min{dtnet ,dtbeh}= dtnet then
i ∼ Uniform(1, . . . ,n),
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n),
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))

if l 6= l ′ then
z ← z(l ; l ′)
t← t + dtbeh

x sim(t1)← x
zsim(t1)← z
return x sim(t1), zsim(t1)

(x ,z)(t0)

n = 4

λnet = 1.5
λnet = 1

β = (βout ,βrec ,βtrans )
βi=(-1,0.5,-0.25)
γ = (γlinear ,γquadratic ,γavsim)
γi=(-2,1,0.25)



Simulating the co-evolution of networks and behavior

Algorithm 2:
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet )

dtbeh ∼ Exp(nλbeh)

if min{dtnet ,dtbeh}= dtnet then
i ∼ Uniform(1, . . . ,n),
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n),
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))

if l 6= l ′ then
z ← z(l ; l ′)
t← t + dtbeh

x sim(t1)← x
zsim(t1)← z
return x sim(t1), zsim(t1)

Generating the waiting time:
- dtnet for a tie change
- dtbeh for a behavior change



Simulating the co-evolution of networks and behavior

Algorithm 2:
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet )

dtbeh ∼ Exp(nλbeh)

if min{dtnet ,dtbeh}= dtnet then
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))

if l 6= l ′ then
z ← z(l ; l ′)
t← t + dtbeh

x sim(t1)← x
zsim(t1)← z
return x sim(t1), zsim(t1)

Which micro-step is going to
happen?

If
dtnet < dtbeh

then a network micro-step takes
place

The following steps are the same
of those in Algorithm 1



Simulating the co-evolution of networks and behavior

Algorithm 2:
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet )

dtbeh ∼ Exp(nλbeh)

if min{dtnet ,dtbeh}= dtnet then
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))

if l 6= l ′ then
z ← z(l ; l ′)

t← t + dtbeh

x sim(t1)← x
zsim(t1)← z
return x sim(t1), zsim(t1)

Which micro-step is going to
happen?

If
dtbeh < dtnet

then a behavior micro-step takes
place



Simulating the co-evolution of networks and behavior

Algorithm 2:
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet )

dtbeh ∼ Exp(nλbeh)

if min{dtnet ,dtbeh}= dtnet then
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))

if l 6= l ′ then
z ← z(l ; l ′)

t← t + dtbeh

x sim(t1)← x
zsim(t1)← z
return x sim(t1), zsim(t1)

Select the actor i who has the op-
portunity to change his behavior

e.g. i=1

(x ,z)(t0)



Simulating the co-evolution of networks and behavior

Algorithm 2:
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet )

dtbeh ∼ Exp(nλbeh)

if min{dtnet ,dtbeh}= dtnet then
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))

if l 6= l ′ then
z ← z(l ; l ′)

t← t + dtbeh

x sim(t1)← x
zsim(t1)← z
return x sim(t1), zsim(t1)

Select the level l ′ towards i is
going to adjust his behavior

l → l ′ f beh
i pll′

2 → 1 0.017 0.017
2 → 2 0.052 0.052
3 → 3 0.930 0.931



Simulating the co-evolution of networks and behavior

Algorithm 2:
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet )

dtbeh ∼ Exp(nλbeh)

if min{dtnet ,dtbeh}= dtnet then
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))

if l 6= l ′ then
z ← z(l ; l ′)

t← t + dtbeh

x sim(t1)← x
zsim(t1)← z
return x sim(t1), zsim(t1)

Select the level l ′ towards i is go-
ing to adjust his behavior

e.g. l’=3

(x ,z(l → l ′))



Simulating the co-evolution of networks and behavior

Algorithm 2:
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet )

dtbeh ∼ Exp(nλbeh)

if min{dtnet ,dtbeh}= dtnet then
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))

if l 6= l ′ then
z ← z(l ; l ′)

t← t + dtbeh

x sim(t1)← x
zsim(t1)← z
return x sim(t1), zsim(t1)



Simulating the co-evolution of networks and behavior

1. Unconditional simulation:
simulation carries on until a predetermined time length has elapsed
(usually until t = 1).

2. Conditional simulation on the observed number of changes:
- simulation runs on until

n∑
i,j=1
ı 6=j

∣∣∣X obs
ij (t1)−Xij (t0)

∣∣∣=

n∑
i,j=1

∣∣∣X sim
ij (t1)−Xij (t0)

∣∣∣

- simulation runs on until
n∑

i=1

∣∣∣zobs
i (t1)− zi (t0)

∣∣∣=

n∑
i=1

∣∣∣zsim
i (t1)− zi (t0)

∣∣∣



Example

Example data: excerpt from the “Teenage Friends and Lifestyle Study” data set

We will use the SAOM for the co-evolution of networks and behaviors to
distinguish influence from selection.

1. Do pupils select friends based on similar smoking behavior?

2. Are pupils influenced by friends to adjust to their smoking behavior?

Dependent variables: friendship networks and smoking behavior

Covariate: gender



Precondition of the analysis

To find out whether it makes sense to analyze the data with a co-evolution
model one should check whether:

1. the data are sufficiently informative

J =
N11

N11 + N01 + N10
> 0.3 Jaccard index



Precondition of the analysis

2. there is interdependence between network and behavioral variables

I =

n
∑

ij
xij (zi − z)(zj − z)(∑

ij
xij

)(∑
i

(zi − z)2

) Moran index

where z is the mean of z over all the periods



Precondition of the analysis

The computation of the index I for the data leads to

0.244 0.258 0.341

Conclusion:
there is considerable dependence between networks and behaviors
and it is reasonable to apply the SAOM

moran1 <- nacf(net1,tobacco[,1],lag.max=1,neighborhood.type = ”out”,
type=”moran”,mode=”digraph”)

moran2 <- nacf(net2,tobacco[,2]„lag.max=1,neighborhood.type = ”out”,
type=”moran”,mode=”digraph”)

moran3 <- nacf(net3,tobacco[,3]„lag.max=1,neighborhood.type = ”out”,
type=”moran”,mode=”digraph”)

moranInd <- c(moran1[2],moran2[2],moran3[2])



Parameter interpretation: a baseline model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 8.6287 ( 0.6666 )
constant friendship rate (period 2) 7.2489 ( 0.5466 )

outdegree (density) -2.4084 ( 0.0407 ) -59.1268
reciprocity 2.7024 ( 0.0823 ) 32.8337

Behavior Dynamics
rate smokebeh (period 1) 3.8922 ( 1.9689 )
rate smokebeh (period 2) 4.4813 ( 2.3679 )

behavior smokebeh linear shap -3.5464 ( 0.4394 ) -8.0712
behavior smokebeh quadratic shape 2.8464 ( 0.3628 ) 7.8447

Network rate parameters:
- about 9 opportunities for a network change in the first period
- about 7 opportunities for a network change in the second period



Parameter interpretation: a baseline model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 8.6287 ( 0.6666 )
constant friendship rate (period 2) 7.2489 ( 0.5466 )

outdegree (density) -2.4084 ( 0.0407 ) -59.1268
reciprocity 2.7024 ( 0.0823 ) 32.8337

Behavior Dynamics
rate smokebeh (period 1) 3.8922 ( 1.9689 )
rate smokebeh (period 2) 4.4813 ( 2.3679 )

behavior smokebeh linear shap -3.5464 ( 0.4394 ) -8.0712
behavior smokebeh quadratic shape 2.8464 ( 0.3628 ) 7.8447

Network objective function parameters:
- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties



Parameter interpretation: a baseline model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 8.6287 ( 0.6666 )
constant friendship rate (period 2) 7.2489 ( 0.5466 )

outdegree (density) -2.4084 ( 0.0407 ) -59.1268
reciprocity 2.7024 ( 0.0823 ) 32.8337

Behavior Dynamics
rate smokebeh (period 1) 3.8922 ( 1.9689 )
rate smokebeh (period 2) 4.4813 ( 2.3679 )

behavior smokebeh linear shap -3.5464 ( 0.4394 ) -8.0712
behavior smokebeh quadratic shape 2.8464 ( 0.3628 ) 7.8447

Behavioral rate parameters:
- about 4 opportunities for a behavioral change in the first period
- about 4 opportunities for a behavioral change in the second period



Parameter interpretation: a baseline model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 8.6287 ( 0.6666 )
constant friendship rate (period 2) 7.2489 ( 0.5466 )

outdegree (density) -2.4084 ( 0.0407 ) -59.1268
reciprocity 2.7024 ( 0.0823 ) 32.8337

Behavior Dynamics
rate smokebeh (period 1) 3.8922 ( 1.9689 )
rate smokebeh (period 2) 4.4813 ( 2.3679 )

behavior smokebeh linear shap -3.5464 ( 0.4394 ) -8.0712
behavior smokebeh quadratic shape 2.8464 ( 0.3628 ) 7.8447

Behavioral objective function parameters:

attractiveness of different behavioral levels based on the current structure of
the network and the behavior of the others



Parameter interpretation: a baseline model

- Smoking behavior: coded with 1 for “no”, 2 for “occasional”, and 3 for
“regular” smokers.

- The smoking covariate is centered: z = 1.377 is the mean of the covariate

zi − z =


−0.377 for no smokers

0.623 for occasional smokers

1.623 for regular smokers

- The contribution to the behavioral objective function is

γlinear (zi − z) +γquadratic (zi − z)2 =

=−3.5464(zi − z) + 2.8464(zi − z)2



Parameter interpretation: a baseline model

U-shaped changes in the behavior are drawn to the extreme of the range



A more complex model

The baseline model does not provide any information about selection and
influence processes:

- the network dynamics are explained by the preference towards creating and
reciprocating ties

- the behavior dynamics are described only by the distribution of the
behavior in the population

If we want to distinguish selection from influence we should include in the
objective functions specification:

- the effects that capture the dependence of social network dynamics on
actor’s characteristic

- the effects that capture the dependence of behavior dynamics on social
network



A more complex model

Effects for the dependence of network dynamics on actor’s characteristic

- pupils prefer to establish friendship relations with others that are similar to
themselves → covariate similarity

This effect must be controlled for the sender and receiver effects of the
covariate.

- Covariate ego effect

- Covariate alter effect



A more complex model

Effects for the dependence of behavior dynamics on network

- pupils tend to adjust their smoking behavior according to the behaviors of
their friends → average similarity effect

This effect must be controlled for the indegree and the outdegree effects
- Indegree effect

- Outdegree effect



A more complex model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 10.7166 ( 1.4036 )
constant friendship rate (period 2) 9.0005 ( 0.7709 )

outdegree (density) -2.8435 ( 0.0572 ) -49.6776
reciprocity 1.9683 ( 0.0933 ) 21.1077
transitive triplets 0.4447 ( 0.0322 ) 13.7964
sex ego 0.1612 ( 0.1206 ) 1.3368
sex alter -0.1476 ( 0.1064 ) -1.3871
sex similarity 0.9104 ( 0.0882 ) 10.3244
smoke ego 0.0665 ( 0.0846 ) 0.7857
smoke alter 0.1121 ( 0.0761 ) 1.4719
smokebeh similarity 0.5114 ( 0.1735 ) 2.9479

Rate parameters: the speed at which tie change occur is higher than the speed
at which behavioral change occur



A more complex model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 10.7166 ( 1.4036 )
constant friendship rate (period 2) 9.0005 ( 0.7709 )

outdegree (density) -2.8435 ( 0.0572 ) -49.6776
reciprocity 1.9683 ( 0.0933 ) 21.1077
transitive triplets 0.4447 ( 0.0322 ) 13.7964
sex ego 0.1612 ( 0.1206 ) 1.3368
sex alter -0.1476 ( 0.1064 ) -1.3871
sex similarity 0.9104 ( 0.0882 ) 10.3244
smoke ego 0.0665 ( 0.0846 ) 0.7857
smoke alter 0.1121 ( 0.0761 ) 1.4719
smokebeh similarity 0.5114 ( 0.1735 ) 2.9479

Network objective function parameters:

tendency towards reciprocity, transitivity and homophily with respect to gender



A more complex model

Estimates s.e. t-score
Network Dynamics
constant friendship rate (period 1) 10.7166 ( 1.4036 )
constant friendship rate (period 2) 9.0005 ( 0.7709 )

outdegree (density) -2.8435 ( 0.0572 ) -49.6776
reciprocity 1.9683 ( 0.0933 ) 21.1077
transitive triplets 0.4447 ( 0.0322 ) 13.7964
sex ego 0.1612 ( 0.1206 ) 1.3368
sex alter -0.1476 ( 0.1064 ) -1.3871
sex similarity 0.9104 ( 0.0882 ) 10.3244
smoke ego 0.0665 ( 0.0846 ) 0.7857
smoke alter 0.1121 ( 0.0761 ) 1.4719
smokebeh similarity 0.5114 ( 0.1735 ) 2.9479

Network objective function parameters:

pupils selected others with similar smoking behavior as friends

→ evidence for selection process



A more complex model

The contribution to the network objective function is given by:

βego(zi − z) +βalter (zj − z) +βsame
(

1− |zi−zj |
Rz
− simz

)
=

= 0.0665(zi −1.377) + 0.1121(zj −1.377) + 0.5114(1− |zi−zj |
Rz
−0.7415)

zi/zj no occasional regular
no 0.0648 -0.0787 -0.2223
occasional -0.1243 0.2435 0.0999
regular -0.3135 0.0543 0.4221

- preference for similar alters
- this tendency is strongest for high values on smoking behavior



A more complex model

Estimates s.e. t-score
Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )

behavior smokebeh linear shape -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Behavioral objective function parameters:

U-shaped distribution of the smoking behavior



A more complex model

Estimates s.e. t-score
Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )

behavior smokebeh linear shape -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Behavioral objective function parameters:

indegree and outdegree effects are not significant



A more complex model

Estimates s.e. t-score
Behavior Dynamics
rate smokebeh (period 1) 3.9041 (1.7402 )
rate smokebeh (period 2) 3.8059 ( 1.4323 )

behavior smokebeh linear shape -3.3573 ( 0.5678 ) -5.9129
behavior smokebeh quadratic shape 2.8406 ( 0.4125 ) 6.8864
behavior smokebeh indegree 0.1711 ( 0.1812 ) 0.9444
behavior smokebeh outdegree 0.0128 ( 0.1926 ) 0.0662
behavior smokebeh average similarity 3.4361 ( 1.4170 ) 2.4250

Behavioral objective function parameters:

pupils are influenced by the smoking behavior of the others

→ evidence for influence process



A more complex model

The contribution to the behavioral objective function is given by:

γlinear (zi − z) +γquadratic (zi − z)2 +γavsim
1

xi+

n∑
j=1

xij (simz (ij)− simz ) =

=−3.3573(zi − z) + 2.8406(zi − z)2 + 3.4361 1
xi+

n∑
j=1

xij (simz (ij)−0.7415)

where simz (ij) = 1− |zi−zj |
RZ

= 1

Example

a) i adjusts his behavior to “no-smoker” when all of his friends are no-smokers

simz (ij) = 1− |1−1|
2 = 1

−3.3573(1−1.377) + 2.8406(1−1.377)2 + 3.4361(1−0.7415) = 2.56



A more complex model

The contribution to the behavioral objective function is given by:

γlinear (zi − z) +γquadratic (zi − z)2 +γavsim
1

xi+

n∑
j=1

xij (simz (ij)− simz ) =

=−3.3573(zi − z) + 2.8406(zi − z)2 + 3.4361 1
xi+

n∑
j=1

xij (simz (ij)−0.7415)

where simz (ij) = 1− |zi−zj |
RZ

= 1

Example

b) i adjusts his behavior to “no-smoker” when all of his friends are occasional
smokers

simz (ij) = 1− |1−2|
2 = 0.5

−3.3573(1−1.377) + 2.8406(1−1.377)2 + 3.4361(0.5−0.7415) = 0.84



A more complex model

The contribution to the behavioral objective function is given by:

γlinear (zi − z) +γquadratic (zi − z)2 +γavsim
1

xi+

n∑
j=1

xij (simz (ij)− simz ) =

=−3.3573(zi − z) + 2.8406(zi − z)2 + 3.4361 1
xi+

n∑
j=1

xij (simz (ij)−0.7415)

where simz (ij) = 1− |zi−zj |
RZ

= 1

Example

b) i adjusts his behavior to “no-smoker” when all of his friends are regular
smokers

simz (ij) = 1− |1−3|
2 = 0

−3.3573(1−1.377) + 2.8406(1−1.377)2 + 3.4361(0−0.7415) =−0.88



A more complex model

The contribution to the behavioral objective function is given by:

γlinear (zi − z) +γquadratic (zi − z)2 +γavsim
1

xi+

n∑
j=1

xij (simz (ij)− simz ) =

=−3.3573linear (zi − z) + 2.8406quadratic (zi − z)2 + 3.4361 1
xi+

n∑
j=1

xij (simz (ij)−0.7415)

zj / zi no occasional regular
no 2.56 -1.82 -0.51
occasional 0.84 -0.10 1.20
regular -0.88 -1.82 2.92

- the focal actor prefers to have the same behavior as all these friends
(except for the occasional smokers)

- friends do not smoke at all: the preference toward imitating their behavior
is less strong



The parameter estimation (MoM)

Aim: given the longitudinal data

(x ,z)(t0), . . . ,(x ,z)(tM) V1, . . . ,VH

estimate the parameters for the co-evolution model

- M rate parameters for the network rate function

λnet
1 , . . . , λnet

M

- M rate parameters for the behavior rate function

λbeh
1 , . . . , λbeh

M

- K and W parameters for the network objective function and for the
behavior objective function, respectively

f net
i (β,x ′,z,v) =

K∑
k=1

βk snet
ik (x ′,z,v) f beh

i (γ,x ′,z,v) =

W∑
w=1

γw sbeh
iw (x ,z ′,v)



The parameter estimation (MoM)

We can estimate the 2M + K + W -dimensional parameter θ using the MoM

In practice:

1. find 2M + K + W statistics

2. set the theoretical expected value of each statistic equal to its sample
counterpart

3. solve the resulting system of equations

Eθ[S− s] = 0

with respect to θ



The parameter estimation (MoM)

Statistics:

- Network rate parameters for the period m

snet
λm (X(tm),X(tm−1)|X(tm−1)) =

n∑
i,j=1

∣∣Xij (tm)−Xij (tm−1)
∣∣

- Behavior rate parameters for the period m

sbeh
λm (Z(tm),Z(tm−1)|Z(tm−1)) =

n∑
i=1

|Zi (tm)−Zi (tm−1)|

m = 1, . . . ,M



The parameter estimation (MoM)

Statistics:

- Network objective function effects
M∑

m=1

snet
mk ((X ,Z ,V )(tm)|(X ,Z ,V )(tm−1)) =

M∑
m=1

snet
mk ((X ,Z ,V )(tm),(X ,Z ,V )(tm−1))

- Behavior objective function effects
M∑

m=1

sbeh
mw ((X ,Z ,V )(tm)|(X ,Z ,V )(tm−1)) =

M∑
m=1

sbeh
mw ((X ,Z ,V )(tm),(X ,Z ,V )(tm−1))



The parameter estimation (MoM)

Consequently the MoM estimator for θ is provided by the solution of:

Eθ
[

snet
λm

(X(tM ),X(tm−1)|X(tm−1))
]

= snet
λm

(x(tm),x(tm−1)) m = 1, . . . ,M

Eθ
[

sbeh
λm

(Z(tm),Z(tm−1)|Z(tm−1))
]

= sbeh
λm

(z(tm),z(tm−1)) m = 1, . . . ,M

Eθ

[
M∑

m=1
snet

mk ((X ,Z ,V )(tm))

]
=

M∑
m=1

snet
mk ((x ,z,v)(tm)) k = 1, . . . ,K

Eθ

[
M∑

m=1
sbeh

mw ((X ,Z ,V )(tm)))

]
=

M∑
m=1

sbeh
mw ((x ,z,v)(tm)) w = 1, . . . ,W



The parameter estimation (MoM)

Example
Let us assume to have observed a network at M = 3 time points

We want to model the network evolution according to the outdegree, the
reciprocity, the linear shape and the quadratic shape effects

θ = (λnet
1 ,λnet

2 ,λbeh
1 ,λbeh

2 ,βout ,βrec ,γlinear ,γquadratic )



The parameter estimation (MoM)

Example
Statistics for the network evolution:

sλnet
1

(X(t1),X(t0)|X(t0) = x(t0)) =
4∑

i,j=1

∣∣Xij (t1)−Xij (t0)
∣∣

sλnet
2

(X(t2),X(t1)|X(t1) = x(t1)) =
4∑

i,j=1

∣∣Xij (t2)−Xij (t1)
∣∣

M−1∑
m=1

sout (X(tm)|X(tm−1) = x(tm−1)) =
2∑

m=1

4∑
i,j=1

Xij (tm)

M−1∑
m=1

srec (X(tm)|X(tm−1) = x(tm−1)) =
2∑

m=1

4∑
i,j=1

Xij (tm)Xji (tm)



The parameter estimation (MoM)

Example
Statistics for the behavior evolution:

sλbeh
1

(Z(t1),Z(t0)|Z(t0) = z(t0)) =
4∑

i=1
|Zi (t1)−Zi (t0)|

sλbeh
2

(Z(t2),Z(t1)|Z(t1) = z(t1)) =
4∑

i=1
|Zi (t2)−Zi (t1)|

M∑
m=1

slinear (Z(tm)|Z(tm−1) = z(tm−1)) =
2∑

m=1

4∑
i=1

zi (tm)

M∑
m=1

squadratic (Z(tm)|Z(tm−1) = z(tm−1)) =
2∑

m=1

4∑
i=1

z2
i (tm)



The parameter estimation (MoM)

Example

sλnet
1

= 3 sλnet
2

= 4

sλbeh
1

= 2 sλbeh
2

= 4

sout = 5 + 7 = 12 srec = 4 + 6 = 10

slinear = 5 + 7 = 12 squadratic = 7 + 13 = 20



The parameter estimation (MoM)
Example
We look for the value of θ that satisfies the system:

Eθ
[

Sλnet
1

]
= 3

Eθ
[

Sλnet
2

]
= 4

Eθ
[

Sλbeh
1

]
= 2

Eθ
[

Sλbeh
2

]
= 4

Eθ[Sout ] = 12

Eθ[Srec ] = 10

Eθ[Slinear ] = 12

Eθ[Squadratic ] = 20



The parameter estimation (MoM)

In a more compact notation, we look for the value of θ that satisfies the
system:

Eθ[S− s] = 0

but we know that we cannot solve it analytically.

The soultion is again provided by the Robbins-Monro algorithm.



Outline

Introduction

The Stochastic actor-oriented model

Extending the model: analyzing the co-evolution of networks and behavior

Something more on the SAOM

ERGMs and SAOMs



Creating and deleting ties

Terminating a tie is not just the opposite of creating a tie

Example

- the loss in terminating a tie is greater than the reward in creating one

- transitivity plays an important role especially in creating ties

This is modeled by adding to the objective function one of the two components:

1. the creation function

2. the endowment function



The creation function

Models the gain in satisfaction incurred when a network tie is created:

ci (δ,x) =
∑

k

δk sik (x)

where

- δk are statistical parameters

- sik (x) are the effects

The utility function for an actor i when he creates a new tie is provided by:

ui (x) = fi (β,x) + ci (δ,x) + εi (t,x , j)

The creation function is zero for the dissolution of ties



The endowment function

Models the loss in satisfaction incurred when a network tie is deleted

ei (η,x) =
∑

k

ηk sik (x)

where

- ηk are statistical parameters

- sik (x) are the effects

The utility function for an actor i when he deletes a tie is provided by:

ui (x) = fi (β,x) + ei (η,x) + εi (t,x , j)

The endowment function is zero for the creation of ties



Creating and deleting ties - Remarks

- creation and deletion functions must not be included when ties mainly are
created or terminated

- it could also happen that increasing a behavior is not the same as
decreasing a behavior. Thus, there are also:

1. the creation behavior function

2. the endowment behavior function

but their usage is still under investigation



Creating and deleting ties

Example
Example data: excerpt from the “Teenage Friends and Lifestyle Study” data set

We estimate the SAOM for investing the evolution of friendship networks
according to:

- outdegree
- reciprocity
- transitivity
- reciprocity for the endowment function

myeff < − includeEffects(myeff,transTrip)
myeff < − includeEffects(myeff,recip,type=”endow”)
myeff
mymodel < − sienaModelCreate(useStdInits = FALSE, projname = ’tfls’)
model1 < − siena07(mymodel, data = mydata, effects=myeff,useCluster=TRUE,
nbrNodes=2, initC=TRUE,clusterString=rep(”localhost”, 2))



Creating and deleting ties

Example

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 6.70 0.73
Rate parameter period 2 5.81 0.58

Other parameters:
outdegree -2.58 0.05 -51.62
reciprocity 3.23 0.29 11.15
reciprocity (endow) 2.23 0.58 3.85
transitive triplets 0.44 0.03 14.55

The utility function for an actor i when he deletes a tie is provided by:

ui (x) = fi (β,x) + ei (η,x) + εi (t,x , j) =

= βout si out (x) +βrec si rec (x) +βtrans si trans (x) +ηrec si rec (x)

= −2.58si out (x) + 3.23si rec (x) + 0.44si trans (x)−2.23si rec (x)



Creating and deleting ties

Example

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.44 0.73
Rate parameter period 2 7.09 0.58

Other parameters:
outdegree -2.58 0.05 -51.62
reciprocity 3.23 0.29 11.15
reciprocity (endow) 2.23 0.58 3.85
transitive triplets 0.44 0.03 14.55

Ties formation/deletion

-2.58

+2.58



Creating and deleting ties

Example

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.44 0.73
Rate parameter period 2 7.09 0.58

Other parameters:
outdegree -2.58 0.05 -51.62
reciprocity 3.23 0.29 11.15
reciprocity (endow) 2.23 0.58 3.85
transitive triplets 0.44 0.03 14.55

Ties formation/deletion

-2.58

+2.58



Creating and deleting ties

Example

Estimates s.e. t-score
Rate parameters:
Rate parameter period 1 8.44 0.73
Rate parameter period 2 7.09 0.58

Other parameters:
outdegree -2.58 0.05 -51.62
reciprocity 3.23 0.29 11.15
reciprocity (endow) 2.23 0.58 3.85
transitive triplets 0.44 0.03 14.55

Reciprocation/ending reciprocation

+0.65

-2.88
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Creating and deleting ties

Example

Ties formation/deletion
-2.58

+2.58

Reciprocation/ending reciprocation
+0.65

-2.88

Conclusions:

1. formation of reciprocal ties is more rewarding than the formation of a
non-reciprocal tie

2. dissolution of reciprocal ties is more costly than the dissolution of a
non-reciprocal tie and the creation of a reciprocal tie



Non-directed relations

For directed relation we assumed that:

1. an actor gets the opportunity to make a change

2. he decided for the change that assures him the highest payoff

Are this assumptions still reliable when we consider undi-
rected relations such as: collaboration, trade, strategic
alliance?

- Yes, if one actor (dictator) can impose a decision
about a tie to another

- No, if there is coordination or negotiation about a
tie



Non-directed relations

1. Dictatorial choice: i chooses his action and imposes his decision to j

Actor 1 gets the opportunity to change



Non-directed relations

1. Dictatorial choice: i chooses his action and imposes his decision to j

Actor 1 evaluates the alternatives and the corresponding objective functions



Non-directed relations

1. Dictatorial choice: i chooses his action and imposes his decision to j

E.g. actor 1 imposes his choice to actor 2



Non-directed relations

2. Mutual agreement: both actors must agree

Actor 1 gets the opportunity to change



Non-directed relations

2. Mutual agreement: both actors must agree

Actor 1 evaluates the alternatives and the corresponding objective functions



Non-directed relations

2. Mutual agreement: both actors must agree

Actor 1 suggests to modify the tie towards actor 2



Non-directed relations

2. Mutual agreement: both actors must agree
Actor 2 evaluates the proposal of actor 1

and accepts it with probability

P(2 accepts tie proposal) =
exp(f2(x+12))

exp(f2(x+12)) + exp(f2(x−12))



Non-directed relations - Tie-based approach
A couple (i , j) of actors is selected with rate λij and gets the opportunity to
revise the tie among them

1. Dictatorial choice: one actor can impose the decision (e.g. actor 1)

Actor 1 chooses his action with probability

P(1 imposes a tie on 2) =
exp(f1(x+12))

exp(f1(x+12) + f1(x−12))



Non-directed relations - Tie-based approach
A couple (i , j) of actors is selected with rate λij and gets the opportunity to
revise the tie among them

1. Dictatorial choice: one actor can impose the decision (e.g. actor 1)

Actor 1 chooses his action with probability

P(1 imposes a tie on 2) =
exp(f1(x+12))

exp(f1(x+12)) + exp(f1(x−12))



Non-directed relations - Tie-based approach

A couple (i , j) of actors is selected with rate λij and gets the opportunity to
revise the tie among them

2. Mutual agreement: both actors propose a tie

Actor 1 and 2 created a tie with probability

P(+12) =
exp(f1(x+12))

exp(f1(x+12)) + exp(f1(x−12))

exp(f2(x+12)

exp(f2(x+12)) + exp(f2(x−12))



Non-directed relations - Tie-based approach
A couple (i , j) of actors is selected with rate λij and gets the opportunity to
revise the tie among them

3. Compensatory: the decision is made on the combined interest

Actor 1 and 2 choose their action with probability

P(+12) =
exp(f1(x+12) + f2(x+12))

exp(f1(x+12) + f2(x+12)) + exp(f1(x−12) + f2(x−12))



And others...

- Improving the estimation procedures (MLE)

- New estimation procedures (bayesian estimation)

- Goodness of fit of the model

- Model selection

- Time-heterogeneity tests

- Missing data

- Analysis of multiple relations

- ...
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Recap: ERGMs

ERGMs are models for cross-sectional data:

they return the probability of an observed graph (network) G ∈ G as a function
of statistics gi (G) and statistical parameters θi

P(G) =
exp
(∑k

i=1 θi ·gi (G)
)

κ(θ)

Examples of statistics gi (G) are:

edges triangles 2-stars ...



Recap: ERGMs

ERGMs are also defined for directed graphs:

the mathematical formulation is the same but the effects take into account the
direction of ties

Examples of statistics gi (G) for a directed network are:

edges reciprocal transitive 2-in-stars ...
dyads triads



Recap: SAOMs

SAOMs are models for longitudinal data:

SAOMs try to explain the evolution of the network over time, assuming that
network changes happen according to a continuous-time Markov chain
modeled by:

- the rate function λ
- the objective function

fi (β,x(i ; j),vi ,vj ) =

K∑
k=1

βk sik (x(i ; j))

where the statistics sik (x(i ; j)) are:

edges reciprocal transitive 2-in-stars ...
dyads triads



SAOMs and ERGMs

Although ERGMs and SAOMs have different aims and
require different data, the same statistics are used as
explanatory variables in both models.

This might suggest the existence of a
“statistical” relation between ERGMs and SAOMs

We are going to prove that:
1. ERGMs are the limiting distribution of the process

described by a certain specification of SAOMs
2. ERGMs are the limiting distribution of the process

described by a tie-based version of SAOMs



Background: intensity matrix

Definition

Let {X(t), t ∈ T} be a continuous-time Markov chain whose transition
probabilities are defined by:

P(X(tj ) = x̃ |X(t) = x(t),∀t ≤ ti ) = P(X(tj ) = x |X(ti ) = x)

for each pair (x , x̃).

There exists a function q : X×X→ R such that
q(x , x̃) = lim

dt→0
P(X(t+dt)=x̃ |X(t)=x)

dt

q(x ,x) = lim
dt→0

P(X(t+dt)=x̃ |X(t)=x)−1
dt

The function q is called intensity matrix of the process.

The element q(x , x̃) is referred to as the rate at which the process in state x
tends to change into x̃



Background (recall):
limiting distribution

Definition

The limiting distribution P of a continuous-time Markov chain {X(t), t ∈ T}
is defined as

Px̃ = lim
t→∞

P(X(tj ) = x̃ |X(ti ) = x)

Therefore, the limiting distribution of {X(t), t ∈ T} is the distribution that
describes the probability of jumping from x to x̃ in the long run behavior of the
process .

Px̃ is also the stationary distribution of the process



Background (recall):
irreducible aperiodic Markov chain and limiting distribution

Definition

A continuous-time Markov chain is irreducible if there is a path between any
states x and x̃

A continuous-time Markov chain is aperiodic greatest common divisor of the
length of all cycles equals one.

Theorem

If {X(t), t ∈ T} is an irreducible and aperiodic continuous-time Markov chain
and the detailed balance condition holds

Px̃ ·q(x̃ ,x) = Px ·q(x , x̃)

then Px̃ is the unique limiting (stationary) distribution of {X(t), t ∈ T}



ERGMs and SAOMs

Let us now consider a particular SAOM:
- objective function for each actor i

fi (β,x(i ; j)) =

K∑
i=1

βk sk (x(i ; j) = β′s(x(i ; j))

- rate parameter for actor i

λi =

n∑
h=1

exp
(
β′s(x(i ; h))

)
i.e., actors for whom changed relations have a higher value, will indeed
change their relation more quickly.



ERGMs and SAOMs
The rate and the objective functions define a continuous-time Markov chain on
the set X.

The associated intensity matrix q of the process is:

q(x ,x(i ; j)) = lim
dt→0

P(X(t + dt) = x(i ; j)|X(t) = x)

dt
= λi pij = exp(β′s(x(i ; j))



Computing the limiting distribution of SAOMs

We can prove that ERGMs

P(X = x) =

exp
( K∑

i=1
βk sk (x)

)
κ(θ)

=
exp(β′s(x))

κ(θ)

are the unique stationary distribution of the SAOM defined before

Proof

1. Existence of a unique invariant distribution
- q is irriducible: each network configuration can be reached from any other

network configuration in a finite number of steps
- q is aperiodic: at each time point t an actor i has the opportunity not to

change anything and, thus, the period of each state is equal to 1



Computing the limiting distribution of SAOMs

Proof (continue)

2. ERGMs are the stationary distribution of Q

In fact, given two states x and x(i ; j) of {X(t), t ∈ T} the balance equation
holds when ERGMs is the stationary distribution:

Px(i;j) ·q(x(i ; j),x) =
exp(β′s(x(i ; j))

κ(θ)
· exp(β′s(x))

=
exp(β′s(x))

κ(θ)
· exp(β′s(x(i ; j))

= Px ·q(x ,x(i ; j))



SAOMs for non-directed relations - Tie-based approach
A couple (i , j) of actors is selected with rate λij and gets the opportunity to
revise the tie among them

Joint decision: the decision is made on the payoff deriving from the tie

Actor 1 and 2 choose their action with probability

p(x+12) =
exp(f12(x+12)

exp(f12(x+12)) + exp(f12(x−12))



SAOMs for non-directed relations - Tie-based approach

We assume that
- each dyad (i , j) can be selected with the same rate λ
- the objective function is:

fij (β,x) =

k∑
i=1

βk sijk (x) = β′sij x

where sijk (x) are statistics such as

edges triangles 2-stars ...

but considered from the point of view of each pair (i , j) instead of the
point view of a certain actor.



SAOMs for non-directed relations - Tie-based approach

Assuming that at each time point only one pair (i , j) can be selected,
the rate function λ and the objective function fij (β,x) define
a continuous time Markov-chain with intensity matrix Q:

q(x ,x+ij ) = λp(x+ij ) = λ
exp(β′sij (x+ij )

exp(β′sij (x+ij ))+exp(β′sij (x−ij ))

q(x ,x−ij ) = λp(x−ij ) = λ
exp(β′sij (x−ij )

exp(β′sij (x+ij ))+exp(β′sij (x−ij ))

The limiting distribution of q is again ERGMs



Computing the limiting distribution of tie-based SAOMs

Proof

1. Existence of a unique invariant distribution

- q is irriducible: each network configuration can be reached from any other
network configuration in a finite number of steps

- q is aperiodic: at each time point t a pair (i , j) has the opportunity not to
change anything and, thus, the period of each state is equal to 1



Computing the limiting distribution of SAOMs

Proof (continue)

2. ERGMs are the stationary distribution of Q

In fact, given the two states x−ij and x+ij of {X(t), t ∈ T} the balance
equation holds when ERGMs is the stationary distribution:

Px−ij q(x−ij ,x+ij ) =
eβ′s(x−ij )

κ(θ)
·λ ·

eβ
′sij (x+ij )

eβ′sij (x+ij ) + eβ′sij (x−ij )

=
eβ′s(x−ij )−β′s(x+ij )+β′s(x+ij )

κ(θ)
·

λ

1 + e(β′sij (x−ij )−β′sij (x+ij ))

=
eβ′s(x+ij )

κ(θ)
·λ ·

eβ′s(x−ij )−β′s(x+ij )

1 + eβ′sij (x−ij )−β′sij (x+ij )

=
(∗)

eβ′s(x+ij )

κ(θ)
·λ ·

eβ
′sij (x−ij )

eβ′sij (x+ij ) + eβ′sij (x−ij )

= Px+ij ·q(x+ij ,x−ij )

(∗) β′s(x−ij )−β′s(x+ij )
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