UNIVERSITY OF KONSTANZ ALGORITHMICS GROUP V. Amati / J. Lerner / D. Schoch Network Modeling Winter Term 2013/2014

Assignments $\mathcal{N}^{\underline{o}}$ 6

released: 04.12.2013 due: 10.12.2013,12:00h

Task 1: Hammersley Clifford Theorem

6 points

Let \mathcal{G} the set of undirected, loopless graphs with n vertices and let $c: V \to \{A, B\}$ divide the set of vertices $V = \{1, \ldots, N\}$ into two disjoint subsets, $V = A \uplus B$.

Consider the class of random graph models $\mathcal{K}_c = \{(\mathcal{G}, P)\}$ containing all models which fulfill P(G) > 0 for all graphs in \mathcal{G} and in which the following independence assumption holds.

For all pairs of dyads d_1, d_2 it holds that d_1 and d_2 are conditionally independent, unless both of the following properties hold:

- d_1 and d_2 are incident
- all nodes incident to d_1 and d_2 belong to the same subset. More precisely, if $d_1 = \{u, v\}$ and $d_2 = \{x, y\}$, then

$$c(u) = c(v) = c(x) = c(y)$$
.

- (a) Which random graph models in \mathcal{K}_c are Markov random graphs?
- (b) Provide an ERGM formula for the probability function of a general random graph model in the class \mathcal{K}_c .
- (c) Let $V = \{1, 2, 3\} \uplus \{4\}$. Draw the dependence graph of $(\mathcal{G}, P) \in \mathcal{K}_c$.

Task 2: Hammersley Clifford Theorem

4 points

We define a class of (anti-Markov) random graph models satisfying

- (1) the probability of every graph is positive and
- (2) incident dyads $\{i, j\}$ and $\{j, k\}$ are conditionally independent, given the rest of the graph.

Consequently, for every set of four pairwise different vertices $\{i, j, u, v\}$ the dyads $\{i, j\}$ and $\{u, v\}$ might be conditionally dependent, given the rest of the graph.

- (a) Describe the cliques of the resulting dependence graph in words.
- (b) Provide an ERGM formula for the probability function of a general *homogeneous* anti-Markov graph model.

Task 3: R: Finding a suitable network5 extra points

In this Task you should find a network g, with the following properties:

- (1) The number of nodes is 100.
- (2) The network should be partitioned into 20 groups with 5 vertices each.
- (3) This partition should be used as a categorical vertex attribute called "group".
- (4) The number of edges and triangles within each group should be higher than between groups.

So we are basically looking for a network of a planted partition model. But here comes the tricky part: the network should fulfill the following properties when fitted.

- (1) $ergm(g \sim edges + triangles)$ should be degenerated.
- (2) $ergm(g \sim edges+gwesp(1, fixed=TRUE))$ should not be degenerated.
- (3) $ergm(g \sim edges + triangles("group") + nodematch("group"))$ should have a lower BIC than $ergm(g \sim edges + nodematch("group"))$.

The conclusion should be that although g "looks" like a planted partition model, it is better fitted when the local triangles are also included.