UNIVERSITY OF KONSTANZ ALGORITHMICS GROUP V. Amati / J. Lerner/ D. Schoch Network Modeling Winter Term 2013/2014

Assignments $\mathcal{N}^{\underline{o}}$ 10

released: 15.01.2014 due: 21.01.2014,12:00h

Task 1: Statistics in the MoM

5 points

Let us assume, that we observed a network at two time points t_0 and t_1 . When the moment equations are set for the parameter estimation of the objective function, only the statistics of $x(t_1)$ are taken into account. However, we also have the informations at t_0 .

- (1) Define a new set of statistics for reciprocity and transitivity that account for both $x(t_0)$ and $x(t_1)$.
- (2) Which new statistics are particularly interesting and what might they tell you about the emergence of transitive triplets?

Task 2: Maximum Likelihood Estimation5 points

Assume again, that we observed a network at two time points t_0 and t_1 . Further, assume that β is known for all statistics.

- (1) Compute the Maximum Likelihood Estimation of λ .
- (2) How would you interpret the result?

Task 3: R: Network Evolution and Parameter Update 10 points

During the last tutorial we introduced the code to simulate the network evolution with RSiena.

Download the data *s50network.zip* from the data section on the lecture homepage. The data set contains two observations of a 50-actor excerpt from the *Teenage Friends and Lifestyle Study*.

Setup the data, such that the networks can be used in RSiena. Include the *outdegree*, *reciprocity* and *transitive Triplet* effects and set the initial value of the parameters to $\beta_{out} = -2.5317$, $\beta_{rec} = 1.1412$ and $\beta_{trans} = 0.5925$ and further the rate parameter $\lambda = 6.1615$.

- (1) Approximate the expected value for the statistics with the Monte Carlo Method (Simulate the network evolution 100 times.).
- (2) Compare your approximations with the observed values of $x(t_1)$. What do the differences tell you about the β 's?
- (3) Try to adjust one of the parameters to get better approximations.