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Stochastic actor-based models are models for network dynamics that can represent a wide variety of
influences on network change, and allow to estimate parameters expressing such influences, and test
corresponding hypotheses. The nodes in the network represent social actors, and the collection of ties
represents a social relation. The assumptions posit that the network evolves as a stochastic process ‘driven
by the actors’, i.e., the model lends itself especially for representing theories about how actors change their
outgoing ties. The probabilities of tie changes are in part endogenously determined, i.e., as a function of

the current network structure itself, and in part exogenously, as a function of characteristics of the nodes
(‘actor covariates’) and of characteristics of pairs of nodes (‘dyadic covariates’). In an extended form,
stochastic actor-based models can be used to analyze longitudinal data on social networks jointly with
changing attributes of the actors: dynamics of networks and behavior.

This paper gives an introduction to stochastic actor-based models for dynamics of directed networks,
using only a minimum of mathematics. The focus is on understanding the basic principles of the model,
understanding the results, and on sensible rules for model selection.
. Introduction

Social networks are dynamic by nature. Ties are established,
hey may flourish and perhaps evolve into close relationships, and
hey can also dissolve quietly, or suddenly turn sour and go with a
ang. These relational changes may be considered the result of the
tructural positions of the actors within the network – e.g., when
riends of friends become friends –, characteristics of the actors
‘actor covariates’), characteristics of pairs of actors (‘dyadic covari-
tes’), and residual random influences representing unexplained
nfluences. Social network research has in recent years paid increas-
ng attention to network dynamics, as is shown, e.g., by the three
pecial issues devoted to this topic in Journal of Mathematical Soci-
logy edited by Patrick Doreian and Frans Stokman (1996, 2001, and
003; also see Doreian and Stokman, 1997). The three issues shed
ight on the underlying theoretical micro-mechanisms that induce
he evolution of social network structures on the macro-level. Net-
ork dynamics is important for domains ranging from friendship
etworks (e.g., Pearson and Michell, 2000; Burk et al., 2007) to, for

� We are grateful to Andrea Knecht who collected the data used in the example,
nder the guidance of Chris Baerveldt. We also are grateful to Matthew Checkley
nd two reviewers for their very helpful remarks on earlier drafts.
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example, organizational networks (see the review articles Borgatti
and Foster, 2003; Brass et al., 2004).

In this article we give a tutorial introduction to what we call
here stochastic actor-based models for network dynamics, which
are a type of models that have the purpose to represent net-
work dynamics on the basis of observed longitudinal data, and
evaluate these according to the paradigm of statistical inference.
This means that the models should be able to represent network
dynamics as being driven by many different tendencies, such as the
micro-mechanisms alluded to above, which could have been theo-
retically derived and/or empirically established in earlier research,
and which may well operate simultaneously. Some examples of
such tendencies are reciprocity, transitivity, homophily, and assor-
tative matching, as will be elaborated below. In this way, the models
should be able to give a good representation of the stochastic depen-
dence between the creation, and possibly termination, of different
network ties. These stochastic actor-based models allow to test
hypotheses about these tendencies, and to estimate parameters
expressing their strengths, while controlling for other tendencies
(which in statistical terminology might be called ‘confounders’).

The literature on network dynamics has generated a large variety

of mathematical models. To describe the place in the literature of
stochastic actor-based models (Snijders, 1996, 2001), these models
may be contrasted with other dynamic network models.

Most network dynamics models in the literature pay attention
to a very specific set of micro-mechanisms – allowing detailed
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nalyses of the properties of these models –, but lack an explicit esti-
ation theory. Examples are models proposed by Bala and Goyal

2000), Hummon (2000), Skyrms and Pemantle (2000), and Marsili
t al. (2004), all being actor-based simulation models that focus on
he expression of a single social theory as reflected, e.g., by a simple
tility function; those proposed by Jin et al. (2001) which repre-
ent a larger but still quite restricted number of tendencies; and
odels such as those proposed by Price (1976), Barabási and Albert

1999), and Jackson and Rogers (2007), which are actor-based, rep-
esent one or a restricted set of tendencies, and assume that nodes
re added sequentially while existing ties cannot be deleted, which
s a severe limitation to the type of longitudinal data that may be
aithfully represented. Since such models do not allow to control
or other influences on the network dynamics, and how to estimate
nd test parameters is not clear for them, they cannot be used for
urposes of theory testing in a statistical model.

The earlier literature does contain some statistical dynamic net-
ork models, mainly those developed by Wasserman (1979) and
asserman and Iacobucci (1988), but these do not allow compli-

ated dependencies between ties such as are generated by transitive
losure. Further there are papers that present an empirical analysis
f network dynamics which are based on intricate and illuminating
escriptions such as Holme et al. (2004) and Kossinets and Watts
2006), but which are not based on an explicit stochastic model for
he network dynamics and therefore do not allow to control one
endency for other (‘confounding’) tendencies.

Distinguishing characteristics of stochastic actor-based models
re flexibility, allowing to incorporate a wide variety of actor-driven
icro-mechanisms influencing tie formation; and the availabil-

ty of procedures for estimating and testing parameters that also
llow to assess the effect of a given mechanism while control-
ing for the possible simultaneous operation of other mechanisms
r tendencies. We assume here that the empirical data consist of
wo, but preferably more, repeated observations of a social net-
ork on a given set of actors; one could call this network panel

ata. Ties are supposed to be the dyadic constituents of relations
uch as friendship, trust, or cooperation, directed from one actor
o another. In our examples social actors are individuals, but they
ould also be firms, countries, etc. The ties are supposed to be, in
rinciple, under control of the sending actor (although this will be
ubject to constraints), which will exclude most types of relations
here negotiations are required for a tie to come into existence.
ctor covariates may be constant like sex or ethnicity, or subject to
hange like opinions, attitudes, or lifestyle behaviors. Actor covari-
tes often are among the determinants of actor similarity (e.g.,
ame sex or ethnicity) or spatial proximity between actors (e.g.,
ame neighborhood) which influence the existence of ties. Dyadic
ovariates likewise may be constant, such as determined by kin-
hip or formal status in an organization, or changing over time,
ike friendship between parents of children or task dependencies

ithin organizations. This paper is organized as follows. In the next
ection, we present the assumptions of the actor-based model. The
eart of the model is the so-called objective function, which deter-
ines probabilistically the tie changes made by the actors. One

ould say that it captures all theoretically relevant information the
ctors need to ‘evaluate’ their collection of ties. Some of the poten-
ial components of this function are structure-based (endogenous
ffects), such as the tendency to form reciprocal relations, others
re attribute-based (exogenous effects), such as the preference for
imilar others. In Section 3, we discuss several statistical issues,
uch as data requirements and how to test and select the appropri-

te model. Following this we present an example about friendship
ynamics, focusing on the interpretation of the parameters. Section
proposes some more elaborate models. In Section 5, models for

he coevolution of networks and behavior are introduced and illus-
rated by an example. Section 6 discusses the difference between
tworks 32 (2010) 44–60 45

equilibrium and out-of-equilibrium situations, and how these lon-
gitudinal models relate to cross-sectional statistical modeling of
social networks. Finally, in Section 7, a brief discussion is given, the
Siena software is mentioned which implements these methods, and
some further developments are presented.

2. Model assumptions

A dynamic network consists of ties between actors that change
over time. A foundational assumption of the models discussed in
this paper is that the network ties are not brief events, but can be
regarded as states with a tendency to endure over time. Many rela-
tions commonly studied in network analysis naturally satisfy this
requirement of gradual change, such as friendship, trust, and coop-
eration. Other networks more strongly resemble ‘event data’, e.g.,
the set of all telephone calls among a group of actors at any given
time point, or the set of all e-mails being sent at any given time
point. While it is meaningful to interpret these networks as indi-
cators of communication, it is not plausible to treat their ties as
enduring states, although it often is possible to aggregate event
intensity over a certain period and then view these aggregates as
indicators of states.

Given that the network ties under study denote states, it is fur-
ther assumed, as an approximation, that the changing network can
be interpreted as the outcome of a Markov process, i.e., that for any
point in time, the current state of the network determines proba-
bilistically its further evolution, and there are no additional effects
of the earlier past. All relevant information is therefore assumed to
be included in the current state. This assumption often can be made
more plausible by choosing meaningful independent variables that
incorporate relevant information from the past.

This paper gives a non-technical introduction into actor-based
models for network dynamics. More precise explanations can be
found in Snijders (2001, 2005) and Snijders et al. (2007). However,
a modicum of mathematical notation cannot be avoided. The tie
variables are binary variables, denoted by xij . A tie from actor i to
actor j, denoted i → j, is either present or absent (xij then having val-
ues 1 and 0, respectively). Although this is in line with traditional
network analysis, an extension to valued networks would often be
theoretically sound, and could make the Markov assumption more
plausible. This is one of the topics of current research. The tie vari-
ables constitute the network, represented by its n × n adjacency
matrix x = (xij) (self-ties are excluded), where n is the total num-
ber of actors. The changes in these tie variables are the dependent
variables in the analysis.

2.1. Basic assumptions

The model is about directed relations, where each tie i → j has
a sender i, who will be referred to as ego, and a receiver j, referred
to as alter. The following assumptions are made.

1. The underlying time parameter t is continuous, i.e., the process
unfolds in time steps of varying length, which could be arbitrarily
small. The parameter estimation procedure, however, assumes
that the network is observed only at two or more discrete points
in time. The observations can also be referred to as ‘network
panel waves’, analogous to panel surveys in non-network studies.

This assumption was proposed already by Holland and
Leinhardt (1977), and elaborated by Wasserman (1979 and other

publications) and Leenders (1995 and other publications)—but
their models represented only reciprocity, and no other struc-
tural dependencies between network ties. The continuous-time
assumption allows to represent dependencies between network
ties as the result of processes where one tie is formed as a reaction
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to the existence of other ties. If, for example, three actors who
at the first observation are mutually disconnected form at the
second observation a closed triangle, where each is connected
to both of the others, then a discrete-time model that has the
observations as its time steps would have to account for the fact
that this closed triangle structure is formed ‘out of nothing’, in
one time step. In our model such a closed triangle can be formed
tie by tie, as a consequence of reciprocation and transitive clo-
sure. Thus, the appearance of closed triangles may be explained
based on reciprocity and transitive processes, without requiring
a special process specifically for closed triangles.

Since many small changes can add up to large differences
between consecutively observed networks, this does not pre-
clude that what is observed shows large changes from one
observation to the next.

. The changing network is the outcome of a Markov process. This
was explained above. Thus, the total network structure is the
social context that influences the probabilities of its own change.

The assumption of a Markov process has been made in practi-
cally all models for social network dynamics, starting by Katz and
Proctor’s (1959) discrete Markov chain model. This is an assump-
tion that will usually not be realistic, but it is difficult to come up
with manageable models that do not make it. We could say that
this assumption is a lens through which we look at the data—it
should help but it also may distort. If there are only two panel
waves, then the data have virtually no information to test this
assumption. For more panel waves, there is in principle the pos-
sibility to test this assumption and propose models making less
restrictive assumption about the time dependence, but this will
require quite complicated models.

. The actors control their outgoing ties. This means not that actors
can change their outgoing ties at will, but that changes in ties
are made by the actors who send the tie, on the basis of their
and others’ attributes, their position in the network, and their
perceptions about the rest of the network. This assumption is
the reason for using the term ‘actor-based model’. This approach
to modeling is in line with the methodological approach of
structural individualism (Udehn, 2002; Hedström, 2005), where
actors are assumed to be purposeful and to behave subject to
structural constraints. The assumption of purposeful actors is
not required, however, but a question of model interpretation
(see below). It is assumed formally that actors have full infor-
mation about the network and the other actors. In practice, as
can be concluded from the specifications given below, the actors
only need more limited information, because the probabilities
of network changes by an actor depend on the personal network
(including actors’ attributes) that would result from making any
given change, or possibly the personal network including those
to whom the actor has ties through one intermediary (i.e., at
geodesic distance two).

. At a given moment one probabilistically selected actor – ‘ego’
– may get the opportunity to change one outgoing tie. No
more than one tie can change at any moment—a principle first
proposed by Holland and Leinhardt (1977). This principle decom-
poses the change process into its smallest possible components,
thereby allowing for relatively simple modelling. This implies
that tie changes are not coordinated, and depend on each other
only sequentially, via the changing configuration of the whole
network. For example, two actors cannot decide jointly to form
a reciprocal tie; if two actors are not tied at one observation
and mutually tied at the next, then one of the must have taken

the initiative and extended a one-sided tie, after which, at some
later moment, the other actor reciprocated and formed a recip-
rocal tie. This assumption excludes relational dynamics where
some kind of coordination or negotiation is essential for the cre-
ation of a tie, or networks created by groups participating in
tworks 32 (2010) 44–60

some activity, such as joint authorship networks. For directed
networks, this usually is a reasonable simplifying assumption.
In most cases, panel data of directed networks have many tie
differences between successive observations and do not provide
information about the order in which ties were created or ter-
minated, so that this is an assumption about which the available
data contain hardly any empirical evidence.

Summarizing the status of these four basic assumptions: the
first (continuous-time model) makes sense intuitively; the second
(Markov process) is an as-if approximation and it would be inter-
esting in future to construct models going beyond this assumption;
the third (actor-based) is often a helpful theoretical heuristic; and
the fourth (ties change one by one) is an assumption which limits
the applicability to a wide class of panel data of directed networks
for which this assumption seems relatively harmless.

The actor-based network change process is decomposed into
two sub-processes, both of which are stochastic.

5. The change opportunity process, modeling the frequency of tie
changes by actors. The change rates may depend on the network
positions of the actors (e.g., centrality) and on actor covariates
(e.g., age and sex).

6. The change determination process, modeling the precise tie
changes made when an actor has the opportunity to make a
change. The probabilities of tie changes may depend on the net-
work positions, as well as covariates, of ego and the other actors
(‘alters’) in the network. This is explained below.

The actor-based model can be regarded as an agent-based sim-
ulation model (Macy and Willer, 2002). It does not deviate in
principle from other agent-based models, only in ways deriving
from the fact that the model is to be used for statistical infer-
ence, which leads to requirements of flexibility (enough parameters
that can be estimated from the data to achieve a good fit between
model and data) and parsimony (not more fine detail in the model
than what can be estimated from the data). The word ‘actor’ rather
than ‘agent’ is used, in line with other sociological literature (e.g.,
Hedström, 2005), to underline that actors are not regarded as sub-
servient to others’ interests in any way.

The actor-based model, when elaborated for a practical applica-
tion, contains parameters that have to be estimated from observed
data by a statistical procedure. Since the proposed stochastic mod-
els are too complex for the straightforward application of classical
estimation methods such as maximum likelihood, Snijders (1996,
2001) proposed a procedure using the method of moments imple-
mented by computer simulation of the network change process.
This procedure uses the basic principle that the first observed net-
work is itself not modeled but used only as the starting point of the
simulations. In statistical terminology: the estimation procedure
conditions on the first observation. This implies that it is the change
between two observed periods time points that is being modeled,
and the analysis does not have the aim to make inferences about
the determinants of the network structure at the first time point.

2.2. Change determination model

The first step in the model is the choice of the focal actor (ego)
who gets the opportunity to make a change. This choice can be
made with equal probabilities or with probabilities depending on
attributes or network position, as elaborated in Section 4.1. This

selected focal actor then may change one outgoing tie (i.e., either
initiate or withdraw a tie), or do nothing (i.e., keep the present sta-
tus quo). This means that the set of admissible actions contains n
elements: n − 1 changes and one non-change. The probabilities for
a choice depend on the so-called objective function. This is a func-
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ion of the network, as perceived by the focal actor. Informally, the
bjective function expresses how likely it is for the actor to change
er/his network in a particular way. On average, each actor ‘tries to’
ove into a direction of higher values of her/his objective function,

ubject to the constraints of the current network structure and the
hanges made by the other actors in the network; and subject to
andom influences. The objective function will depend in practice
n the personal network of the actor, as defined by the network
etween the focal actor plus those to whom there is a direct tie (or,
epending on the specification, the focal actor plus those to whom
here is a direct or indirect – i.e., distance-two – tie), including the
ovariates for all actors in this personal network. Thus, the proba-
ilities of changes are assumed to depend on the personal networks
hat would result from the changes that possibly could be made, and
heir composition in terms of covariates, via the objective function
alues of those networks.

The precise interpretation is given by Eq. (4) in Appendix A. This
s the core of model and it must represent the research questions
nd relevant theoretical and field-related knowledge. The objective
unction is explained in more detail in the next section.

The name ‘objective function’ was chosen because one possible
nterpretation is that it represents the short-term objectives (net
esult of preferences and structural as well as cognitive constraints)
f the actor. Which action to choose out of the set of admissible
ctions, given that ego has the opportunity to act (i.e., change a
etwork tie), follows the logic of discrete choice models (McFadden,
973; Maddala, 1983) which have been developed for modeling sit-
ations where the dependent variable is a choice made from a finite
et of actions.

.3. Specification of the objective function

The objective function determines the probabilities of change
n the network, given that an actor has the opportunity to make a
hange. One could say it represents the ‘rules for network behavior’
f the actor. This function is defined on the set of possible states
f the network, as perceived from the point of view of the focal
ctor, where ‘state of the network’ refers not only to the ties but
lso to the covariates. When the actor has the possibility of moving
o one out of a set of network states, the probability of any given

ove is higher accordingly as the objective function for that state is
igher.

Like in generalized linear statistical models, the objective func-
ion is assumed to be a linear combination of a set of components
alled effects,

i(ˇ, x) =
∑

k

ˇkski(x). (1)

n this section and elsewhere, the symbol i and the term ‘ego’ are
ays of referring to the focal actor. Here fi(ˇ, x) is the value of the
bjective function for actor i depending on the state x of the net-
ork; the functions ski(x) are the effects, functions of the network

hat are chosen based on theory and subject-matter knowledge, and
orrespond to the ‘tendencies’ mentioned in the introductory sec-
ion; and the weights ˇk are the statistical parameters. The effects
epresent aspects of the network as ‘viewed’ from the point of view
f actor i. As examples, one can think of the number of reciprocated
ies of actor i, representing tendencies toward reciprocity, or the
umber of ties from i toward actors of the same gender, represent-

ng tendencies toward gender homophily. Many more examples are

resented below. The effects ski(x) depend on the network x but
ay also depend on actor attributes (actor covariates), on variables

epending on pairs of actors (dyadic covariates), etc. If ˇk equals
, the corresponding effect plays no role in the network dynamics;

f ˇk is positive, then there will be a higher probability of moving
tworks 32 (2010) 44–60 47

into directions where the corresponding effect is higher, and the
converse if ˇk is negative.

For the model selection, an essential part is the theory-guided
choice of effects included in the objective function in order to test
the formulated hypotheses. A good approach may be to progres-
sively build up the model according to the method of decreasing
abstraction (Lindenberg, 1992). An additional consideration here
is, however, that the complexity of network processes, and the lim-
itations of our current knowledge concerning network dynamics,
imply that model construction may require data-driven elements
to select the most appropriate precise specification of the endoge-
nous network effects. For example, in the investigation of friendship
networks one might be interested in effects of lifestyle variables and
background characteristics on friendship, while recognizing the
necessity to control for tendencies toward reciprocation and tran-
sitive closure. As discussed below in the section on triadic effects,
multiple mathematical specifications are available (as ‘effects’ ski(x)
to be included in Eq. (1)) expressing the concept of transitive clo-
sure. Usually there are no prior theoretical or empirical reasons for
choosing among these specifications. It may then be best to use the-
oretical considerations for deciding to include lifestyle-related and
background variables as well as tendencies toward reciprocation
and transitive closure in the model, and to choose the best specifi-
cation for transitive closure, by one or several specific effects, in a
data-driven way.

In the following we give a number of effects that may be con-
sidered for inclusion in the objective function. They are described
here only conceptually, with some brief pointers to empirical results
or theories that might support them; the formulae are given in
Appendix A. Effects depending only on the network are called
structural or endogenous effects, while effects depending only on
externally given attributes are called covariate or exogenous effects.
The complexity of networks is such that an exhaustive list cannot
meaningfully be given. To simplify formulations, the presentation
shall assume that the relation under study is friendship, so the exis-
tence of a tie i → j will be described as i calling j a friend. Higher
values of the objective function, leading to higher tendencies to
form ties, will sometimes be interpreted in shorthand as prefer-
ences.

2.3.1. Basic effects
The most basic effect is defined by the outdegree of actor i, and

this will be included in all models. It represents the basic tendency
to have ties at all, and in a decision-theoretic approach its parameter
could be regarded as the balance of benefits and costs of an arbitrary
tie. Most networks are sparse (i.e., they have a density well below
0.5) which can be represented by saying that for a tie to an arbitrary
other actor – arbitrary meaning here that the other actor has no
characteristics or tie pattern making him/her especially attractive
to i–, the costs will usually outweigh the benefits. Indeed, in most
cases a negative parameter is obtained for the outdegree effect.

Another quite basic effect is the tendency toward reciprocity,
represented by the number of reciprocated ties of actor i. This is
a basic feature of most social networks (cf. Wasserman and Faust,
1994, Chapter 13) and usually we obtain quite high values for its
parameter, e.g., between 1 and 2.

2.3.2. Transitivity and other triadic effects
Next to reciprocity, an essential feature in most social networks

is the tendency toward transitivity, or transitive closure (sometimes
called clustering): friends of friends become friends, or in graph-

theoretic terminology: two-paths tend to be, or to become, closed
(e.g., Davis, 1970; Holland and Leinhardt, 1971). In Fig. 1 a, the two-
path i → j → h is closed by the tie i → h.

The transitive triplets effect measures transitivity for an actor i
by counting the number of pairs j, h such that there is the transitive
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indegrees (covariate-related popularity effect, receiver effect); and
the similarity effect, measuring whether ties tend to occur more
often between actors with similar values on V (homophily effect).
Tendencies to homophily constitute a fundamental characteristic
Fig. 1. (a) Transitive triplet (i, j, h) and (b) three-cycle.

riplet structure of Fig. 1 a. However, this is just one way of mea-
uring transitivity. Another one is the transitive ties effect, which
easures transitivity for actor i by counting the number of other

ctors h for which there is at least one intermediary j forming a
ransitive triplet of this kind. The transitive triplets effect postulates
hat more intermediaries will add proportionately to the tendency
o transitive closure, whereas the transitive ties effect expects that
iven that one intermediary exists, extra intermediaries will not
urther contribute to the tendency to forming the tie i → h.

An effect closely related to transitivity is balance (cf. Newcomb,
962), which in our implementation is the same as s tructural
quivalence with respect to out-ties (cf. Burt, 1982), which is the
endency to have and create ties to other actors who make the
ame choices as ego. The extent to which two actors make the same
hoices can be expressed simply as the number of outgoing choices
nd non-choices that they have in common.

Transitivity can be represented by still more effects: e.g., nega-
ively, by the number of others to whom i is indirectly tied but not
irectly (geodesic distance equal to 2). The choice between these
epresentations of transitivity may depend both on the degree to
hich the representation is theoretically convincing, and on what

ives the best fit.
A different triadic effect is the number of three-cycles that actor

is involved in (Fig. 1b). Davis (1970) found that in many social
etwork data sets, there is a tendency to have relatively few three-
ycles, which can be represented here by a negative parameter ˇk

or the three-cycle effect. The transitive triplets and the three-cycle
ffects both represent closed structures, but whereas the former is
n line with a hierarchical ordering, the latter goes against such
n ordering. If the network has a strong hierarchical tendency,
ne expects a positive parameter for transitivity and a negative
or three-cycles. Note that a positive three-cycle effect can also be
nterpreted, depending on the context of application, as a tendency
oward generalized exchange (Bearman, 1997).

.3.3. Degree-related effects
In- and outdegrees are primary characteristics of nodal position

nd can be important driving factors in the network dynamics.
One pair of effects is degree-related popularity based on indegree

r outdegree. If these effects are positive, nodes with higher
ndegree, or higher outdegree, are more attractive for others to
end a tie to. This can be measured by the sum of indegrees of
he targets of i’s outgoing ties, and the sum of their outdegrees,
espectively. A positive indegree-related popularity effect implies
hat high indegrees reinforce themselves, which will lead to a
elatively high dispersion of the indegrees (a Matthew effect in
opularity as measured by indegrees, cf. Merton, 1968; Price,
976). A positive outdegree-related popularity effect will increase
he association between indegrees and outdegrees, or keep this
ssociation relatively high if it is high already.
Another pair of effects is degree-related activity for i ndegree or
utdegree: when these effects are positive, nodes with higher inde-
ree, or higher outdegree respectively, will have an extra propensity
o form ties to others. These effects can be measured by the inde-
ree of i times i’s outdegree; and, respectively, the outdegree of
tworks 32 (2010) 44–60

i times i’s outdegree, that is, the square of the outdegree.1 The
outdegree-related activity effect again is a self-reinforcing effect:
when it has a positive parameter, the dispersion of outdegrees will
tend to increase over time, or to be sustained if it already is high.
The indegree-related activity effect has the same consequence as
the outdegree-related popularity effect: positive parameters lead
to a relatively high association between indegrees and outdegrees.
Therefore these two effects will be difficult, or impossible, to dis-
tinguish empirically, and the choice between them will have to be
made on theoretical grounds. These four degree-related effects can
be regarded as the analogues in the case of directed relations of
what was called cumulative advantage by Price (1976) and prefer-
ential attachment by Barabási and Albert (1999) in their models for
dynamics of non-directed networks: a self-reinforcing process of
degree differentiation.

These degree-related effects can represent hierarchy between
nodes in the network, but in a different way than the triadic effects
of transitivity and 3-cycles. The degree-related effects represent
global hierarchy while the triadic effects represent local hierarchy.
In a perfect hierarchy, ties go from the bottom to the top, so that
the bottom nodes have high outdegrees and low indegrees and the
top nodes have low outdegrees and high indegrees. This will be
reflected by positive indegree popularity and negative outdegree
popularity, and by positive outdegree activity and negative inde-
gree activity. Therefore, to differentiate between local and global
hierarchical processes, it can be interesting to estimate models with
triadic and degree-related effects, and assess which of these have
the better fit by testing the triadic parameters while controlling for
the degree-related parameters, and vice versa.

Other degree-related effects are assortativity-related: actors
might have preferences for other actors based on their own and the
other’s degrees (Morris and Kretzschmar, 1995; Newman, 2002). In
settings where degrees reflect status of the actors, such preferences
may be argued theoretically based on status-specific preferences,
constraints, or matching processes. This gives four possibilities,
depending on in- and outdegree of the focal actor and the potential
friend.

Together, this list offers eight degree-related effects. The
outdegree-related popularity and indegree-related activity effects
are nearly collinear, and it was already mentioned that theory, not
empirical fit, will have to decide which one is a more meaningful
representation. Some of the other effects also may be confounded,
but this depends on the data set. The four effects described as
degree-related popularity and activity are more basic than the
assortativity effects (cf. the relation between main effects and inter-
actions in linear regression). Because of this, when testing any
assortativity effects, one usually should control for three of the
degree-related popularity and activity effects.

2.3.4. Covariates: exogenous effects
For an actor variable V, there are three basic effects: the ego

effect, measuring whether actors with higher V values tend to nom-
inate more friends and hence have a higher outdegree (which also
can be called covariate-related activity effect or sender effect);
the alter effect, measuring whether actors with higher V values
will tend to be nominated by more others and hence have higher
1 Experience has shown that for the degree-related effects, often the ‘driving force’
is measured better by the square roots of the degrees than by raw degrees. In some
cases this may be supported by arguments about diminishing returns of increasingly
high degrees. See the formulae in Appendix A.
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f many social relations, see McPherson et al. (2001). When the
go and alter effects are included, instead of the similarity effect
ne could use the ego–alter interaction effect, which expresses that
ctors with higher V values have a greater preference for other
ctors who likewise have higher V values.

For categorical actor variables, the same V effect measures the
endency to have ties between actors with exactly the same value
f V.

For a dyadic covariate, i.e., a variable defined for pairs of actors,
here is one basic effect, expressing the extent to which a tie
etween two actors is more likely when the dyadic covariate is

arger.

.3.5. Interactions
Like in other statistical models, interactions can be important to

xpress theoretically interesting hypotheses. The diversity of func-
ions that could be used as effects makes it difficult to give general
xpressions for interactions. The ego–alter interaction effect for an
ctor covariate, mentioned above, is one example.

Another example is given by de Federico (2004) as an interaction
f a covariate with reciprocity. In her analysis of a friendship net-
ork between exchange students, she found a negative interaction
etween reciprocity and having the same nationality. Having the
ame nationality has a positive main effect, reflecting that it is easier
o become friends with those coming from the same country. The
egative interaction effect was unexpected, but can be explained
y regarding reciprocation as a response to an initially unrecipro-
ated tie, the latter being a unilateral invitation to friendship. Since
ontacts between those with the same nationality are easier than
etween individuals from different nationalities, extending a uni-

ateral invitation to friendship is more remarkable (and perhaps
ore costly) between individuals of different nationalities than

etween those of the same nationality. Therefore it will be noticed
nd appreciated, and hence reciprocated, with a higher probabil-
ty. Thus, the rarity of cross-national friendships leads to a stronger
endency to reciprocation in cross-national than same-nationality
riendships.

As a further class of examples, note that in the actor-based
ramework it may be natural to hypothesize that the strength of
ertain effects depends on attributes of the focal actor. For exam-
le, girls might have a greater tendency toward transitive closure
han boys. This can be modeled by the interaction of the ego effect
f the attribute and the transitive triplets, or transitive ties effect.

Other interactions (and still other effects) are discussed in
nijders et al. (2008). As the selection presented here already illus-
rates, the portfolio of possible effects in this modeling approach
s very extensive, naturally reflecting the multitude of possibilities
y which networks can evolve over time. Therefore, the selection
f meaningful effects for the analysis of any given data set is vital.
his will be discussed now.

. Issues arising in statistical modeling

When employing these models, important practical issues are
he question how to specify the model – boiling down mainly to the
hoice of the terms in the objective function – and how to interpret
he results. This is treated in the current section.

.1. Data requirements

To apply this model, the assumptions should be plausible in an

pproximate sense, and the data should contain enough informa-
ion. Although rules of thumb always must be taken with many
rains of salt, we first give some numbers to indicate the sizes of
ata sets which might be well treated by this model. These rules of
humb are based on practical experience.
tworks 32 (2010) 44–60 49

The amount of information depends on the number of actors,
the number of observation moments (‘panel waves’), and the total
number of changes between consecutive observations. The num-
ber of observation moments should be at least 2, and is usually
much less than 10. There are no objections in principle against ana-
lyzing a larger number of time points, but then one should check
the assumption that the parameters in the objective function are
constant over time, or that the trends in these parameters are well
represented by their interactions with time variables (see point 10
below).

If one has more than two observation points, then in practice
one may wish to start by analyzing the transitions between each
consecutive pair of observations (provided these provide enough
information for good estimation—see below). For each parameter
one then can present the trend in estimated parameter values, and
depending on this one can make an analysis of a larger stretch of
observations if the parameters appear approximately constant, or
do the same while including for some of the parameters an inter-
action with a time variable.

The number of actors will usually be larger than 20—but if the
data contain many waves, a smaller number of actors could be
acceptable. The number of actors will usually not be more than
a few hundred, because the implicit assumption that each actor is a
potential network partner for any other actor might be implausible
for networks with so many actors that not all actors are aware of
each others’ existence.

The total number of changes between consecutive observa-
tions should be large enough, because these changes provide the
information for estimating the parameters. A total of 40 changes
(cumulated over all successive panel waves) is on the low side. More
changes will give more information and, thereby, allow more com-
plicated models to be fitted. Between any pair of consecutive waves,
the number of changes should not be too high, because this would
call into question the assumption that the waves are consecutive
observations of a gradually changing network; or, if they were, the
consecutive observations would be too far apart.

This implies that, when designing the study, the researcher has
to have a reasonable estimate of how much change to expect. For
instance, if one is interested in the development of the friendship
network of a group of initially mutual strangers (e.g., university
freshmen), it may be good to plan the observation moments to
be separated by only a few weeks, and to enlarge the period
between observations after a couple of months. On the other hand,
if one studies inter-firm network dynamics, given the time delays
involved for firms in the planning and executing of their ties to other
firms, it may be enough to collect data once every year, or even less
frequently.

To express quantitatively whether the data collection points are
not too far apart, one may use the Jaccard (1900) index (also see
Batagelj and Bren, 1995), applied to tie variables. This measures the
amount of change between two waves by

N11

N11 + N01 + N10
, (2)

where N11 is the number of ties present at both waves, N01 is
the number of ties newly created, and N10 is the number of ties
terminated. Experience has shown that Jaccard values between
consecutive waves should preferably be higher than 0.3, and –
unless the first wave has a much lower density than the second
– values less than 0.2 would lead to doubts about the assumption
that the change process is gradual, compared to the observation

frequency. If the network is in a period of growth and the second
network has many more ties than the first, one may look instead
at the proportion, among the ties present at a given observation,
of ties that have remained in existence at the next observation
(N11/(N10 + N11) in the preceding notation). Proportions higher
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han 0.6 are preferable, between 0.3 and 0.6 would be low but may
till be acceptable. If the data collection was such that values of
ies (ranging from weak to strong) were collected, then these num-
ers may be used as rough rules of thumb and give some guidance
or the decision where to dichotomize the tie values—although, of
ourse, substantive concerns related to the interpretation of the
esults have primacy for such decisions.

The methods require in principle that network data are com-
lete. However, it is allowed that some of the actors enter the
etwork after the start, or leave before the end of the panel waves
Huisman and Snijders, 2003), and a limited amount of missing
ata can be accommodated (Huisman and Steglich, 2008). Another
ption to represent that some actors are not yet, or no more, present
n the network, is to specify that certain ties cannot exist (‘struc-
ural zeros’) or that some ties are prescribed (‘structural ones’),
ee Snijders et al. (2008). The use of structural zeros allows, e.g.,
o combine several small networks into one structure (with struc-
ural zeros forbidding ties between different networks), allowing to
nalyze multiple independent networks that on themselves would
ot yield enough information for estimating parameters, under the
xtra assumption that all network follow dynamics with the same
arameter values in the objective function.

.2. Testing and model selection

It turns out (supported by computer simulations) that the dis-
ributions of the estimates of the parameters ˇk in the objective
unction (1), representing the importance of the various terms

entioned in Section 2.3, are approximately normally distributed.
herefore these parameters can be tested by referring the t-ratio,
efined as parameter estimate divided by standard error, to a stan-
ard normal distribution.

For actor-based models for network dynamics, information-
heoretic model selection criteria have not yet generally been
eveloped, although Koskinen (2004) presents some first steps
or such an approach. Currently the best possibility is to use ad
oc stepwise procedures, combining forward steps (where effects
re added to the model) with backward steps (where effects are
eleted). The steps can be based on significance test for the various
ffects that may be included in the model. Guidelines for such pro-
edures are the following. We prefer not to give a recipe, but rather
list of considerations that a researcher might have in mind when

onstructing a strategy for model selection.

1. Like in all statistical models, exclusion of one effect may mask
the existence of another effect, so that pure forward selection
may lead to overlooking some effects, and it is advisable to start
with a model including all effects that are expected to be strong.

2. Fitting complicated models may be time-consuming and lead to
instability of the algorithm, and a resulting failure to obtain good
estimates. Therefore, forward selection is technically easier than
backward selection, which is unfortunately at variance with the
preceding remark.

3. The estimation algorithm (Snijders, 2001) is iterative, and the
initial value can determine whether or not the algorithm con-
verges. For relatively simple models, a simple standard initial
value usually works fine. For complicated models, however, the
algorithm may converge more easily if started from an initial
value obtained as the estimate for a somewhat simpler model.
Estimates obtained from a more complicated model by simply
omitting the deleted effects sometimes do not provide good

starting values. Therefore, forward selection steps often work
better from the algorithmic point of view than backward steps.
This implies that, to improve the performance of the algorithm,
it is advisable to retain copies of the parameter values obtained
from good model fits, for use as possible initial values later on.
tworks 32 (2010) 44–60

4. Network statistics can be highly correlated just because of
their definition. This also implies that parameter estimates can
be rather strongly correlated, and high parameter correlations
do not necessarily imply that some of the effects should be
dropped. For example, the parameter for the outdegree effect
often is highly correlated with various other structural param-
eters. This correlation tells us that there is a trade-off between
these parameters and will lead to increased standard errors of
the parameter for the outdegree effect, but it is not a reason for
dropping this effect from the model.

5. Parameters can be tested by a so-called score-type test with-
out estimating them, as explained in Schweinberger (submitted
for publication). Since estimating many parameters can make
the algorithm instable, and in forward selection steps it may be
necessary to have tests available for several effects to choose
the most important one to include, the score-type tests can be
very helpful in model selection. In this procedure, a model (null
hypothesis) including significant and/or theoretically relevant
parameters is tested against a model (alternative hypothesis)
extended by one or several parameters one is also interested
in. Under the null hypothesis, those parameters are zero. The
procedure yields a test statistic with a chi-squared null dis-
tribution, along with standard normal test statistics for each
separate parameter. The parameters for which a significant test
result was found, then may be added to the model for a next
estimation round.

6. It is important to let the model selection be guided by theory,
subject-matter knowledge, and common sense. Often, however,
theory and prior knowledge are stronger with respect to effects
of covariates – e.g., homophily effects – than with respect to
structure. Since a satisfactory fit is important for obtaining gen-
eralizable results, the structural side of model selection will of
necessity often be more of an inductive nature than the selec-
tion of covariate effects. The newness of this method implies
that we still need to accumulate more experience as to what
is a ‘satisfactory’ fit, and how complicated models should be in
practice.

7. Among the structural effects, the outdegree and reciprocity
effect should be included by default. In almost all longitudinal
social network data sets, there also is an important tendency
toward transitivity (Davis, 1970). This should be modeled by
one, or several, of the transitivity-related effects described
above.

8. Often, there are some covariate effects which are predicted by
theory; these may be control effects or effects occurring in
hypotheses. It is good practice to include control effects from
the start. Non-significant control effects might be dropped pro-
visionally and then tested again as a check in the presumed final
model; but one might also retain control effects independent of
their statistical significance. We do not think there are unequiv-
ocal rules whether or not to include from the start the effects
representing the main hypotheses in a given study.

9. The degree-based effects (popularity, activity, assortativity) can
be important structural alternatives for actor covariate effects,
and can be important network-level alternatives for the triad-
level effects. It is advisable, at some moment during the model
selection process, to check these effects; note that the square-
root specification usually works best.

0. If the data have three or more waves and the model does not
include time-changing variables, then the assumption is made
that the time dynamics is homogeneous, which will lead to

smooth trajectories of the main statistics from wave to wave. It
is good as a first general check to consider how average degree
develops over the waves, and if this development does not fol-
low a rather smooth curve (allowing for random disturbances),
to include time-varying variables that can represent this devel-
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opment. Another possibility is to analyze consecutive pairs of
waves first, which will show the extent of inhomogeneity in the
process (cf. the example in Snijders, 2005).

1. The model assumes that the ‘rules for network change’ are the
same for all actors, except for differences implied by covari-
ates or network position. This leaves only moderate room for
outlying actors, such as are indicated by relatively very large
outdegrees or indegrees. Very high or very low outdegrees or
indegrees should be ‘explainable’ from the model specification;
if they are only explainable from earlier observations (‘path
dependence’), they will have a tendency to regress toward the
mean. The model specification may be able to explain outliers
by covariates identifying exceptional actors, but also by degree-
related endogenous effects such as the self-reinforcing Matthew
effect mentioned above. It is good as a first general check to
inspect the indegrees and outdegrees for outliers. If there are
strong outliers then it is advisable to seek for actor covariates
which can help to explain the outlying values, or to investigate
the possibility that degree-related effects, explainable or at least
interpretable from a theoretical point of view, may be able to
represent these outlying degrees. If these cannot be found, then
one solution is to use dummy variables for the actors concerned,
to represent their outlying behavior. Such an ad hoc model adap-
tation, which may improve the fit dramatically, is better than
the alternative of working with a model with a large unmod-
eled heterogeneity. In case there is a theoretical argument to
expect certain outliers, these can be pointed out by including a
dummy variable, but of a different kind. In contrast to the for-
mer type of outliers, the latter one is expected, so should be
captured in advance by a covariate. If one is not capable to make
a difference between the two types, one has to rely on the ad
hoc model adaptation.

.3. Example: friendship dynamics

By way of example, we analyze the evolution of a friendship
etwork in a Dutch school class. The data were collected between
eptember 2003 and June 2004 as part of a study reported in
necht (2008). The 26 students were followed over their first year
t secondary school during which friendship networks as well as
ther data were assessed at four time points at intervals of three
onths. There were 17 girls and 9 boys in the class, aged 11–13 at

he beginning of the school year. Network data were assessed by
sking students to indicate up to 12 classmates which they consid-
red good friends. The average number of nominated classmates
anged between 3.6 and 5.7 over the four waves, showing a mod-
rate increase over time. Jaccard coefficients for similarity of ties
etween waves are between 0.4 and 0.5, which is somewhat low
reflecting fairly high turnover) but not too low.

Some data were missing due to absence of pupils at the moment
f data collection. This was treated by ad-hoc model-based imputa-
ion using the procedure explained in Huisman and Steglich (2008).
ne pupil left the classroom. Such changes in network composition
an also be treated by the methods of Huisman and Snijders (2003),
ut this simple case was treated here by using structural zeros: start-

ng with the first observation moment where this pupil was not a
ember of the classroom any more, all incoming and outgoing tie

ariables of this pupil were fixed to zero and not allowed to change
n the simulations.

Considering point 1 above, effects known to play a role in
riendship dynamics, such as basic structural effects and effects of

asic covariates, are included in the baseline model. From earlier
esearch, it is known that friendship formation tends to be recip-
ocal, shows tendencies towards network closure, and in this age
roup is strongly segregated according to the sexes. The model
ncludes, for each of these tendencies, effects corresponding to
tworks 32 (2010) 44–60 51

these expectations. Structural effects included are reciprocity; tran-
sitive triplets and transitive ties, measuring transitive closure that
is compatible with an informal local hierarchy in the friendship
network; and the three-cycles effect measuring anti-hierarchical
closure. Homophily based on the sexes is included as the same sex
effect. All variables are centered. For example, the dummy vari-
able for sex (boys = 1, girls = 0) has mean 0.346 (9 boys and 17
girls), which leads to the centered values vi = −0.346 for girls and
vi = 0.654 for boys.

As exogenous control variables, we include sender and receiver
effects of sex, and a dyadic covariate indicating friendship in pri-
mary school reflecting relationship history. In addition, several
degree-related endogenous effects are included as control effects:
in- and outdegree-related popularity, and outdegree-related activ-
ity, explained above. Estimates for this model are given in Table 1 as
Model 0. All calculations were done using Siena version 3.2 (Snijders
et al., 2008).

The parameters reported for the rate function in periods 1–3
are defined in the simulation model as the expected frequencies,
between successive waves, with which actors get the opportunity
to change a network tie. For these parameters no p-values are given
in the tables, as testing that they are zero is meaningless (if these
would be zero there would be no change at all). These estimated rate
parameters will be higher than the observed numbers of changes
per actor, however, because in the model an actor may get the
opportunity to change a tie but choose not to make any change, and
because actors may add a tie during the simulations, and withdraw
the same tie before the next observation moment.

This analysis confirms, for this data set, several of the known
properties of friendship networks: there is a high degree of reci-
procity, as seen in the significant reciprocity parameter; there is
segregation according to the sexes, as seen in the significant same
sex parameter; there is an almost equally strong effect of hav-
ing been friends at primary school already, and there is evidence
for transitive closure, as seen in the significant effects of transi-
tive triplets and transitive ties. A direct comparison of the size of
parameter estimates is possible, given that they occur in the same
linear combination in the objective function, but it should be kept in
mind that these are unstandardized coefficients. Other significant
effects are the negative 3-cycles parameter, which indicates that the
tendencies toward closure are not completely egalitarian (as one
might have thought based on the reciprocity parameter), but do
show some evidence for local hierarchization in the network. This
also is suggested by the marginally significant negative effect of the
outdegree-related popularity which indicates that active pupils, i.e.,
those who nominate particularly many friends, are less likely to be
chosen as friends – this could be a status effect negatively associ-
ated with nomination activity. Also significant is the sender effect
of sex (sex (M) ego), which in our coding of the variable means that
the boys tend to be more active in the classroom friendship network
than the girls.

Rate parameters, finally, suggest that the amount of friend-
ship change seems to peak in the second period (perhaps due to
a higher friendship turnover after the Christmas break) and slow
down towards the end of the school year. These differences are
small, however. The same descriptive conclusion can be drawn also
by inspecting the observed amounts of change, without needing to
refer to a statistical model.

In a subsequent model (Model 1 in Table 1), more parsimony is
obtained by eliminating the non-significant effects in a backward
selection procedure. The sex alter effect was retained in spite of

its non-significance, because the three sex-related effects belong
together as a representation of sex-related friendship preferences.
One by one, the least significant of the insignificant effects were
dropped from the model. While doing so, score-type tests were
made for the earlier omitted parameters (now constrained to zero)
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Table 1
Parameter estimates of friendship evolution models, with standard errors and two-sided p-values.

Model 0 Model 1 Model 2 Model 3

Estim. S.E. p Estim. S.E. p Estim. S.E. p Estim. S.E. p

Objective function
Outdegree −1.41 0.43 <0.001 −1.67 0.38 <0.001 −1.62 0.34 <0.001 −1.59 0.33 <0.001
Reciprocity (evaluation) 1.34 0.22 <0.001 1.42 0.20 <0.001 1.45 0.20 <0.001 0.71 0.48 0.14
Reciprocity (endowment) 1.42 0.80 0.076
Transitive triplets 0.23 0.03 <0.001 0.21 0.03 <0.001 0.21 0.03 <0.001 0.20 0.03 <0.001
Transitive ties 0.74 0.21 <0.001 0.74 0.23 0.001 0.78 0.22 <0.001 0.67 0.20 <0.001
3-cycles −0.32 0.10 <0.001 −0.26 0.09 0.005 −0.25 0.09 0.007 −0.22 0.10 0.028
Indegree popularity (sqrt) −0.18 0.12 0.13 0.23 0.23 0.29
Outdegree popularity (sqrt) −0.40 0.24 0.093 −0.56 0.23 0.013 −0.62 0.20 0.002 −0.61 0.20 <0.001
Outdegree activity (sqrt) 0.01 0.07 0.93 0.18 0.12 0.19
Sex (M) ego 0.35 0.13 0.008 0.39 0.13 0.002 0.44 0.14 0.002 0.41 0.13 <0.001
Sex (M) alter 0.10 0.13 0.46 0.15 0.13 0.24 0.18 0.14 0.20 0.16 0.14 0.25
Same sex 0.49 0.13 <0.001 0.54 0.12 <0.001 0.56 0.14 <0.001 0.56 0.13 <0.001
Primary school 0.37 0.13 0.006 0.35 0.14 0.013 0.34 0.14 0.016 0.35 0.15 0.020

Rate function
Rate period 1 10.01 2.05 9.76 1.91 9.69 1.96 10.93 2.26
Rate period 2 10.67 1.85 10.44 1.83 10.28 1.82 11.13 1.93
Rate period 3 9.51 1.53 8.91 1.39 8.81 1.37 9.38 1.52
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he p-values are based on approximate normal distributions of the t-ratios (estimat
core-type tests.

o check whether the parameter does not become significant upon
ropping other effects from the model. This is possible in models
ith correlated effects like ours, but it did not occur for our data

et. Estimates of Model 1 give the same qualitative results as those
f Model 0. The parameters dropped due to insignificance were the
utdegree-related activity effect (suggesting that the value for ego
f an individual friendship does not depend on how many other
riends the friend currently has) and the indegree-related popular-
ty effect (suggesting that receiving many friendship nominations
s not a self-reinforcing process).

.4. Parameter interpretation

For the general understanding of the numerical values of the
arameters, it may be kept in mind that the parameters ˇk in the
bjective function are unstandardized coefficients of the statistics
f which the mathematical formulae are given in Appendix A.

The parameters in the objective function can be interpreted in
wo ways. In the first place, by interpreting this function as the
attractiveness” of the network for a given actor. For getting a feel-
ng of what are small and large values, it may be noted (see the
nterpretation in terms of myopic optimization in Snijders, 2001)
hat the objective functions are used to compare how attractive
arious different tie changes are, and for this purpose random dis-
urbances are added to the values of the objective function with
tandard deviations equal2 to 1.28.

The objective function is a weighted sum of effects sik(x); their
athematical definitions are given in Appendix A. In most cases the

ontribution of a single tie variable xij is just a simple component
f this formula.

For example, consider the actor variable sex, denoted as V, and
riginally with values 1 for girls and 2 for boys. All variables are
entered. The global mean of this variable is 1.346 (9 boys and 17

irls), which leads to the centered values vi = −0.346 for girls and
i = 0.654 for boys. For this variable the model includes the ‘ego’
ffect, the ‘alter’ effect, and the ‘same’ effect. Let us denote the
arameters by ˇe, ˇa, and ˇs. Then, using the formulae in Appendix

2 More exactly, the value is
√

�2/6, the standard deviation of the Gumbel distri-
ution.
−0.42 0.28 0.13

ed by standard error). When rendered for non-estimated parameters, they refer to

A, the joint contribution of these V-related effects to the objective
function is

ˇe

∑
j

xijvi + ˇa

∑
j

xijvj + ˇs

∑
j

xijI{vi = vj}

where I{vi = vj} = 1 if vi = vj , and 0 otherwise. This means that the
contribution of the single tie xij to the objective function, consider-
ing only the sex-related effects, is given by

ˇevi + ˇavj + ˇsI{vi = vj} = 0.35vi + 0.10vj + 0.49I{vi = vj}

Substituting the values −0.346 for females and 0.654 for males
yields the following table.

Ego Alter

F M

F 0.33 −0.06
M 0.19 0.78

This table shows that girls as well as boys prefer friendships with
same-sex alters, but for boys the difference is more pronounced
than for girls.

A second interpretation is that when actor i has the opportunity
to make a change in her outgoing ties (where no change also is an
option), and xa and xb are two possible results of this change, then
fi(xb, ˇ) − fi(xa, ˇ) is the log odds ratio for choosing between these
two alternatives—so that the ratio of the probability of xb and xa as
next states is

exp(fi(xb, ˇ) − fi(xa, ˇ)) = exp(fi(xb, ˇ))
exp(fi(xa, ˇ))

.

Note that, when the current state is x, the possibilities for xa and
xb are x itself (no change), or x with one extra outgoing tie from i,
or x with one less outgoing tie from i. Explanations about log odds
ratios can be found in texts about logistic regression and loglinear
models, e.g., Agresti (2002). A further elaborated example of this is
given in Section 4.2.
4. More complicated models

This section treats two generalizations of the model sketched
above.
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.1. Differential rates of change: the rate function

Depending on actor attributes or on positional characteristics
uch as indegree or outdegree, actors might change their ties at
ifferential frequencies. This can be the case, e.g., in networks
etween organizations with clear differences in degrees, where
he outdegrees reflect the importance to the organizations of the
etwork under study, and the resources they devote to position-

ng themselves in it. The average frequency at which actors get
he opportunity to change their outgoing ties then is called the
ate function, depending on attributes and network position of the
ctors.

Model 2 in Table 1 gives an example of such an analysis. It
xtends Model 1 by adding an effect of sex on the rate function.
he estimated negative effect indicates that in the data set under
tudy, boys change their network ties less frequently than girls, but
he difference is not significant (p = 0.13).

To interpret the parameter values, one should know that a so-
alled exponential link function is used (Snijders, 2001; Snijders et
l., 2008), which means that the variables have an effect on the rate
unction after an exponential transformation, with a multiplicative
ffect. For example, the parameter estimate of −0.42 for the effect
f sex on the rate function implies that the estimated rate function
s the base rate multiplied by exp(−0.42vi). Recall that the values
f the variable ‘sex’ are, centered, vi = −0.346 for females and vi =
.654 for males. Thus, for period 1, for girls the expected number of
pportunities for change is 9.69 × exp(−0.42 × (−0.346)) = 11.2,
nd for boys it is 9.69 × exp(−0.42 × (0.654)) = 7.4. The difference
eems rather large but is not significant in view of the small sample
ize.

.2. Differences between creating and terminating ties: the
ndowment function

In the treatment given above, terminating a tie is just the oppo-
ite of creating one. This is not always a good representation of
eality. It is conceivable, for example, that the loss when termi-
ating a reciprocal tie is greater than the gain in creating one; or
hat transitive closure works especially for the creation of new ties,
ut hardly guards against termination of existing ties. This can be
odeled by having two components of the objective function: the

valuation function, which considers only the network that will be
he case as a result of the change to be made; and the endowment
unction, which is a component that operates only for the termina-
ion of ties and not for their creation. Everything discussed above
bout the objective function concerned the evaluation function—in
ther words, in those discussions and the example, the endowment
unction was nil. The endowment function gives contributions to
he objective function that do not play a role when creating ties,
ut that are lost when dissolving ties.

Model 3 in Table 1 gives the results of an analysis that includes,
n addition to the effects of Model 1, also an endowment effect
elated to reciprocity. It was estimated as significant and positive,
hile the corresponding evaluation function effect of reciprocity
ropped in size and significance. To interpret this result, jointly con-
ider the reciprocity evaluation effect with parameter 0.71 and the
eciprocity endowment effect with parameter 1.42. The contribu-
ion of a tie being reciprocated then is 0.71 for the creation of the
ie and 0.71 + 1.42 = 2.13 against the termination of the tie. Thus,
eciprocity here is more important against terminating friendships
that is, for maintaining friendships – than for creating friendships.
To elaborate this example, consider how the friendship choices
f a girl towards other girls depend on reciprocity (Fig. 2). Suppose
hat actor i can change one of her ties, while there are two girls j1
nd j2, both of them choosing i as a friend, and two others j3 and j4
ot choosing i. In addition, suppose that currently i chooses j1 and
Fig. 2. Four options for actor i.

j3 as friends, but not the other two. Assume finally (artificially, for
the sake of explanation) that these four girls do not choose each
other and further also are isolated from i’s network so that other
structural effects besides reciprocity do not matter. Since the actor
variable ‘sex’ has centered value vi = −0.346 for girls, the parameter
estimates for Model 3 give as the total contribution of the three
sex-related effects for girl–girl ties 0.41vi + 0.16vj + 0.56I{vi = vj} =
(0.41 + 0.16) × (−0.346) + 0.56 = 0.36. With the outdegree effect
of −1.59, this yields −1.59 + 0.36 = −1.23 as the basic contribution
of a tie to the evaluation function.

When girl i can change a tie variable, using this value of −1.23 for
the combined effect of outdegree and the three sex-related effects
for a girl–girl tie, five of the options for i are the following:

(A): drop reciprocated friendship tie to j1: −(−1.23) − 2.13 =
−0.90;
(B): reciprocate friendship tie from j2 : −1.23 + 0.71 = −0.52;
(C): drop non-reciprocated friendship tie to j3 : −(−1.23) = 1.23;
(D): initiate friendship tie to j4 : −1.23;
(E): do nothing: 0.0.

Since these are contributions to logarithms of probabilities, the
proportionality factors between the probabilities of these events
must be calculated as the exponential transformations of these val-
ues, which are, respectively, e−0.90 = 0.41, 0.59, 3.42, 0.29, and 1.
These are the relative probabilities of changes toward any given
other girl. One should note, however, that there may be different
numbers of the four cases (A–D) for a given girl, and the probability
of severing any reciprocated tie, or of creating any non-reciprocated
tie, depends also on these numbers for the ‘ego’ girl under consider-
ation. Since the friendship network is sparse, with average degrees
between 3.6 and 5.7, the cases of type (D) will be most numerous.
Consider, for instance, a girl with 3 mutual girlfriends (A), who has
2 non-reciprocated friendships to girls (C), 1 other girl who men-
tions her as a friend without reciprocation (B), and 10 girls without
a friendship either way (D). Suppose that in addition she has no
friendships with any of the 9 boys, and denote the option of estab-
lishing a friendship to a boy by (F). Retain the unrealistic simplifying
assumption that all her network members are mutually unrelated,
also after adding one hypothetical new friend, so that transitivity
does not influence probabilities of change. The baseline value of a
tie from a girl to a boy is −1.59 + 0.41 × (−0.346) + 0.16 × 0.654 =
−1.63, with exponential transform 0.20. Taking into account the
fact that the number of opportunities for options (A) to (F) are
3, 1, 2, 10, 1, and 9, the six proportionality factors have to be
divided by the denominator (3 × 0.41) + (1 × 0.59) + (2 × 3.42) +
(10 × 0.29) + (1 × 1) + (9 × 0.20) = 14.36. Thus, for this girl, the
probabilities are:
(A): of dropping any of the three reciprocated friendship ties:
(3 × 0.41)/14.36 = 0.09;
(B): of reciprocating the incoming friendship tie:
(1 × 0.59)/14.36 = 0.04;
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(C): of dropping one of the non-reciprocated friendship ties:
(2 × 3.42)/14.36 = 0.48;
(D): of initiating some new friendship tie to a girl:
(10 × 0.29)/14.36 = 0.20;
(E): of doing nothing: 0.07;
(F): and of extending a new friendship tie to a boy:
(9 × 0.20)/14.36 = 0.13.

Thus, in line with theories about reciprocation such as balance
heory, the probability is slightly larger than 0.5 that the propor-
ion of reciprocity in friendships will be increased. There are many
andom influences, however, that would decrease reciprocity—but
ost of these are proposals of new ties which could be seen by the

ther party as an invitation toward future reciprocation.

. Dynamics of networks and behavior

Social networks are so important also because they are rele-
ant for behavior and other actor-level outcomes: related actors
ay influence one another (e.g., Friedkin, 1998), and ties will be

elected in part based on the similarity between ego and potential
elational partners (homophily, see McPherson et al., 2001). This
eans that not only is the network changing as a function of itself

nd of the actor variables, but likewise the actor variables are chang-
ng as a function of themselves and of the network. We use the
erm behavior as shorthand for endogenously changing actor vari-
bles, although these could also refer to attitudes, performance,
tc.; there could be one or more of such variables. It is assumed
ere that the behavior variables are ordinal discrete variables, with
alues 1, 2, etc., up to some maximum value, for instance, several
evels of delinquency, several levels of smoking, etc. The depen-
ence of the network dynamics on the total network-behavior
onfiguration will be also called the social selection process, while
he dependence of the behavior dynamics on the total network-
ehavior configuration will be called the social influence process.
oth social influence and social selection can lead to similar-

ty between tied actors, which is often observed. A fundamental
uestion then is whether this similarity is caused mainly by influ-
nce or mainly by selection, as discussed by Ennett and Bauman
1994) for smoking behavior and Haynie (2001) for delinquent
ehavior.

This combination of selection and influence can be modeled by
n extension of the actor-based model to a structure where the
ependent variables consist not only of the tie variables but also of
he actors’ behavior variables, as specified in Snijders et al. (2007)
nd Steglich et al. (submitted for publication). Of course there
sually will be, in addition, also exogenous actor and/or dyadic
ariables in the role of independent variables.

The assumptions for the actor-based model for the dynamics
f networks and behavior are extensions of the assumptions for
etwork dynamics. The extended formulations are as follows, given
ithout the background explanations which were given above and
hich apply also for this case.

1. As above, the underlying time parameter is continuous.
. The changing system consisting of network and behavior is the

outcome of a Markov process. Thus, the probabilities of change of
the network as well as those of the behavioral variables depend,
at each moment, on the current combination of network struc-
ture and behavior variables for all actors.
. At a given moment either one probabilistically selected actor
may change a tie, or one actor may change his/her behavior by
going one unit up or down (recall that the behavior variables
are assumed to be integer-valued). This excludes coordination
between changes in the network and in the behavior.
tworks 32 (2010) 44–60

The fact that changes in behavior are assumed to be by one unit
in a single time point imply that a ‘natural’ application of the
model requires that the total number of ordinal scale values is
not too large; in practice applications mostly have had 2–5, and
sometimes up to 10, scale values.

4. The actors control their outgoing ties as well as their own behav-
ior. This is meant not in the sense of conscious control, but in the
sense that the explanation of the actor’s outgoing ties and behav-
ior is based in the actor and the structural and other limitations
provided by the actor and his/her social context.

5. The moments were actors get the opportunity for a tie change
or a behavior change are modeled as distinct processes, so these
are governed by a priori unrelated parameters.

6. There are distinct processes also for tie changes and behavior
changes, conditional on the possibility to make the respective
type of change, so these are governed by a priori unrelated
parameters.

The changes in behavior depend on an objective function similar
to the objective function for network changes. However, this func-
tion will be different because it needs to represent primarily the
actor’s behavior rather than his/her network position, and because
choices of behavior changes may be framed differently from choices
of tie changes, depending on different goals and restrictions.

The model assumptions imply that the dependent behavior
variable will change endogenously during the simulations, repre-
senting the endogenous social influence process. Since the network
and the behavior variables both influence the dynamics of the net-
work ties and of the actors’ behavior, the sequence of changes in
the network and in the behavior, reacting on each other, gener-
ates a mutual dependence between the network dynamics and the
behavior dynamics.

5.1. The objective function for behavior

We only consider models where increasing the behavior variable
has just the opposite effect of decreasing it, and the objective func-
tion for behavior is the same as the evaluation function (a separate
endowment function is not considered). The objective, or evalua-
tion, function can be represented, analogously to (1), as

f Z
i (ˇ, x, z) =

∑
k

ˇZ
k sZ

ki(x, z), (3)

where sZ
ki

(x, z) are functions depending on the behavior of the focal
actor i, but also on the behavior of his network partners, his network
position, etc. The strength of the effects of these functions on behav-
ior choices are represented by the parameters ˇZ

k
. The superscript

Z is used to distinguish the effects and parameters for behavior
change from those for network change (which could be given the
superscript X). The main possible terms of the evaluation function
are as follows.

5.1.1. Basic shape effects
We first discuss basic tendencies determining behavior change

that are independent of actor attributes and network position.
A baseline definition for the evaluation function will be a curve,
depending on the actor’s own behavior zi, that can be loosely inter-
preted as the relative preference for the specific value zi of the
behavior. The term ‘prefer’ should be taken with much reservation,
as a shorthand ‘as-if’ term—we could just as well see this, e.g., as a

matter of constraints. When the behavior variable is dichotomous,
then a linear function suffices, as each function of two values can
be represented by a linear function; but for three or more possible
values a unimodal ‘preference’ function will often be reasonable,
so that a specification will be required that allows the function
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ig. 3. Basic shape of the evaluation function for behavior; in this case, with the
aximum at z = 2.

o be curvilinear. Thus, in Fig. 3, a simple evaluation function is
rawn for a behavior variable with range 1–4, which is maximal at
he value z = 2, indicating that when actors have a possibility for
hange they will be drawn toward the value z = 2: if their current
alue for Z is higher than 2 then the probability is higher that they
ill decrease their value, if the current value is lower than 2 then

he probability is higher that they will increase their value of Z. To
epresent this mathematically, a quadratic function can be used.
he linear and quadratic coefficients in this function are called the

inear shape effect and the quadratic shape effect. Note that the latter
s superfluous for a dichotomous behavior variable.

The quadratic shape effect can also be called the effect of Z
n itself, and is a kind of feedback effect. When this parameter
s negative there is negative feedback, or a self-correcting mecha-
ism: when the value of the actor’s behavior increases, the further
ush toward higher values of the behavior will become smaller
nd when it decreases, the further push toward lower values of
he behavior will become smaller. Conversely, when the coefficient
f the quadratic term is positive, the feedback will be positive, so
hat changes in the behavior are self-reinforcing. This can be an
ndication of addictive behavior. Negative values, or values not sig-
ificantly different from 0, are more often seen than positive values.

When the coefficient for the shape effect is denoted ˇZ
1 and

he coefficient for the quadratic shape effect is ˇZ
2, then the total

ontribution of these two effects is ˇZ
1zi + ˇZ

2z2
i
. With a negative

oefficient ˇZ
2, this is a unimodal preference function. The max-

mum then is attained for zi = −2ˇZ
1/ˇZ

2, or more precisely, the
nteger value within the prescribed range that is closest to this num-
er. (Of course additional effects will lead to a different picture; but

f the additional effects are linear as a function of zi in the permitted
ange – which can be checked from the formulae in Appendix A, and
hich is not the case for all similarity effects as defined below! –,

his will change the location of the maximum but not the unimodal
hape of the function.)

.1.2. Influence and position-dependent effects
The tendencies expressed in the shape parameters affect every

ctor in the same way, irrespective of his/her characteristics or
etwork position. To capture social network effects, additional
erms in the behavior evaluation function are needed, differenti-
ting between actors on the basis of their network position and the
ehavior of the others to whom they are tied.

The actor-based model can represent social influence, i.e., influ-
nce from alters’ behavior on ego’s behavior, in various ways,
ecause there are several different ways to measure and aggregate
he influences from different alters. Three different representations
re as follows.
1. The average similarity effect, expressing the preference of actors
to be similar in behavior to their alters, in such a way that the
total influence of the alters is the same regardless of the number
of alters (i.e., ego’s outdegree).
tworks 32 (2010) 44–60 55

2. The total similarity effect, expressing the preference of actors to
be similar in behavior to their alters, in such a way that the total
influence of the alters is proportional to the number of alters.

3. The average alter effect, expressing that actors whose alters have
a higher average value of the behavior, also have themselves a
stronger tendency toward high values on the behavior.

The choice between these three will be made on theoretical
grounds and/or on the basis of statistical significance.

In addition to this type of social influence, network position itself
could also have an effect on the dynamics of the behavior. Indeed,
the actor’s outdegree or indegree may be terms in the objective
function; in the case of positive parameters, this expresses that
those who are more active (higher outdegree) or more popular
(higher indegree) have a stronger tendency to display higher values
of the behavior.

5.1.3. Effects of other actor variables
For each actor-dependent covariate as well as for each of the

other dependent behavior variables (if any), a main effect on the
behavior can be included, representing the influence of this actor
variable on changes in the behavior. In addition, it is possible that
such a variable will moderate the influence effect, leading to an
interaction between the variable and the influence effect.

5.2. Specification of models for dynamics of networks and
behavior

There is a natural advantage of the network part of the model
over the behavior part in terms of the amount of information
available on the two dimensions. For n actors, there are n mea-
surements of the behavior variable, while there are as many as
n(n − 1) measurements of network tie variables. In statistical terms,
there will be less power to detect determinants of behavioral evo-
lution than there is to detect determinants of network evolution.
Therefore, backward model selection is not a good route to fol-
low for specifying a model of network-behavior co-evolution: weak
and unsystematic effects on behavioral change, when estimated,
subtract from the ability to identify the stronger and more system-
atically occurring ones. Instead of starting with an extensive model,
it is better to start with a small one, and proceed by way of forward
model selection to arrive at a good model.

Since it is more difficult to estimate a model of network-behavior
co-evolution than to estimate a model of only network evolution, it
makes sense first to estimate a good model for the dynamics of only
the network according to the approach of the preceding section, and
to use this as a baseline for the network part of the co-evolution
model.

It has become clear above that there are several specifications
of the social selection part, such as Z-similarity and Z-ego × alter;
like for any actor variable, also for behavior variable Z the ego and
alter effects may be relevant. The similarity effect in the network
dynamics part is directly interpretable, whereas the Z-ego × alter
interaction effect needs also the ego and alter effects to be well
interpretable. For the social influence part likewise there are several
possible specifications, such as average similarity, total similarity,
and average alter.

A difficulty is that we often have no clear theoretical clue as to
which of these three specifications is better in a particular case;
the alternative specifications are defined by effects that may be
highly mutually correlated and therefore are not readily estimated

jointly in the same model; and the power of detecting selection and
influence will depend on the specification chosen. If we do have
prior information as to the best specification, then it is preferable
to work with this specification. If we do not have such informa-
tion, and we wish to avoid the chance capitalization inherent in
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sing the ‘most significant’ effect without taking into account that
t was chosen exactly because it was the most significant, then we
ould proceed along something like the following lines. An exam-
le of this approach is given in the next subsection. This procedure
ses score-type tests (Schweinberger, submitted for publication)
or several parameters simultaneously, which are chi-squared tests
ith number of degrees of freedom equal to the number of tested

ffects, and which have the advantage that parameters can be tested
ithout estimating them.

1. Specify and estimate a baseline model ‘BM’ for network-behavior
co-evolution in which the network and behavior dynamics are
independent; that is, the model for network dynamics contains
no effects dependent on the behavior variable, and vice versa.

. Choose a number of candidate social selection effects ‘SEL’ and a
number of candidate social influence effects ‘INF’ on theoretical
grounds, without considering the data.

. Test the effects in the sets SEL and INF by score-type tests in the
baseline model BM. This gives the statistical evidence about the
existence of influence and selection, not controlling each effect
for the other.

. Select the effects that are individually most significant in either
set, and denote these effects by SEL1 and INF1.

(In this formulation, the effects are selected based on their sig-
nificance when hypothesized to be added to the baseline model.
Another possibility is to select the effects based on the following
two models.)

. To test influence effects while controlling for selection, estimate
the model BM + SEL1 (i.e., the baseline model extended with the
most significant selection effect) and within this model test all
of the effects INF jointly by a score-type test.

. To test selection effects while controlling for influence, estimate
the model BM + INF1 and test all of the effects SEL jointly by a
score-type test.

7. Finally, to estimate a model with influence and selection, esti-
mate the model BM + SEL1 + INF1.

. It often will be sensible to conduct some further checks to guard
against the danger of overlooking important effects. This can be
done again with score-type tests. Candidate effects to be checked
include the indegree and outdegree effects on the behavior vari-
able.

.3. Example: dynamics of friendship and delinquency

Substantively, what we address is again the dynamics of
he friendship network in the school class of 11–13 year old
upils investigated above, now co-evolving with their delinquency
Knecht, 2008). This variable is defined as a rounded average over
our types of minor delinquency (stealing, vandalism, graffiti, and
ghting), measured in each of the four waves of data collection.
he five-point scale ranged from ‘never’ to ‘more than 10 times’,
nd the distribution is highly skewed, most students reporting no
elinquency. In a range of 1–5, the mode was 1 at all four waves, the
verage rose over time from 1.4 to 2.0, and the value 5 was never
bserved.

The question addressed is, whether the data provide evidence
or network influence processes playing a role in the spread of delin-
uency through the group defined by the classroom. Analyses were
arried out by Siena version 3.17 (Snijders et al., 2008). Reported
esults all were taken from runs in which all ‘t-ratios for conver-
ence’ (see the Siena manual) were less than 0.1 in absolute value,

ndicating good convergence of the algorithm.

For the model selection we follow the steps laid out in the pre-
eding section. The baseline model is the model which for the
riendship dynamics is model 3 in Table 1, and for the delinquency
ynamics includes the linear and quadratic shape effects and the
tworks 32 (2010) 44–60

effect of sex (as a control variable). The effects potentially mod-
elling social selection based on delinquency (the set SEL in the
preceding section) are delinquency ego, delinquency alter, delin-
quency similarity, and delinquency ego × alter. Delinquency ego
and delinquency alter are included here as control variables for
delinquency ego × delinquencyalter. The effects potentially mod-
elling social influence with respect to delinquency (the set INF) are
average similarity, total similarity, and average delinquency alter.
Score tests for the selection and influence effects tested with the
baseline model as the null hypothesis yielded the following p-
values. For both parts of the model, first the results of the overall
score test (of SEL and INFL, respectively) are given, and then the
results for the separate degrees of freedom of which this test is
composed.

Effect p

Friendship dynamics
Overall test for social selection (4 d.f.) < 0.001
Delinquency ego < 0.001
Delinquency alter 0.32
Delinquency similarity < 0.001
Delinquency ego × delinquency alter 0.02

Delinquency dynamics
Overall test for social influence (3 d.f.) 0.04
Average similarity 0.03
Total similarity 0.12
Average delinquency alter 0.48

The overall tests show evidence for social selection (p < 0.001)
as well as for social influence (p < 0.05), when these are not being
controlled for each other. The separate tests suggest that strongest
effects are delinquency similarity for the network dynamics and
average similarity for the behavior dynamics. These are the effects
denoted above as SEL1 and INF1, respectively.

To test selection while controlling for influence, the baseline
model was extended with influence operationalized as average sim-
ilarity, and the four selection effects (delinquency ego, delinquency
alter, delinquency similarity, and delinquency ego × delinquency
alter) were jointly tested by a score-type test. The test result was
highly significant, p < 0.001.

To test influence while controlling for selection, the base-
line model was extended with selection operationalized as
delinquency similarity, and the three influence effects (aver-
age similarity, total similarity, and average delinquency alter)
were jointly tested by a score-type test. This led to p = 0.04.
Thus, for this classroom there is clear evidence (p < 0.001) for
delinquency-based friendship selection, and evidence (p = 0.04)
for influence from pupils on the delinquent behavior of their
friends.

To estimate a model incorporating selection and influence,
the baseline model was extended with delinquency similarity for
the network dynamics and average similarity for the behavior
dynamics. This model is estimated and presented in Table 2. The
delinquency ego and delinquency alter effects were also tested for
inclusion in the network dynamics model, and the indegree and
outdegree effects were tested for inclusion in the behavior dynam-
ics model, but none of these were significant.

It can be concluded for this data set that there is evidence for
delinquency-based friendship selection, expressed most clearly by
the delinquency similarity measure; and for influence from pupils
on the delinquent behavior of their friends, expressed best by the
average similarity measure. The delinquent behavior does not seem

to be influenced by sex. The model for network dynamics yields
estimates that are quite similar to those for the model without
the simultaneous delinquency dynamics, except that the reci-
procity effect has shifted more strongly towards the endowment
effect.
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Table 2
Estimates of model for co-evolution of friendship and delinquency, with standard
errors and two-sided p-values.

Effect Estimate S.E. p

Network objective function
Outdegree −1.91 0.41 <0.001
Reciprocity (evaluation) 0.25 0.44 0.57
Reciprocity (endowment) 2.10 0.81 0.010
Transitive triplets 0.22 0.03 <0.001
Transitive ties 0.67 0.23 0.004
3-cycles −0.27 0.11 0.014
Outdegree based popularity (sqrt) −0.52 0.25 0.034
Sex (M) ego 0.48 0.16 0.002
Sex (M) alter 0.19 0.16 0.23
Same sex 0.61 0.15 <0.001
Primary school 0.46 0.18 0.010
Delinquency similarity 3.22 1.66 0.053

Network rate function
Network rate period 1 9.94 2.12
Network rate period 2 10.86 2.00
Network rate period 3 9.39 1.49

Delinquency linear 0.00 0.27 1.00
Delinquency quadratic 0.12 0.16 0.48
Sex (M) −0.19 0.42 0.66
Average similarity 6.08 3.06 0.047

Behavior rate function
Delinquency rate period 1 1.50 0.70
Delinquency rate period 2 3.50 2.48
D
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he p-values are based on approximate normal distributions of the t-ratios (estimate
ivided by standard error).

. Cross-sectional and longitudinal modeling

For a further understanding of this actor-based model, it may
e helpful to reflect about equilibrium and out-of-equilibrium
ocial systems. Equilibrium is understood here not as a fixed
tate but as dynamic equilibrium, where changes continue but
ay be regarded as stochastic fluctuations without a systematic

rend. This can be combined with discussing the relation between
ross-sectional and longitudinal statistical modeling of social
etworks.

For cross-sectional modeling the exponential random graph
odel (‘ERGM’), or p∗ model, is similar to the model of this paper

n its statistical approach to network structure (cf. Wasserman and
attison, 1996; Robins et al., 2007, and the references cited there).
telling characteristic of the ERGM is that the only feasible way

o obtain random draws from such a probability distribution is to
imulate a process longitudinally until it may be assumed to have
eached dynamic equilibrium, and then take samples from the pro-
ess (Snijders, 2002). Thus, the ERGM can be best understood as a
odel of a process in equilibrium. If we would have longitudinal

ata from a process in dynamic equilibrium, then modeling them
y the approach of this paper would give roughly the same results
s modeling its cross-sections by an ERGM. It would not be exactly
he same because the ERGM is not actor-based; a tie-based version
f our longitudinal model (Snijders, 2006) is possible, which does
orrespond exactly to the ERGM. On the contrary, if we would have
ross-sectional data which may be assumed to have been observed
ar from an equilibrium situation, then it is difficult to see what
ould be the precise meaning of results of an ERGM analysis, based

s this is on an implicit equilibrium assumption.
If one has observed a longitudinal network data set of which the
onsecutive cross-sections have similar descriptive properties – no
iscernible trends or important fluctuations in average degree, in
roportion of reciprocated ties, in proportion of transitive closure
mong all two-paths, etc. –, then it would be a mistake to infer
hat the development is not subject to structural network tenden-
tworks 32 (2010) 44–60 57

cies just because the descriptive network indices are stationary. For
example, if the network shows a persisting high extent of transi-
tive closure, in a process which is dynamic in the sense that quite
some ties are dissolved while other new ties appear, then it must
be concluded that the dynamics of the network contains an aspect
which sustains the observed extent of transitive closure against
the random influences which, without this aspect, would make the
transitive closure tend to attenuate and eventually to disappear.

The longitudinal actor-based model is more general than the
ERGM in that it does not require that the observed process be in
equilibrium. Given a sequence of consecutively observed networks,
if one were to make an analysis of the first one by an ERGM and of
the further development by an actor-based model, then in theory
it is possible to obtain opposite results for these two analyses, and
this would point toward a non-equilibrium situation. For example,
it would be possible that the first observed network shows no tran-
sitive closure at all, but the dynamics does show a transitivity effect;
then over time the extent of transitive closure would increase, per-
haps to reach some dynamic equilibrium later on. Conversely, it is
possible that there is a strong transitivity effect at the first observa-
tion but no transitivity in the longitudinal model, which means that
the observed extent of transitive closure in repeated cross-sectional
analyses would eventually peter out to nil.

The advantage of longitudinal over cross-sectional modeling is
that the parameter estimates provide a model for the rules gov-
erning the dynamic change in the network, which often are better
reflections of social rules and regularities than what can be derived
from a single cross-sectional observation. This also is an argument
for not modeling the first observation but using it only as an ini-
tial condition for the network dynamics (as mentioned at the end
of Section 2.1). In many situations the first observation cannot be
regarded as coming from a process in equilibrium, and then it is
unclear what the first observation by itself can tell us about social
rules and regularities.

7. Discussion

This paper has given a tutorial introduction in the use of actor-
based models for analyzing the dynamics of directed networks –
expressed by the usual format of a directed graph – and of the
joint interdependent dynamics of networks and behavior – where
‘behavior’ is an actor variable which may refer to behavior, atti-
tudes, performance, etc., measured as an ordinal discrete variable.
The purpose of these models is to be used to test hypotheses con-
cerning network dynamics and represent the strength of various
tendencies driving the dynamics by estimated parameters. To be
useful in this way for statistical inference, the models must be able
to give a good representation of the dependencies between network
ties, and between network positions and behavior of the actors.
The models also have to contain parameters that can express the-
oretical considerations about tendencies driving network change.
Further, the models must be flexible enough to represent sev-
eral different explanations of change – which may be competing
but also potentially complementary – and test these against each
other, or controlling for each other. These goals are accomplished
by the stochastic actor-driven model in which the central object of
modeling is the objective function (1), (3), analogous to the linear
predictor in generalized linear modeling (e.g. Long, 1997).

These models can be estimated by software called Siena
(‘Simulation Investigation for Empirical Network Analysis’), of
which the manual is Snijders et al. (2008). Program and doc-

umentation can be downloaded free from the Siena web-page,
http://www.stats.ox.ac.uk/siena/. Some examples of applications
of this model are van de Bunt et al. (1999) and Burk et al. (2007).
Further applications of these models are presented in some of the
papers in this special issue.

http://www.stats.ox.ac.uk/siena/
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These models are relatively new, and more complicated than
any other statistical models to which social scientists are used.
pplications are starting to be published, but more experience is
eeded to get a better understanding of their applicability and the

nterpretation of the results. Especially important will be the fur-
her development of ways to assess the goodness of fit of these

odels and to diagnose what in the data-model combination may
e mainly responsible for a possible lack of fit. Another issue is the
ssessment of the robustness of results with respect to misspecified
odels, and the development of other models for network dynam-

cs which may serve as potential alternatives for cases where the
odels presented here do not fit to a satisfactory degree. A case

n point would be the development of models permitting a more
laborate temporal dependence than Markovian dependence. All
his should lead to better knowledge about how to fit longitudinal

odels to network data, and hence to more reliable results. In this
utorial we have tried to represent the current knowledge about the
pecification of longitudinal network models in a concise but more
r less complete way, but we hope that this knowledge will expand
apidly.

Various extensions of the model are the topic of recent and cur-
ent research. Models for the dynamics of non-directed networks,
.g., alliance networks, have been developed and were applied in
heckley and Steglich (2007) and van de Bunt and Groenewegen
2007). Extensions to valued ties are in preparation. Other esti-

ation procedures have been proposed: Bayesian inference by
oskinen and Snijders (2007) and Schweinberger (2007), Maximum
ikelihood estimation by Snijders et al. (submitted for publication).
ll these developments will be tracked at the Siena website men-

ioned above.

ppendix A

This appendix contains some formulae to support the under-
tanding of the verbal descriptions in the paper.

.1. Objective function

When actor i has the opportunity to make a change, he/she can
hoose between some set C of possible new states of the network.
ormally this will be set consisting of the current network and all
ther networks where one outgoing tie variable of i is changed.
he probability of going to some new state x in this set is given
y

exp(fi(ˇ, x))∑
x′ ∈ C

exp(fi(ˇ, x′))
. (4)

n words: the probability that an actor makes a specific change
s proportional to the exponential transformation of the objective
unction of the new network, that would be obtained as the conse-
uence of making this change. Similarly, when actor i can make a
hange in the behavior variable z and the current value is z0, then

he possible new states are z0 − 1, z0, and z0 + 1 (unless the first or
ast of these three falls outside the range of the behavior variable).
enoting this allowed set also by C, the probability of going to some
ew state z in this set is given by

exp(f Z
i

(ˇZ, x, z))∑
z′ ∈ C

exp(f Z
i

(ˇ, x, z′))
. (5)
tworks 32 (2010) 44–60

These are the same formulae as used in multinomial logistic regres-
sion.

A.2. Effects

Some formulae for effects sik(x) are as follows. Replacing an
index by a + sign denotes summation over this index. Exogenous
actor covariates are denoted by vi and dyadic covariates by wij .

Reciprocity
∑

j

xijxji, (6)

transitive triplets
∑

j,h

xihxijxjh, (7)

transitive ties
∑

h

xihmaxj(xijxjh), (8)

three-cycles
∑

j,h

xijxjhxhi, (9)

balance
1

n − 2

n∑
j=1

xij

n∑
h=1

h /= i,j

(b0 − |xih − xjh|), (10)

where b0 is the mean of |xih − xjh|;

indegree popularity (sqrt)
∑

j

xij

√
x+j , (11)

outdegree popularity (sqrt)
∑

j

xij

√
xj+, (12)

indegree activity (sqrt)
√

x+ixi+, (13)

outdegree activity (sqrt) x1.5
i+ , (14)

out − outdegree assortativity (sqrt)
∑

j

xij

√
xi+xj+ (15)

(other assortativity effects similar)

V-ego
∑

j

xijvi, (16)

V-alter
∑

j

xijvj , (17)

V-similarity
∑

j

xij(simij − sim), (18)

where simij = (1 − |vi − vj|/�), with � = maxij|vi − vj|;

same V
∑

j

xijI{vi = vj}, (19)

where I{vi = vj} = 1 if vi = vj , and 0 otherwise;

V-ego × alter
∑

j

xijvivj , (20)

∑

dyadic covariate W

j

xijwij , (21)

dyadic cov. W × reciprocity
∑

j

xijxjiwij, (22)
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ctor cov. V × transitive triplets vi

∑
j,h

xijxjhxih, (23)

ome formulae for behavior effects sZ
ik

(x, z) are the following:

inear shape zI, (24)

uadratic shape z2
i , (25)

utdegree zixi+, (26)

ndegree zix+i, (27)

verage similarity x−1
i+

∑
j

xij(simz
ij − sim

z
), (28)

here simz
ij = (1 − |zi − zj|/�Z ) with �Z = maxij|zi − zj|;

otal similarity
∑

j

xij(simz
ij − sim

z
), (29)

verage alter zi

⎛
⎝∑

j

xijzj

⎞
⎠/⎛

⎝∑
j

xij

⎞
⎠ , (30)

ain effect covariate V zivi. (31)
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