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Topic of this lecture.

Statistical models for social network data.

Social networks consist of actors and relations among them.

I actors: persons, organizations, companies, countries, . . .
I relations: friendship, asking for advice, communication,

collaboration, trade, war, . . .



Topic of this lecture.

Statistical models for social network data.

Data availability improved over the last decade.

I traditional data collection, e. g., by questionaires
“please name your best friends”

I more and more automatically logged data from
electronic communication and collaboration:
telephone calls, email, online social networks, online
markets, recommender systems, wikis, . . .

⇒ opportunity and challenge for data-driven social science.



Topic of this lecture.

Statistical models for social network data.

Statistics can formulate precise statements about uncertainty.

What would happen, if we measured the data again?
I at a different point in time,
I on a different set of actors,
I with different environmental factors, . . .

estimate expected outcome ± variability

⇒ to explain and predict social relations and behavior.



Example: friendship network among teenagers.
Can you see some pattern? Can you find explanations?

black: smokers; gray: occasional smokers; blue: non-smokers



Social influence vs. social selection.

Network ties and actor behavior evolve over time.

network(t)

behavior(t)

network(t + 1)

behavior(t + 1)

social selection

social influence

Social influence.
I E. g., friends of smokers start smoking.

Social selection.
I E. g., smokers choose smokers as friends (homophily).

Dependency among network ties.
I E. g., friends of friends become friends (transitivity).

Correlation of individual attributes.
I E. g., smokers typically drink more alcohol.



Topic of this lecture.

Statistical models for social network data.

Specify realistic probability distributions for social networks

formalizing hypothetical dependencies in the data.



Statistical network models serve several purposes.

Explaining social relations and/or behavior
I search for rules that govern the evolution of social

networks.

Predicting social relations and/or behavior
I learn from given data and predict the data yet to come.

Random generation of networks that look like real data
I algorithm engineering; empirical estimation of average

runtime or performance;
I simulation of network processes (e. g., information

spreading, spread of disease).



Structure of this lecture.

Varying amount of time information in the data requires
different network models.

Networks observed at a single point in time
I model the probability of single networks P(G).

Networks observed at two or more points in time
I model the conditional probability of later networks, given

the previous ones P(Gt |Gt−1).

Continuously observed network changes or events
I model the next network event, given the network of

previous events P(et |G<t ).

Treated in three parts of this lecture.
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Background: finite probability space.

Definition
A finite probability space is a pair (Ω,P), where

I Ω is a finite set (possible outcomes)
I P : Ω→ [0,1] a function satisfying

∑
ω∈Ω P(ω) = 1.

Notation
I P(ω) is called the probability of ω ∈ Ω.
I The probability of a subset Ω′ ⊆ Ω is defined by

P(Ω′) =
∑

ω∈Ω′ P(ω).



Background: finite probability space.

Definition
A finite probability space is a pair (Ω,P), where

I Ω is a finite set (possible outcomes)
I P : Ω→ [0,1] a function satisfying

∑
ω∈Ω P(ω) = 1.

Notation
I P(ω) is called the probability of ω ∈ Ω.
I The probability of a subset Ω′ ⊆ Ω is defined by

P(Ω′) =
∑

ω∈Ω′ P(ω).

Example (dice)
Ω = {1,2,3,4,5,6} (possible outcomes when throwing a die)
P(ω) = 1/6 for all ω ∈ Ω (uniform probability)
Ω′ = {1,3,5} (throwing an odd number)



Background: finite probability space.

Definition
A finite probability space is a pair (Ω,P), where

I Ω is a finite set (possible outcomes)
I P : Ω→ [0,1] a function satisfying

∑
ω∈Ω P(ω) = 1.

Notation
I P(ω) is called the probability of ω ∈ Ω.
I The probability of a subset Ω′ ⊆ Ω is defined by

P(Ω′) =
∑

ω∈Ω′ P(ω).

Example (lottery)
Ω = {X ⊂ {1, . . . ,49} ; |X | = 6} (sets of 6 different numbers)

P(ω) =
(49

6

)−1
= 6!43!

49! for all ω ∈ Ω (uniform probability)



Background: graphs.

Definition
A graph is a pair G = (V ,E), where V is a finite set of vertices
and E the set of edges.

I undirected graph: E ⊆
(V

2

)
= {{u, v} ; u, v ∈ V}

I directed graph: E ⊆ V × V = {(u, v) ; u, v ∈ V}
I loop: edge from a vertex to itself

Interpretation:
I vertices correspond to actors
I edges form the relation among

them



Random graph models.

Definition
A random graph model is a probability space (G,P), where G is
a (finite) set of graphs.

Example (uniform random graph model)
Let G be the set of all undirected, loopless graphs with vertex
set V = {1, . . . ,n} and let P be defined by

P : G → R; P(G) =
1

2
n(n−1)

2

.

Then (G,P) is a random graph model.



Random graph models.

Definition
A random graph model is a probability space (G,P), where G is
a (finite) set of graphs.

Example (uniform random graph model)
Let G be the set of all undirected, loopless graphs with vertex
set V = {1, . . . ,n} and let P be defined by

P : G → R; P(G) =
1

2
n(n−1)

2

.

Then (G,P) is a random graph model.



Random graph models: remarks and notation.

We consider only random graph models (G,P) in which all
graphs in G have the same set of vertices;
usually V = {1, . . . ,n}.

The set of dyads D consists of all elements that can be edges
in a graph in G.

I For undirected, loopless graphs:
D = {{u, v} ; u, v ∈ V , u 6= v}.

I For directed, loopless graphs:
D = {(u, v) ; u, v ∈ V , u 6= v}.

The set of vertices is fixed; all the randomness is in the edges.
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Random graph models: edge probability.

Let (G,P) be a random graph model.
P : G → [0,1] defines a probability for each graph.

A dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

When we say “probability of an edge e”, we mean P(Ge);
sometimes written as P(e) or P(e ∈ E).

Thus, assigning a probability to each graph uniquely
determines the probability of individual edges.

Does this also hold the other way round?
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Let (G,P) be a random graph model.
P : G → [0,1] defines a probability for each graph.

A dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

When we say “probability of an edge e”, we mean P(Ge);
sometimes written as P(e) or P(e ∈ E).

Thus, assigning a probability to each graph uniquely
determines the probability of individual edges.

Does this also hold the other way round?



Example: two random graph models.

Let G be the set of undirected, loopless graphs G = (V ,E) with
V = {1,2,3}.

Define P1 by P1(G) = 1/8 for all G ∈ G.

Define P2 by

P2(G) =

{
1/2 if E = ∅ or E = D;
0 else

Both models define the same edge probabilities; but the models
are not the same.



Independence and non-independence of edges.
(intuition)

In some cases the existence of an edge (or several edges)
changes the probability of other edges.

P(e) P(e)

For instance: does P(e) change when the nodes incident to e
are indirectly connected via a third node? How? Why?



Independence and non-independence of edges.
small facebook network

769 nodes, 295 296 dyads, 16 656 edges
⇒ average edge probability is 0.056

186 722 dyads are indirectly connected via a third node;
16 556 of these are edges⇒ average conditional edge
probability for indirectly connected nodes is 0.089
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small facebook network

769 nodes, 295 296 dyads, 16 656 edges
⇒ average edge probability is 0.056

186 722 dyads are indirectly connected via a third node;
16 556 of these are edges⇒ average conditional edge
probability for indirectly connected nodes is 0.089



Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
.
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Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
.

Example (probability space: dice)
Aodd = {1,3,5} and A≤4 = {1,2,3,4} are independent.



Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
.

Example (probability space: dice)
Aodd = {1,3,5} and A≤3 = {1,2,3} are not independent.



Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)
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Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
.

Example (probability space: dice)
P(Aodd|A≤4) = 1/2, but P(Aodd|A≤3) = 2/3



Independence of dyads in random graph models.

A dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

I If Ge1 and Ge2 are independent, we say that “the dyads e1
and e2 are independent”



Example: two random graph models revisited.

Let G be the set of undirected, loopless graphs G = (V ,E) with
V = {1,2,3}.

Let P1(G) = 1/8. It is for two different dyads e1 and e2

P1(Ge1 ∩ Ge2) = 1/4 = 1/2 · 1/2 = P1(Ge1) · P1(Ge2)

Let

P2(G) =

{
1/2 if E = ∅ or E = D;
0 else.

It is for two different dyads e1 and e2

P2(Ge1 ∩ Ge2) = 1/2 6= 1/2 · 1/2 = P2(Ge1) · P2(Ge2)



Structural balance theory (illustrating dependence).
Structural balance theory (Heider 1946) applies to triplets of
3 actors mutually connected by positive or negative ties:

balanced not balanced

SBT claims that actors prefer balanced networks.

In an appropriate random graph model, it holds that
I all dyads are pairwise independent;
I every dyad depends on the two others (i. e., there is a

higher-order dependence).
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Structural balance theory (Heider 1946) applies to triplets of
3 actors mutually connected by positive or negative ties:

balanced not balanced

SBT claims that actors prefer balanced networks.

In an appropriate random graph model, it holds that
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higher-order dependence).



Fully independent random graph models.

Recall: a dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

Recall: if Ge1 and Ge2 are independent, we say that “the dyads
e1 and e2 are independent”

Definition
Let D′ ⊂ D. A dyad e ∈ D \ D′ is said to be independent of D′ if
for all partitions D′ = D+ ∪ D−, the subset Ge is independent of

GD+∪D− = {G ∈ G ; D+ ⊆ EG and D− ∩ EG = ∅} .

If every dyad e is independent of every subset D′ ⊆ D \ {e},
then we say that the random graph model is fully independent.
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Fully independent random graph models.

Recall: a dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

Recall: if Ge1 and Ge2 are independent, we say that “the dyads
e1 and e2 are independent”

Definition
Let D′ ⊂ D. A dyad e ∈ D \ D′ is said to be independent of D′ if
for all partitions D′ = D+ ∪ D−, the subset Ge is independent of

GD+∪D− = {G ∈ G ; D+ ⊆ EG and D− ∩ EG = ∅} .

If every dyad e is independent of every subset D′ ⊆ D \ {e},
then we say that the random graph model is fully independent.



A fully independent random graph model is
determined by the edge probabilities of all dyads.

Let (G,P) be a fully independent random graph model.
Then the probability of a graph G = (V ,E) ∈ G is

P(G) = P({G})

= P

⋂
d∈E

Gd ∩
⋂

d∈D\E

Gd


=

∏
d∈E

P(Gd ) ·
∏

d∈D\E

P(Gd )

=
∏
d∈E

P(d ∈ E) ·
∏

d∈D\E

1− P(d ∈ E) .



For illustration, we treat in the following
I edge probability,
I independence,
I and expected number of edges

of the uniform random graph model.



Uniform graph model: edge probability.

Claim
The edge probability of a dyad e ∈ D in the uniform random
graph model is equal to 1/2.

Proof.
The two sets

Ge = {G ∈ G ; e ∈ EG},
Ge = {G ∈ G ; e 6∈ EG}

I have the same cardinality⇒ P(Ge) = P(Ge),
I are disjoint⇒ P(Ge) + P(Ge) = P(Ge ∪ Ge),
I and their union equals G ⇒ P(Ge ∪ Ge) = 1.
⇒ P(Ge) = 1/2.
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Uniform graph model: independence.

Claim
The edge probability of a dyad e ∈ D in the uniform random
graph model is 1/2, independent of all sets of dyads.

Proof.
Let D+,D− ⊆ D \ {e} be two disjoint subsets of dyads, not
containing e. Consider

G′ = {G ∈ G ; D+ ⊆ EG, and D− ∩ EG = ∅} .

Then, with G′e = {G ∈ G′ ; e ∈ EG} it follows P(G′e|G′) = 1/2 (as
on the previous slide).
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Background: random variable and expectation.

Let (Ω,P) be a finite probability space.

Definition
A random variable is a function X : Ω→ R.

Let S = X (Ω) be the set of values of X .

The expectation of the random variable X is defined by

E(X ) =
∑
x∈S

x · P(X = x) =
∑
ω∈Ω

X (ω) · P(ω) .

Example
The prize assigned to lottery numbers is a random variable.
Its expectation is the average gain that could be expected after
“many” lottery draws (to be compared with the cost of a ticket).



Background: random variable and expectation.

Let (Ω,P) be a finite probability space.

Definition
A random variable is a function X : Ω→ R.

Let S = X (Ω) be the set of values of X .

The expectation of the random variable X is defined by

E(X ) =
∑
x∈S

x · P(X = x) =
∑
ω∈Ω

X (ω) · P(ω) .

Example
The prize assigned to lottery numbers is a random variable.
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Background: linearity of expectation.

E(X ) =
∑
ω∈Ω

P(ω) · X (ω) .

Lemma
If X ,Y : Ω→ R are two random variables and α a real number,
then it is

E(X + Y ) = E(X ) + E(Y )

E(α · X ) = α · E(X ) .



Uniform graph model: expected number of edges.

Claim
The expected number of edges in the uniform random graph
model with n vertices equals n(n−1)

4 .

Proof.
The number of edges of a graph G can be written as

m(G) =
∑
e∈D

χe(G)
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where χe : G → {0,1} is defined by

χe(G) =

{
1 if e ∈ EG
0 else.
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Uniform graph model: expected number of edges.

Claim
The expected number of edges in the uniform random graph
model with n vertices equals n(n−1)

4 .

Proof.
The number of edges of a graph G can be written as

m(G) =
∑
e∈D

χe(G)

From the linearity of the expectation it follows that

E[m] =
∑
e∈D

E[χe] =
∑
e∈D

P(e) · 1 + (1− P(e)) · 0

=
∑
e∈D

1
2
· 1 =

1
2

n(n − 1)

2



Uniform graph model: summary.

Characterizing properties:
I the model is fully independent;
I all edges are equally likely;
I no preference for edges over non-edges or vice versa.

Empirical networks typically violate all of these properties:
I edges are not independent;
I have varying probabilities;
I networks are typically sparse (i. e., most dyads are

non-edges).
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Definition of G(n,p).
Let n ∈ N≥1 and p be a real number 0 < p < 1.

G(n,p) is the random graph model on the set of undirected,
loopless graphs with vertex set V = {1, . . . ,n} that defines the
probability of a graph G with m edges by

P(G) = pm(1− p)
n(n−1)

2 −m .

Note: P is normalized since (let M = n(n − 1)/2)

∑
G∈G

P(G) =
M∑

m=0

(
M
m

)
pm(1− p)M−m

= (p + (1− p))M = 1M = 1 .

Remark
The uniform random graph model is identical with G(n, 1

2).
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Characterizing properties of G(n,p).

The probability of a graph G with m edges is defined by

P(G) = pm(1− p)
n(n−1)

2 −m .

Claim

1. The edge probability of every dyad is equal to p.
2. The model is fully independent.
3. There is just one model satisfying properties (1) and (2).

Proof.
See next exercise sheet.



Further properties of G(n,p).

I Expected number of edges is p n(n−1)
2 .

I Expected density is p.



Outline.
Introduction.

Random graph models.

G(n,p).
Definition of G(n,p).
Sampling from G(n,p).
Plausibility of G(n,p) as a model for social networks.

Towards more structured models.
Planted partition models.
Preferential attachment.

Exponential random graph models.
Definition and examples.
Sampling from an ERGM.
Estimating ERGM parameters.
Near-degeneracy and multi-modality of ERGMs.
Hammersley-Clifford Theorem.



Sampling from G(n,p).

Task: design of a probabilistic algorithm returning a graph G
with probability as in G(n,p).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Runtime is in Θ(n2) (independent of p)
⇒ inefficient for small p (i. e., sparse graphs).

The expected size of a graph from G(n,p) is in Θ(n + p · n2).
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I draw a uniformly distributed random number r ∈ [0,1];
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Background: sparse graphs and dense graphs.

Let n be the number of vertices and m the number of edges.

In undirected, loopless graphs it is
0 ≤ m ≤ n(n − 1)/2 ∈ Θ(n2).

A family of graphs with unbounded n = 1,2,3, . . . is called
I dense if m ∈ Θ(n2);
I sparse if m ∈ O(n);

Density of sparse graphs tends to zero: p ∈ O(1/n).
Average degree of sparse graphs is bounded by constant:
d ∈ O(1).

Empirical observation: social networks are typically sparse.



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

enumerate dyads
d1

d2 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)
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Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d2 an edge?
→ YES (for instance)
⇒ turn d2 into the first edge

d1

e1 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d3 an edge?
(draw a random number. . . )
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d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)
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Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
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→ NO (for instance)
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Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

go on . . . d1

e1 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d6 an edge?
(draw a random number. . . )

d1

e1 d3

d4 d5 d6?

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d6 an edge?
→ YES (for instance)
⇒ turn d6 into the second edge
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d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

to be continued . . .
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Generating graphs from G(n,p) (example).

Naive algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

to be continued . . .
d1

e1 d3

d4 d5 e2

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Sampling efficiently from G(n,p).
Better ask the question:

How many dyads shall be left out before the next
edge?

⇒ need only Θ(m) questions.

Randomly draw the number k of non-edges . . .

draw k = 1⇒ leave out one
dyad; turn the second dyad into
the first edge

draw k = 3⇒ leave out the
next three dyads (d3, d4, d5);
turn d6 into the second edge

d1

d2 d3

d4 d5 d6

d7 d8 d9 d10
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Sampling efficiently from G(n,p).
How many dyads shall be left out?

(Notation: q = 1− p on this slide.)

Observation: the next dyad that becomes an edge is
preceeded by exactly k non-edges with probability qkp.

⇒ randomly draw number k of
non-edges (out of 0,1, . . . ) with
probability qkp and add the
k + 1th dyad to the edge set.

draw k = 1 (happens with
probability qp)

draw k = 3 (happens with
probability q3p)

d1

d2 d3

d4 d5 d6

d7 d8 d9 d10



Sampling efficiently from G(n,p).
How many dyads shall be left out?

(Notation: q = 1− p on this slide.)

Observation: the next dyad that becomes an edge is
preceeded by exactly k non-edges with probability qkp.

⇒ randomly draw number k of
non-edges (out of 0,1, . . . ) with
probability qkp and add the
k + 1th dyad to the edge set.

draw k = 1 (happens with
probability qp)

draw k = 3 (happens with
probability q3p)

d1

d2 d3

d4 d5 d6

d7 d8 d9 d10



Sampling efficiently from G(n,p).
How many dyads shall be left out?

(Notation: q = 1− p on this slide.)

Observation: the next dyad that becomes an edge is
preceeded by exactly k non-edges with probability qkp.

⇒ randomly draw number k of
non-edges (out of 0,1, . . . ) with
probability qkp and add the
k + 1th dyad to the edge set.

draw k = 1 (happens with
probability qp)

draw k = 3 (happens with
probability q3p)

d1

e1 d3

d4 d5 d6

d7 d8 d9 d10



Sampling efficiently from G(n,p).
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(Notation: q = 1− p on this slide.)

Observation: the next dyad that becomes an edge is
preceeded by exactly k non-edges with probability qkp.

⇒ randomly draw number k of
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k + 1th dyad to the edge set.

draw k = 1 (happens with
probability qp)

draw k = 3 (happens with
probability q3p)

d1

e1 d3

d4 d5 e2

d7 d8 d9 d10



Background: geometric distribution.

The distribution that assigns the probability P(k) = p · (1− p)k

to the non-negative integers k = 0,1,2, . . . is called the
geometric distribution.

Such a random number generator is implemented in R
(function rgeom).

Equivalent: draw a uniformly distributed real number r from
(0,1) and return

k =

⌊
log(r)

log(1− p)

⌋



Sampling efficiently from G(n,p) (algorithm).

E ← ∅
v ← 1 w ← −1
while v < n do

k ← rgeom(p)
w ← w + k + 1
while w ≥ v and v < n do

w ← w − v
v ← v + 1

if v < n then
E ← E ∪ {{v ,w}}

return G = (V ,E)

0

v w

n − 1

0 n − 1

If w ≥ v then w is reduced by v and the row index v is
incremented by one.
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Sampling efficiently from G(n,p) (runtime).

E ← ∅
v ← 1 w ← −1
while v < n do

k ← rgeom(p)
w ← w + k + 1
while w ≥ v and v < n do

w ← w − v
v ← v + 1

if v < n then
E ← E ∪ {{v ,w}}

return G = (V ,E)

Outer while loop is executed
m + 1 times (m is the number
of edges of G).

Inner while loop is executed
(in total) n − 1 times.

⇒ runtime in O(m + n).



Efficient sampling from G(n,p) (correctness).

Let G be a graph with m edges; compute probability that G is
returned by the sampling algorithm.

For i = 1, . . . ,m + 1 let ki be number of non-edges between
(i − 1)th and i th edge.

Algorithm returns G if and only if
1. For all i = 1, . . . ,m, the random number k in the i th

iteration satisfies k = ki .
2. For i = m + 1 the random number k in the m + 1th iteration

satisfies k ≥ km+1.
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Algorithm returns G if and only if
1. For all i = 1, . . . ,m, the random number k in the i th

iteration satisfies k = ki .
Happens with probability pqki .

2. For i = m + 1 the random number k in the m + 1th iteration
satisfies k ≥ km+1.
Happens with probability qkm+1 .
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Efficient sampling from G(n,p) (correctness).

Algorithm returns G if and only if
1. For all i = 1, . . . ,m, the random number k in the i th

iteration satisfies k = ki .
Happens with probability pqki .

2. For i = m + 1 the random number k in the m + 1th iteration
satisfies k ≥ km+1.
Happens with probability qkm+1 .

∞∑
j=km+1

pqj =
∞∑

j=0

pqj −
km+1−1∑

j=0

pqj = 1− (1− qkm+1) = qkm+1 .



Efficient sampling from G(n,p) (correctness).

Algorithm returns G if and only if
1. For all i = 1, . . . ,m, the random number k in the i th

iteration satisfies k = ki .
Happens with probability pqki .

2. For i = m + 1 the random number k in the m + 1th iteration
satisfies k ≥ km+1.
Happens with probability qkm+1 .

All conditions for i = 1, . . . ,m + 1 are satisfied with probability

qkm+1

m∏
i=1

pqki = pmq
∑m+1

i=1 ki = pmq
n(n−1)

2 −m .
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Can such a network be drawn from a G(n,p) model?

Graph has 769 vertices and about 16 600 edges.

Which G(n,p)?
What is the most likely value for the parameter p?
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Background: maximum likelihood.

Problem: given a graph G drawn from some parameterized
random graph model (without knowing the parameter value).

What is the most likely parameter value?

Definition (maximum likelihood)
(G,Pθ) random graph model parameterized by θ ∈ Θ ⊆ Rk ;
Gobs ∈ G a graph (observation).
Likelihood function associated with Gobs

L : Θ→ R; θ 7→ Pθ(Gobs)

A parameter vector θ̂ maximizing L, i. e.,

θ̂ = arg max
θ

L(θ)

is called a maximum likelihood estimate (MLE) for θ.
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Maximum likelihood estimate of p in G(n,p).

Assume that Gobs has exactly m edges; let M = n(n−1)
2 .

L(p) = Pp(Gobs) = pm(1− p)M−m .

L′(p) = m · pm−1 · (1− p)M−m − pm · (M −m) · (1− p)M−m−1 .

Setting L′(p) = 0 for 0 < p < 1 yields

m · pm−1 · (1− p)M−m = pm · (M −m) · (1− p)M−m−1

m · (1− p) = p · (M −m)

m − pm = pM − pm
m
M

= p

L(p) indeed assumes a maximum at p̂ := m
M since [. . . ].
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Both graphs have 769 vertices and about 16 600 edges.

Maximum likelihood estimate for p is 0.056

Which graph is more likely to be drawn from a G(n,p) model?

Both graphs have the same (very small) probability in G(n,p)
⇒ the probability of the graph is not a good criterion.



Both graphs have 769 vertices and about 16 600 edges.

Maximum likelihood estimate for p is 0.056

Which graph is more likely to be drawn from a G(n,p) model?

Both graphs have the same (very small) probability in G(n,p)
⇒ the probability of the graph is not a good criterion.



Which graph is drawn from a G(n,p) model?

Address this question by looking at some network properties:
1. inhomogeneity of the graph density;
2. skewness of the degree distribution;
3. number of triangles.



Inhomogeneity of the graph density.

Colors encode the dorm variable (gray for missing value).



Inhomogeneity of the graph density.

Density of the whole network is 0.056

The subnetworks induced by the eight dorms have much higher
densities, namely: 0.21, 0.37, 0.20, 0.35, 0.31, 0.24, 0.37, 0.25.

Can this happen in a G(n,p) model?

Probably not: probability that randomly drawn subnetworks of
that size have such high density is very small.



Inhomogeneity of the graph density.

Density of the whole network is 0.056

The subnetworks induced by the eight dorms have much higher
densities, namely: 0.21, 0.37, 0.20, 0.35, 0.31, 0.24, 0.37, 0.25.

Can this happen in a G(n,p) model?

Probably not: probability that randomly drawn subnetworks of
that size have such high density is very small.



Which graph is drawn from a G(n,p) model?

Comparing degree distributions.



Which graph is drawn from a G(n,p) model?

Plotting number of vertices (y -axis) with given degree (x-axis).
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Probability of degree k in G(n,p).

Lemma
Let v ∈ {1, . . . ,n} be any vertex. The probability that v has
degree equal to k ∈ {0, . . . ,n − 1} in a graph drawn from
G(n,p) is

P(d(v) = k) =

(
n − 1

k

)
· pkqn−1−k

Proof.
There are exactly

(n−1
k

)
different neighborhoods of v that have

cardinality k . Each of them has probability pkqn−1−k .
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Probability of degree k in G(n,p).

details on the proof: let

Nk (v) = {{v1, . . . , vk} ⊆ V \ {v}}

be the set of k -element subsets of V \ {v} (potential
neighborhoods of size k of v ).
Define for U ∈ Nk (v) the subset

GU = {G ∈ G ; ∀u ∈ U : {u, v} ∈ EG and ∀u 6∈ U : {u, v} 6∈ EG}

(all graphs in which the neighborhood of v equals U).
Important fact: GU and GU′ are disjoint for U 6= U ′. Thus

P[d(v) = k ] =
∑

U∈Nk (v)

P(GU) =

(
n − 1

k

)
· pkqn−1−k
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Degree distribution in G(n,p) (limit n→∞).

Theorem
Let λ ∈ R>0, pn := λ/(n − 1) a sequence of edge probabilities,
defined for n ≥ λ+ 1,
k ∈ N0, Pn[d(v) = k ] probability that d(v) = k in G(n,pn) for
fixed v.

Then it is

lim
n→∞

Pn[d(v) = k ] = e−λ · λ
k

k !
.

(Is called Poisson distribution.)
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defined for n ≥ λ+ 1,
k ∈ N0, Pn[d(v) = k ] probability that d(v) = k in G(n,pn) for
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k
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Degree distribution in G(n,p) for large n.
Degree distribution of a graph drawn from G(n,p) with n = 107

and p = 10/(n − 1); maximum observed degree is 30.
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Which graph is drawn from a G(n,p) model?

Comparing number of triangles.
Has been done in the last exercise sheet.



A nice quote.

“For their part, social scientists have reacted to this
practice with considerable amusement. To them,
baseline models like simple random graphs seem
naïve to the extreme—like comparing the structure of
a skyscraper to a random distribution of the same
quantities of materials.” [p. 895]

Borgatti et al. Network analysis in the social sciences. Science 323, 2009.



Outline.
Introduction.

Random graph models.

G(n,p).
Definition of G(n,p).
Sampling from G(n,p).
Plausibility of G(n,p) as a model for social networks.

Towards more structured models.
Planted partition models.
Preferential attachment.

Exponential random graph models.
Definition and examples.
Sampling from an ERGM.
Estimating ERGM parameters.
Near-degeneracy and multi-modality of ERGMs.
Hammersley-Clifford Theorem.



Outline.
Introduction.

Random graph models.

G(n,p).
Definition of G(n,p).
Sampling from G(n,p).
Plausibility of G(n,p) as a model for social networks.

Towards more structured models.
Planted partition models.
Preferential attachment.

Exponential random graph models.
Definition and examples.
Sampling from an ERGM.
Estimating ERGM parameters.
Near-degeneracy and multi-modality of ERGMs.
Hammersley-Clifford Theorem.



Two simple approaches to define more structured models.

1. Planted partition models: allow varying probability
between different vertices (but keeping independence as in
the G(n,p) model).

2. Incrementally defined models: nodes and edges are
incrementally added to the network; probability of later
edges may depend on earlier ones.
Example: preferential attachment.
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Recall: inhomogeneity of the graph density

Density of the whole network is 0.056

The subnetworks induced by the eight dorms have much higher
densities, namely: 0.21, 0.37, 0.20, 0.35, 0.31, 0.24, 0.37, 0.25.



Planted partition models.

Definition
A planted partition model is defined by

I A partition of the vertex set V = V1 ∪ · · · ∪ Vk into k disjoint
classes.

I Probabilities pij ∈ (0,1) associated with each unordered
pair of classes Vi and Vj .

I Two vertices u ∈ Vi and v ∈ Vj are connected by an edge
with probability pij .

I The model is fully independent.



Planted partition models.

Vertex partition induces a partition of the adjacency matrix into
blocks.

p1 · · · p1
...

...
p1 · · · p1

p2 · · · p2
...

...
p2 · · · p2

p3 · · · p3
...

...
p3 · · · p3

p2 · · · p2
...

...
p2 · · · p2

p4 · · · p4
...

...
p4 · · · p4

p5 · · · p5
...

...
p5 · · · p5

p3 · · · p3
...

...
p3 · · · p3

p5 · · · p5
...

...
p5 · · · p5

p6 · · · p6
...

...
p6 · · · p6


Can be used to define random graphs that are well clusterable;
are k -colorable; have a large cut; have a small bisection; etc.
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Recall: degree distributions.

sampled from G(n,p)
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Other empirical dist. (Barabasi and Albert, 1999).

Note: logarithmic scaling of axes.

A Actor collaboration network n = 212,250 and d = 28.78
B WWW n = 325,729 and d = 5.46
C Power grid n = 4,941 and d = 2.67



Preferential attachment: motivation and history.

Empirical observation: often a few nodes have very high
degrees; degree-distribution resembles a power-law:

P(d(v) = k) ≈ c · 1
kγ
⇔ log P(d(v) = k) ≈ c′ − γ · log k

Model idea (Barabási and Albert, 1999):
1. vertices are successively added to the network;
2. new vertices create a fixed number of edges to already

existing vertices;
3. probability of edge to vertex v is proportional to v ’s degree.

Interpretation high-degree vertices are more popular.

Experimental evidence for power-law distribution with γ ≈ 3.



Preferential attachment: motivation and history.

Empirical observation: often a few nodes have very high
degrees; degree-distribution resembles a power-law:

P(d(v) = k) ≈ c · 1
kγ
⇔ log P(d(v) = k) ≈ c′ − γ · log k

Model idea (Barabási and Albert, 1999):
1. vertices are successively added to the network;
2. new vertices create a fixed number of edges to already

existing vertices;
3. probability of edge to vertex v is proportional to v ’s degree.

Interpretation high-degree vertices are more popular.

Experimental evidence for power-law distribution with γ ≈ 3.



Preferential attachment: motivation and history.

Empirical observation: often a few nodes have very high
degrees; degree-distribution resembles a power-law:

P(d(v) = k) ≈ c · 1
kγ
⇔ log P(d(v) = k) ≈ c′ − γ · log k

Model idea (Barabási and Albert, 1999):
1. vertices are successively added to the network;
2. new vertices create a fixed number of edges to already

existing vertices;
3. probability of edge to vertex v is proportional to v ’s degree.

Interpretation high-degree vertices are more popular.

Experimental evidence for power-law distribution with γ ≈ 3.



Preferential attachment: motivation and history.

Empirical observation: often a few nodes have very high
degrees; degree-distribution resembles a power-law:

P(d(v) = k) ≈ c · 1
kγ
⇔ log P(d(v) = k) ≈ c′ − γ · log k

Model idea (Barabási and Albert, 1999):
1. vertices are successively added to the network;
2. new vertices create a fixed number of edges to already

existing vertices;
3. probability of edge to vertex v is proportional to v ’s degree.

Interpretation high-degree vertices are more popular.

Experimental evidence for power-law distribution with γ ≈ 3.



Preferential attachment model.

Definition (Bollobás, Riordan, Spencer, and Tusnády)
Directed multi-graphs, including loops, with n ≥ 1 vertices and
constant outdegree equal to b ≥ 1.

Iterative definition:
start with empty graph G = (V ,E), V = E = ∅

foreach v = 0, . . . ,n − 1 do
put v into V
foreach j = 0, . . . ,b − 1 do

attach an outgoing edge e = (v , ·) to v ;
randomly select target w of e with probability

dG(w)∑
w ′∈V dG(w ′)

;

put e = (v ,w) into E ;
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Preferential attachment (algorithm).
uses: uniform random sampling of integer from {0, . . . , k}

input : number of nodes n ∈ N≥1, out-degree b ∈ N≥1
data : array A[0 . . . 2nb − 1] //collects endpoints of edges
output
:

multi-graph G = ({0, . . . ,n − 1},E)

E ← ∅; m← 0 //edge set and edge counter

foreach v = 0, . . . ,n − 1 do
foreach j = 0, . . . ,b − 1 do

A[2m]← v //v is source of next edge
w ← A[random({0, . . . ,2m})] //randomly select target
A[2m + 1]← w ; //put target in A
E ← E ∪ {(v ,w)}; m← m + 1 //update edges

Note: number of occurences of v in A equals degree of v
⇒ target node gets selected with the correct probability.
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Some remarks.

It is relatively easy to define a simple model that reproduces a
given property of empirical social networks.

But different properties might be interrelated:

For instance, a planted partition model with dense diagonal
blocks yields more triangles than a G(n,p) model with the same
global density.

Difficulty lies in assessing some network property while
controlling for others.
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Exponential random graph models (informal).

Exponential random graph models (ERGMs) are a class of
random graph models.

Concrete ERG-model is specified by two components:
1. A set of network characteristics (statistics) that (may)

have an influence on the probability of a graph.
2. A set of parameters (associated with statistics) that

determine how network statistics increase or decrease the
probabilities of graphs.

Choice of statistics often motivated by social science theory.

Parameters can be fitted to an observed network⇒ hypothesis
testing.



Exponential random graph models (ERGM).

Definition
The ERGM class consists of random graph models (G,Pθ)
whose probability function Pθ can be written as

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

with
I gi : G → R for i = 1, . . . , k (statistics);
I θi ∈ R for i = 1, . . . , k (parameters); θ = (θ1, . . . , θk );
I normalizing constant κ defined by

κ(θ) =
∑

G′∈G

exp

(
k∑

i=1

θi · gi(G′)

)
.



ERGM (example).

Consider undirected, loopless graphs with 3 vertices.

P(G) =
1
κ

exp [− log(2) ·m(G) + log(16) · triangles(G)]

m(G) 0 1 2 3

triangles(G) 0 0 0 1

P(G) · κ 1 1
2

1
22

16
23

# isomorphic graphs 1 3 3 1

⇒ κ = 1 + 3 · 1/2 + 3 · 1/4 + 2 = 21/4



Relation between statistics and probability.

Probability function

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)
.

Isolating the effect of one specific statistic gi0 :

Pθ(G) = exp[θi0 · gi0(G)] · 1
κ(θ)

exp

∑
i 6=i0

θi · gi(G)

 .

⇒ if gi0(G′) = gi0(G) + c and gi(G′) = gi(G) for all i 6= i0,
then P(G′) = exp(θi0)c · P(G).

It is exp(θi0) > 1⇔ θi0 > 0 and exp(θi0) < 1⇔ θi0 < 0.
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Relation between statistics and probability (example).

Let gi0 count the number of triangles in G.

Pθ(G) = exp[θi0 · gi0(G)] · 1
κ(θ)

exp

∑
i 6=i0

θi · gi(G)

 .

1

2

3

4
Edge between 1 and 3 is
exp(θi0)-times as likely as
between 1 and 4.

If other statistics change
identically!

Positive θi0 ⇒ more likely; negative θi0 ⇒ less likely.



Example: G(n,p) belongs to the ERGM class.

Lemma
G(n,p) is identical with the ERGM defined by

P1(G) = exp [θ ·m(G)] · κ(θ)−1

where θ = log
(

p
1−p

)
.

Proof.
Let P2 denote the probability function of the G(n,p) model.

P2(G) = pm(G) · (1− p)(n
2)−m(G)

=

(
p

1− p

)m(G)

· (1− p)(n
2)

= exp [θ ·m(G)] · (1− p)(n
2)

Thus, P1(G)
P1(G′) = P2(G)

P2(G′) for any two graphs G, G′.



Example: G(n,p) belongs to the ERGM class.

Lemma
G(n,p) is identical with the ERGM defined by

P1(G) = exp [θ ·m(G)] · κ(θ)−1

where θ = log
(

p
1−p

)
.

Proof.
Let P2 denote the probability function of the G(n,p) model.

P2(G) = pm(G) · (1− p)(n
2)−m(G)

=

(
p

1− p

)m(G)

· (1− p)(n
2)

= exp [θ ·m(G)] · (1− p)(n
2)

Thus, P1(G)
P1(G′) = P2(G)

P2(G′) for any two graphs G, G′.



Example: G(n,p) belongs to the ERGM class.

Lemma
G(n,p) is identical with the ERGM defined by

P1(G) = exp [θ ·m(G)] · κ(θ)−1

where θ = log
(

p
1−p

)
.

Proof.
Let P2 denote the probability function of the G(n,p) model.

P2(G) = pm(G) · (1− p)(n
2)−m(G)

=

(
p

1− p

)m(G)

· (1− p)(n
2)

= exp [θ ·m(G)] · (1− p)(n
2)

Thus, P1(G)
P1(G′) = P2(G)

P2(G′) for any two graphs G, G′.



Example: G(n,p) belongs to the ERGM class.

Lemma
G(n,p) is identical with the ERGM defined by

P1(G) = exp [θ ·m(G)] · κ(θ)−1

where θ = log
(

p
1−p

)
.

Proof.
Let P2 denote the probability function of the G(n,p) model.

P2(G) = pm(G) · (1− p)(n
2)−m(G)

=

(
p

1− p

)m(G)

· (1− p)(n
2)

= exp [θ ·m(G)] · (1− p)(n
2)

Thus, P1(G)
P1(G′) = P2(G)

P2(G′) for any two graphs G, G′.



Example: G(n,p) belongs to the ERGM class.

Lemma
G(n,p) is identical with the ERGM defined by

P1(G) = exp [θ ·m(G)] · κ(θ)−1

where θ = log
(

p
1−p

)
.

Proof.
Let P2 denote the probability function of the G(n,p) model.

P2(G) = pm(G) · (1− p)(n
2)−m(G)

=

(
p

1− p

)m(G)

· (1− p)(n
2)

= exp [θ ·m(G)] · (1− p)(n
2)

Thus, P1(G)
P1(G′) = P2(G)

P2(G′) for any two graphs G, G′.



Example: G(n,p) belongs to the ERGM class.

Proof.
P1(G) = P2(G)P1(G′)

P2(G′) for any two graphs G, G′ implies that for
arbitrary but fixed G′ it is∑

G∈G

P1(G) =
∑
G∈G

P2(G) · P1(G′)
P2(G′)

1 = 1 · P1(G′)
P2(G′)

Hence, P1(G′) = P2(G′).



Interpretation of θ = log
(

p
1−p

)
.

Lemma
G(n,p) is identical with the ERGM defined by

P1(G) = exp [θ ·m(G)] · κ(θ)−1

where θ = log
(

p
1−p

)
.

Relation between θ and p
I θ < 0⇐⇒ expected density p < 1/2;
I θ = 0⇐⇒ expected density p = 1/2;
I θ > 0⇐⇒ expected density p > 1/2.

Does not hold in general (if the ERGM contains other statistics).
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Commonly used network statistics.

Commonly used statistics g count the number of specific
subgraphs in the network.

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

If a subgraph count is associated with a positive (negative)
parameter, then those subgraphs become more (less) frequent.
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Commonly used network statistics (I).

Statistic m(G) counts the number of edges.

A positive (negative) parameter associated with m(G)
increases (decreases) the expected density.



Commonly used network statistics (II).
Assume that actors have attribute values a : V → {1, . . . , c},
such as age, gender, nationality, religion, . . . .

Let statistic

ma(G) = |{{u, v} ∈ E ; a(u) = a(v)}|

count the number of edges connecting actors with the same
attribute value.

A positive (negative) parameter associated with ma(G) models
tendency for (against) creating edges to similar actors
homophily (heterophily).



Commonly used network statistics (III).

Statistic t(G) counts the number of triangles in G.

A positive (negative) parameter models a preference
(reluctance) to close triangles (transitivity).

“A friend of a friend is a friend.”

1

2

3

4



Commonly used network statistics (IV).

For ` = 2, . . . ,n− 1 statistic s`(G) counts the number of `-stars.

A positive (negative) parameter models the tendency for
(against) connecting to high-degree vertices.

1

2

3
4

5

Note: a vertex of degree d contributes
(d
`

)
to the `-star count.



Implication on dyad dependency.

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

number of edges

edges connecting same attribute

number of triangles

number of `-stars

1

2

3
4

5

Using some of these statistics make edge probabilities
dependent.



Implication on dyad dependency.

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)
gi(G) edge prob.

number of edges independent

edges connecting same attribute independent

number of triangles dependent

number of `-stars

1

2

3
4

5

dependent



Edge dependency (example).
Consider undirected graphs with 3 vertices; 2-star count s2.

P(G) =
1
κ

exp [log(2) · s2(G)]

s2(G) 0 0 1 3

P(G) · κ 1 1 2 23 = 8

# isomorphic graphs 1 3 3 1

Let e,e′ be two different dyads.

P(Ge|Ge′) = (2 + 8)/(1 + 2 · 2 + 8) = 10/13
P(Ge) = (1 + 2 · 2 + 8)/(1 + 3 · 1 + 3 · 2 + 8) = 13/18

Thus, dyads e and e′ are statistically dependent.



Estimation of ERGM parameters.

Given an observed network Gobs and a set of statistics
gi , i = 1, . . . , k .

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

The maximum likelihood estimate of the parameters is the
vector θ̂ ∈ Rk that maximizes the likelihood function

L : Rk → R; θ 7→ Pθ(Gobs) .

Estimation can be done with the R function ergm.
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Random graph models.
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Given an ERGM (G,Pθ) with

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)
,

we want to design a probabilitstic algorithm
I returning at each call a graph G from G,
I with probability defined by Pθ(G).



First try: factorize the probability.

Let D = {d1, . . . ,dM} be the set of dyads in an arbitrary but
fixed order.

For a given graph G = (V ,E) let Ei = E ∩ {d1, . . . ,di} and
Ei = {dj ∈ {d1, . . . ,di} ; dj /∈ E}.

For two disjoint subsets E ,E ⊆ D let

GE ,E = {G = (VG,EG) ∈ G ; E ⊆ EG and E ∩ EG = ∅} .

Then, for a given graph G it is

P(G) =
∏

di∈E

P(Gdi |GEi−1,Ei−1
) ·

∏
di∈D\E

1− P(Gdi |GEi−1,Ei−1
)
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Sampling from an ERGM: first try.

For a given graph G it is

P(G) =
∏

di∈E

P(Gdi |GEi−1,Ei−1
) ·

∏
di∈D\E

1− P(Gdi |GEi−1,Ei−1
)

Sample from a given ERGM:

E ← ∅; E ← ∅
for i = 1, . . . ,M do

with probability P(Gdi |GE ,E )
put di into E ;

otherwise
put di into E .

Problem: probabilities are computationally intractable.



Sampling from an ERGM: first try.

For a given graph G it is

P(G) =
∏

di∈E

P(Gdi |GEi−1,Ei−1
) ·

∏
di∈D\E

1− P(Gdi |GEi−1,Ei−1
)

Sample from a given ERGM:

E ← ∅; E ← ∅
for i = 1, . . . ,M do

with probability P(Gdi |GE ,E )
put di into E ;

otherwise
put di into E .

Problem: probabilities are computationally intractable.



Conditional probabilities are computationally
intractable in general.

Probability of a graph G in an ERGM:

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

Normalizing constant κ cancels out when computing
conditional probabilities

P(Gdi |GEi−1,Ei−1
) .

But there are M − i + 1 unconstrained dyads in GEi−1,Ei−1
.

Computationally intractable, unless M − i + 1 is very small; that
is, if i is almost as large as M.



Sampling from an ERGM: second try.

For a given graph G = (V ,E) and a dyad d define

G[G(−d)] = {(V ,E \ {d}), (V ,E ∪ {d})} ,

(the set of two graphs that are identical with G on all dyads
except d).

Sample from a given ERGM:

E ← ∅
for i = 1, . . . ,M do

with probability P(Gdi |G[(V ,E)(−di )])
put di into E ;

otherwise
do not put di into E (i. e., do nothing).

Problem: graphs are not returned with the correct probabilities.
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Sampling from an ERGM: yet another try.

Sample from a given ERGM:

start with some arbitrary graph (V ,E)
for some number of steps T do

draw a random dyad d ∈ D
with probability P(Gd |G[(V ,E)(−d)])

put d into E ;
otherwise

remove d from E .

Fact: graphs are still not returned with the correct probabilities.

But probability converges to the correct probability when
T →∞.

That’s what we are going to show in this section.
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Giving it a different name: Markov chain simulation.
Informally, a Markov chain consists of a set of states and
transition probabilities to jump from one state to another.

Here, given an ERGM (G,P)

I the set of states is G (all graphs);
I transition probabilities π are a function of P
I in such a way that

I the probability to be on a graph G converges to P(G),
when the number of simulation steps tends to∞.

⇒ Simulate many steps and return the current graph.

G1 G2 G3

G4 G5 . . .

π12, π21

π14
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Finite stationary Markov chain (simplified definition).
Note: Markov chains are usually defined as random processes
that satisfy certain properties. The following is a more intuitive
definition for stationary Markov chains.

Definition
A (finite stationary) Markov chain is a pair (G, π), where

I G is a finite set G = {G1, . . . ,GN} (state space);
I π is a matrix π ∈ RN×N (transition matrix) satisfying

I for all i , j it is πij ∈ [0,1];
I for all i it is

∑N
j=1 πij = 1.

πij interpreted as the probability to jump from state Gi to Gj .

G1 G2 G3

G4 G5 . . .

π12

π14
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How to define the transition probabilities.

Goal: given an ERGM (G,P)

I define transition probabilities π on the set of graphs G in
such a way that the probability to be on a graph G
converges to P(G), when the number of simulation steps
tends to∞.



An important observation.
πij interpreted as the probability to jump from state Gi to Gj

P(G1) P(G2) P(G3)

P(G4) P(G5) . . .

π12 π32

π42
π52

If the probability to be on a graph G after t iteration steps is
denoted by P(t)(G), then
(with P(t) = [P(t)(G1), . . . ,P(t)(GN)] ∈ RN ) it is

P(t+1) = P(t)π , (matrix-vector multiplication).

This holds since for any j = 1, . . . ,N it is

P(t+1)(Gj) =
N∑

i=1

P(t)(Gi)πij



Stationary state space distributions.

A probability vector P can only be a limit of the Markov chain if
it is a fix-point or the mapping P 7→ Pπ.

P(G1) P(G2) P(G3)

P(G4) P(G5) . . .

π12 π32

π42
π52

A probability distribution P on G is called stationary if for all j it
is P(Gj) =

∑N
i=1 P(Gi)πij .

Satisfied if and only if (with P = [P(G1) . . .P(GN)] ∈ RN written
as a row vector) it is

P = Pπ ,

i. e., P is an eigenvector of π with eigenvalue one.
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Background: eigenvectors and eigenvalues.

Let A ∈ Rn×n be a matrix and x ∈ Cn be a vector.

If there is a λ ∈ C such that

A · x = λ · x ,

then x is called an eigenvector of A and (if x 6= 0) λ is called an
eigenvalue of A.



Irreducible and aperiodic Markov chains.
πij interpreted as the probability to jump from state Gi to Gj .

G1 G2 G3

G4 G5 . . .

π12

π14

A sequence of states Gi1 ,Gi2 , . . . ,Gik is called a (directed) path
if for all j = 1, . . . , k − 1 it is πij ij+1 > 0.

Definition
The Markov chain (G, π) is called

I irreducible if for any two states Gi ,Gj ∈ G there is a path
from Gi to Gj ;

I aperiodic if the greatest common divisor of the length of all
cycles (i. e., paths from a state to itself) equals one.
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Stationary distribution of reversible Markov chains.

Theorem
If a probability distribution P on G satisfies for all graphs Gi , Gj

P(Gi)πij = P(Gj)πji

(Markov chain is then called reversible)
and the Markov chain is irreducible and aperiodic
then P is the unique stationary distribution of the Markov chain
and for any initial distribution P ′ it is

lim
K→∞

P ′πK = P .

Conditions will be used to find an appropriate π if P is given.
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Background: Perron-Frobenius Theorem.

spectral radius ρ(A) = max{|λ| ; λ is eigenvalue of A}

Theorem (Perron-Frobenius)
The spectral-radius ρ(A) of a non-negative, irreducible,
aperiodic matrix A is an eigenvalue of multiplicity one, all
entries of an associated eigenvector are non-zero and have the
same sign, and the absolute values of all smaller eigenvalues
are strictly smaller than ρ.



Background: power iteration.

Theorem (power iteration)
Let A be a non-negative, irreducible, aperiodic matrix and x a
normalized eigenvector with associated eigenvalue ρ(A). For a
vector y (0) whose projection onto x is not zero define a
sequence of vectors by

y (i+1) =
A · y (i)

‖A · y (i)‖
.

Then limi→∞ y (i) = x.



Stationary distribution of reversible Markov chains.
Theorem
If a probability distribution P on G satisfies for all graphs Gi , Gj

P(Gi)πij = P(Gj)πji

and the Markov chain (G, π) is irreducible and aperiodic
then P is the unique stationary distribution of (G, π)
and for any initial distribution P ′ it is

lim
K→∞

P ′πK = P .

Proof.
Matrix π satisfies the conditions of the theorems on the
previous slides. We show that

I P is an eigenvector of π with eigenvalue one;
I the spectral radius ρ of π is one.
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P is an eigenvector of π with eigenvalue one.

From
P(Gi)πij = P(Gj)πji

it follows that for all Gi ∈ G it is∑
Gj∈G

P(Gj)πji =
∑
Gj∈G

P(Gi)πij = P(Gi)

(since the rows of π sum up to one).

Thus, P and π satisfy the matrix equation Pπ = P, i. e., P is an
eigenvector of π with eigenvalue one.
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The spectral radius ρ of π is one.

We have that for all i it is
∑N

j=1 πij = 1.

Let x be an eigenvector of π with eigenvalue ρ.

For all j it is ρxj =
∑N

i=1 xiπij . Thus

ρ

N∑
j=1

xj =
N∑

j=1

ρxj =
N∑

j=1

N∑
i=1

xiπij

=
N∑

i=1

N∑
j=1

xiπij =
N∑

i=1

xi

N∑
j=1

πij =
N∑

i=1

xi

Since
∑N

i=1 xi 6= 0, it must be ρ = 1.
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Stationary distribution of reversible Markov chains.

Theorem
If a probability distribution P on G satisfies for all graphs Gi , Gj

P(Gi)πij = P(Gj)πji

(Markov chain is called reversible)
and the Markov chain is irreducible and aperiodic
then P is the unique stationary distribution of the Markov chain
and for any initial distribution P ′ it is

lim
K→∞

P ′πK = P .



Gibbs sampling.

Given P, define π such that

P(Gi)πij = P(Gj)πji .

Gibbs sampling: define π as follows
I πij = 0 if Gi and Gj differ in more than one dyad;
I if Gi and Gj differ in exactly one dyad, then

πij =
P(Gj)(n

2

)
(P(Gi) + P(Gj))

.

I πii =
∑ P(Gi )

(n
2)(P(Gi )+P(G))

(sum over all G that differ from Gi in exactly one dyad)

Show: π is normalized, irreducible, aperiodic, reversible.
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Gibbs sampling (algorithm).

initialize G by any graph from G;
repeat many times

I select a dyad {i , j} uniformly at random;

I with probability P(G+ij )
P(G+ij )+P(G−ij )

I replace G = (V ,E) by G+ij = (V ,E ∪ {i , j})
I otherwise replace G = (V ,E) by G−ij = (V ,E \ {i , j});

return G;

Note: (in practice) the statistics g`(G+ij) and g`(G−ij) can be
efficiently derived by computing changes to the statistics g`(G).
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Estimating the parameters of ERGMs

The general form of the class of ERGMs is:

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

where:
I gi : G → R for i = 1, . . . , k are statistics
I θi for i = 1, . . . , k are parameters
I κ(θ) is a normalizing constant defined by:

κ(θ) =
∑

G′∈G

exp

(
k∑

i=1

θi · gi(G′)

)

How to specify the vector of parameter θ
given an observed graph G ∈ G?
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Estimating the parameters of ERGMs

How to specify the vector of statistics g given an observed
graph Gobs ∈ G?

I Gender by color:

- pink = female
- turquoise = male

I Race by shape:

- square = white
- circle = black
- triangle = other

“Grey’s Anatomy Network of Sexual Relations”
collected by Gary Weissman

Looking at “patterns” in the graph...



Estimating the parameters of ERGMs

How to specify the vector of statistics g given an observed
graph Gobs ∈ G?

Friendship in FB
network data

Gender by color:

- pink = female
- turquoise = male

... does not always help, ...



Estimating the parameters of ERGMs

How to specify the vector of statistics g given an observed
graph Gobs ∈ G?

Friendship in FB
network data

Gender by color:

- pink = female
- turquoise = male

..., but theory related to the phenomenon under study can help!



Estimating the parameters of ERGMs

How to specify the vector of statistics g given an observed
graph Gobs ∈ G?

Conclusions:

- it is not simple to specify which effects might be relevant for
explaining
an observed graph G based solely on visual inspection!

- a theory-guided approach is necessary!
Statistics are “translations” of hypotheses concerning
the local social processes that might have generated an
observed graph.

ERGMs allow researchers to test their hypotheses:
do data (i.e., the observed graph) support or are against
researchers’ hypotheses?



Estimating the parameters of ERGMs
The general form of the class of ERGMs is:

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

where:
I gi : G → R for i = 1, . . . , k are statistics
I θi for i = 1, . . . , k are parameters
I κ(θ) is a normalizing constant defined by:

κ(θ) =
∑

G′∈G

exp

(
k∑

i=1

θi · gi(G′)

)

How to estimate and to interpret the vector of parameters θ
given an observed graph G ∈ G?



Estimating the parameters of ERGMs
Example

John Padgett Florentine families data set

Estimate Std.Error p-value
edges -4.21 1.23 0.000837
triangle 1.31 0.37 0.044581
kstar2 1.04 0.65 0.134105
kstar3 -0.63 0.41 0.128747
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Estimating the parameters of ERGMs

Definition

Let (G, θ) be a random graph model parametrized by
θ ∈ Θ ⊆ Rk and
Gobs an observed graph.

The likelihood function associated with Gobs is defined by:

L : Θ→ R; θ 7→ Pθ(Gobs)

A parameter vector θ̂ maximizing L, i.e.,

θ̂ = arg max
θ∈θ

L(θ)

is called maximum likelihood estimate (MLE) for θ.



Estimating the parameters of ERGMs
Therefore, estimating the vector of parameters θ of ERGMs
requires solving
the following optimization problem:

θ̂ = arg max
θ∈θ

L(θ) = arg max
θ∈θ

Pθ(Gobs) =

= arg max
θ∈θ

1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)

or equivalently:

θ̂ = arg max
θ∈θ

logL(θ)

= arg max
θ∈θ

(
k∑

i=1

θi · gi(G)

)
− ln [κ(θ)]

which is not simple!!!



Interpreting the parameters of ERGMs
Something to keep in mind:

1. Statistics are “translations” of hypotheses concerning a
particular phenomenon into local configurations of a graph

2. A parameter θi is a measure of the “presence” of a
specific local configuration si(G) in the observed graph:

I θi > 0 the number of si (G) is higher than that expected by
chance
⇒ evidence towards the hypothesis

I θi < 0 the number of si (G) is lower than that expected by
chance
⇒ evidence against the hypothesis

I θi = 0 the number of si (G) is equal to that expected by
chance
⇒ evidence that the local process involved in the
hypothesis has
no role in the process of tie formation

When a parameter is statistically different from 0?
We need a statistical test!!!



Estimating the parameters of ERGMs
Example

Estimate Std.Error p-value
edges -4.21 1.23 0.000837
triangle 1.31 0.37 0.044581
kstar2 1.04 0.65 0.134105
kstar3 -0.63 0.41 0.128747



Testing and interpreting the parameters of ERGMs

Hypothesis test:

1. State the hypotheses

- The null hypothesis (H0) states that the observed number of
si (G) is equal to that expected by chance

H0 : θi = 0

- The alternative hypothesis (H1) states that number of si (G)
is influenced by some non-random cause

H1 : θi 6= 0



Testing and interpreting the parameters of ERGMs

2. Decision rule (1):

|zobs| =
∣∣∣ θi

s.e.(θi )

∣∣∣ ≥ 2 reject H0

|zobs| =
∣∣∣ θi

s.e.(θi )

∣∣∣ < 2 fail to reject H0

2 · s.e.(θi ) 2 · s.e.(θi )

H0 : θi = 0
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Testing and interpreting the parameters of ERGMs
2. Decision rule (2) based on

p − value = P(|Z | > zobs|H0)

Then,

p − value < 0.05 reject H0

p − value > 0.05 fail to reject H0

−zobs zobs

H0 : θi = 0
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Near-degeneracy and multi-modality of ERGMs
An ERGM (G,Pθ) is near-degenerate if it places all the
probability mass on a small subset of G
Examples

Pθ(G) =
1
κ(θ)

exp (ηm(G) + σ2s2(G)) (η, σ2) = (−2,−0.2)
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Pθ(G) =
1
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Near-degeneracy and multi-modality of ERGMs
An ERGM (G,Pθ) is near-degenerate if it places all the
probability mass on a small subset of G
Examples

Pθ(G) =
1
κ(θ)

exp (ηm(G) + σ2s2(G)) (η, σ2) = (−2,0.4)

0 5 10 15 20

0
20

40
60

80
10

0

Edges

2−
st

ar
s

0.1

0.2

0.3

0.4



Near-degeneracy and multi-modality of ERGMs

Consequences of near-degeneracy

1. The Markov chain for parameter estimations and
simulations converges very slow towards the stationary
distribution

⇓

Parameter estimates are not reliable

2. The distribution concentrates on “uninteresting” network
configurations, e.g. near-empty or near-complete graphs

How to overcome near-degeneracy???



Near-degeneracy and multi-modality of ERGMs
Overcoming near-degeneracy

1. Improve the convergence of the Markov chain via different
updating rules (e.g., Metropolis-Hastings algorithm vs.
Gibbs sampling)

⇓ but

the resulting ERGMs are still inadequate for empirical
networks

2. Conditioning on some network characteristics (e.g.,
m(Gobs))

⇓ but

there are still many datasets for which satisfactory
parameters value cannot be obtained

3. New specifications for the ERGMs
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updating rules (e.g., Metropolis-Hastings algorithm vs.
Gibbs sampling)

⇓ but

the resulting ERGMs are still inadequate for empirical
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2. Conditioning on some network characteristics (e.g.,
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⇓ but

there are still many datasets for which satisfactory
parameters value cannot be obtained
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Near-degeneracy and multi-modality of ERGMs

Interactions among 39
workers in a tailor
shop in Zambia

An interaction is:
“a continuous
uninterrupted
social activity involving
the participation of at
least two persons”

“Kapferer’s tailor shop data”
collected by Bruce Kapferer in Zambia

P(Gobs) =
1
κ(θ)

exp(ηm(G) + σ2s2(G) + σ3s3(G) + τ t(G))

is a degenerate model!!!



Near-degeneracy and multi-modality of ERGMs

New specifications for ERGMS

1. Alternating k-stars (GWDEGREE)

S2 S3

saltS(G) =
n−1∑
k=2

(−1)k Sk (G)

λk−2

- represents the distribution of the degree
- balance between positive and negative stars parameters to

prevent empty or complete graphs



Near-degeneracy and multi-modality of ERGMs
New specifications for ERGMS

2. Alternating k-triangles (GWESP/ESP)

T2 T3

saltT (G) =
n−1∑
k=2

(−1)k Tk (G)

λk−2

- number of shared partners of adjacent actors
- controls the tendency to have many cohesive subsets of 3

or more nodes
- N.b.

requires a partial dependence assumption
⇒ the resulting graph is no longer a Markov graph!!!



Near-degeneracy and multi-modality of ERGMs
New specifications for ERGMS

3. Alternating k-two-paths (GWDSP/DSP)

P2 P3

saltP(G) = P1(G)− 2P2(G)

λ
+

n−1∑
k=3

(
−1
λ

)k−1

Pk (G)

- number of shared partners of two actors
- models the pre-conditions for forming triangles
⇒ Used in conjunction with the alternating k-triangles

- N.b.
requires a partial dependence assumption
⇒ the resulting graph is no longer a Markov graph!!!



Near-degeneracy and multi-modality of ERGMs

Interactions among 39
workers in a tailor
shop in Zambia

An interaction is:
“a continuous
uninterrupted
social activity involving
the participation of at
least two persons”

“Kapferer’s tailor shop data”
collected by Bruce Kapferer in Zambia

P(Gobs) =
1
κ(θ)

exp(ηm(G)+θaltSsaltS(G)+θaltT saltT (G)+θaltPsaltP(G))

is not a degenerate model!!!



Estimating the parameter of ERGMs

Estimate Std.Error
edges -3.779 1.495
alt-k-stars -0.081 0.409
alt-k-triangles 1.129 0.206
alt-k-2path 0.029 0.054
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Recall: some statistics make edge probabilities
dependent – others not.

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · gi(G)

)
gi(G) edge prob.

number of edges independent

edges connecting same attribute independent

number of triangles dependent

number of `-stars

1

2

3
4

5

dependent



Conditional independence of edges (informally).

Two dyads d1 and d2 are said to be conditionally independent
(given the rest of the graph) if—under the condition that all
other dyads are fixed—the state of the dyad d2 does not provide
any additional information about the probability P(d1 ∈ E).

d2 d1 d2 d1



Conditional independence of edges.

Let (G,P) be a random graph model where D is the set of
dyads of graphs in G and assume that P(G) > 0 for all G ∈ G.
Let d1,d2 ∈ D be two different dyads.

For a partition D+ ] D− = D \ {d1,d2} of the set of dyads
different from d1 and d2 let the subset GD+,D− be defined by

GD+,D− = {G ∈ G ; D+ ⊆ EG and D− ∩ EG = ∅} .

We say that d1 and d2 are conditionally independent (given the
rest of the graph) if for all partitions D+ ] D− = D \ {d1,d2} it is

P(Gd1 |GD+,D−) = P(Gd1 |GD+,D− ∩ Gd2) .

Informally: if we know the state of all dyads in D \ {d1,d2}, the
state of the dyad d2 does not provide any additional information
about the probability P(d1 ∈ E).



Hammersley-Clifford Theorem; special case.

Theorem (first part)
Let G be a set of graphs that is closed under taking subsets of
the edge set. Let (G,P) be a random graph satisfying P(G) > 0
for all G ∈ G and let D be the set of dyads.

There are constants {αA ∈ R ; A ⊆ D}, satisfying αA = 0 if A
contains two conditionally independent dyads, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where (1)

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 . (2)
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Hammersley-Clifford Theorem; special case.

Theorem (second part)
Conversely, if the probability P on G is defined by

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 ,

then two dyads d1 and d2 are conditionally independent in
(G,P), unless there is a subset A ⊆ D with d1,d2 ∈ A and
αA 6= 0.
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Conclusion from the Hammersley-Clifford Theorem.

There are constants {αA ∈ R ; A ⊆ D}, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 .

⇒ every random graph (G,P) with P > 0 is an ERGM:

I statistics: for A ⊆ D define gA(G) =

{
1 A ⊆ E(G)

0 else
I parameters: αA

P(G) =
1
κ

exp

∑
A⊆D

αA · gA(G)

 .
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κ
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⇒ every random graph (G,P) with P > 0 is an ERGM:

I statistics: for A ⊆ D define gA(G) =
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1 A ⊆ E(G)
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I parameters: αA
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exp
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Markov random graphs.

Definition
Markov random graphs are a class of random graph models
satisfying (1) the probability of every graph is positive and
(2) for every set of four pairwise different vertices {i , j ,u, v}
the dyads {i , j} and {u, v} are conditionally independent, given
the rest of the graph.

Example
{i , j} and {u, v} conditionally
independent;

{i , j} and {j ,u} might be
conditionally dependent; I

J

U

V

Markov graphs are a specific subclass of the ERGM class.



Dependence graph (of a random graph model).

Definition
Let (G,P) be a random graph model and let D be the set of
dyads of graphs in G.
The dependence graph D = (D,E) of (G,P) has vertex set D,
{di ,dj} ∈ E if di and dj are not conditionally independent, given
the rest of the graph.

Example
the dependence graph of a
Markov graph on vertices
V = {1,2,3,4} is

{1,2}

{1,3}

{1,4}

{2,3}

{2,4}

{3,4}

A subset A ⊆ D is a clique in the dependence graph if A does
not contain two conditionally independent dyads.



Cliques in the dependence graph of a Markov graph.

Markov random graphs: edges {i , j} and {u, v} are
conditionally independent, unless they have a vertex in
common.

Cliques in the dependence graph of a Markov graph are

edges

triangles

`-stars, for ` = 2, . . . ,n − 1

1

2

3
4

5

No other subgraphs are cliques in the dependence graph.
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edges
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ERGM of general Markov graphs.

Corollary
Let (G,P) be a Markov random graph on vertices
V = {1, . . . ,n}. Then there are real constants

ηuv for all dyads {u, v}
τuvw for all triangles {u, v ,w}

σuv1...v` for all 2 ≤ ` ≤ n − 1, and all
`-stars (u, {v1, . . . , v`})

such that the probability of a graph G ∈ G can be written as

P(G) =
1
κ

exp

 ∑
uv∈E(G)

ηuv +
∑

uvw∈T (G)

τuvw +
n−1∑
`=2

∑
uv1...v`∈S`(G)

σuv1...v`





ERGM of general Markov graphs (remarks).

P(G) =
1
κ

exp

 ∑
uv∈E(G)

ηuv +
∑

uvw∈T (G)

τuvw +
n−1∑
`=2

∑
uv1...v`∈S`(G)

σuv1...v`


Each dyad, triangle, `-star can contribute differently to the
probability of a graph.

⇒ unreasonably high number of parameters.



Homogeneous random graph model.

Two graphs G = (V ,E) and H = (W ,F ) are called isomorphic
if there is a bijection ϕ : V →W such that

∀u, v ∈ V : {u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ F .

Definition
A random graph model (G,P) is called homogeneous if for any
pair of isomorphic graphs G and H it is P(G) = P(H).



ERGM of homogeneous Markov graphs.

Corollary
Let (G,P) be a homogeneous Markov random graph. Then
there are real constants η, τ , and σ` for ` = 2, . . . ,n − 1 such
that the probability of a graph G ∈ G can be written as

P(G) =
1
κ

exp

(
η ·m(G) + τ · t(G) +

n−1∑
`=2

σ` · s`(G)

)

Proof.
Start from the ERGM of a general Markov graph.
Show that any two edge parameters are equal. . .
For ` = 2, . . . ,n − 1, show that any two `-star parameters are
equal. . .
Show that any two triangle parameters are equal. . .



ERGM of homogeneous Markov graphs.

Corollary
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1
κ
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σ` · s`(G)
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Example: dependence graph of G(n,p).

G(n,p) is a homogeneous random graph model whose
dependence graph has no edges. Thus,

P(G) =
1
κ

exp (η ·m(G)) .



Hammersley-Clifford Theorem; special case.
proof

Theorem (first part)
Let (G,P) be a random graph satisfying P(G) > 0 for all G ∈ G,
let D be the set of dyads and D the dependence graph.

There are constants {αA ∈ R ; A ⊆ D}, satisfying αA = 0 if A is
not a clique in D, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 .



Möbius Inversion Theorem.
Needed for the proof of the Hammersley-Clifford Theorem.

Let S be a finite set and

f : P(S)→ R; g : P(S)→ R;

two functions defined on the set of subsets of S.

Then, for all subsets A ⊆ S it is

f (A) =
∑
B⊆A

g(B)

if and only if for all subsets A ⊆ S it is

g(A) =
∑
B⊆A

(−1)|A\B|f (B) .
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Proof of the Hammersley-Clifford Theorem.

Want to show P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 .

For a set B ⊆ D define GB = (V ,B) ∈ G to be the graph whose
edge set is equal to B.

For A ⊆ D define

αA :=
∑
B⊆A

(−1)|A\B| log P(GB) .

Motivation (Möbius Inversion Theorem)

f (A) =
∑
B⊆A

g(B)⇐⇒ g(A) =
∑
B⊆A

(−1)|A\B|f (B) .
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Proof of the Hammersley-Clifford Theorem.
By definition we have

αA =
∑
B⊆A

(−1)|A\B| log P(GB) .

Möbius Inversion Theorem:

f (A) =
∑
B⊆A

g(B)⇐⇒ g(A) =
∑
B⊆A

(−1)|A\B|f (B) .

Thus, for A ⊆ D it is

log P(GA) =
∑
B⊆A

αB .

In particular, for A = E(G) we get

P(G) = exp

 ∑
B⊆E(G)

αB

 .



Proof of the Hammersley-Clifford Theorem.

We have

P(G) = exp

 ∑
A⊆E(G)

αA

 .

It remains to show that αA = 0 if A is not a clique in D; and we
are done with the first part of the theorem.
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are done with the first part of the theorem.



Proof of the Hammersley-Clifford Theorem.
Want to show that αA = 0 if A is not a clique in D.

Let d ,d ′ ∈ D be two conditionally independent dyads and
B ⊆ D with d ,d ′ 6∈ B. It is

P(GB∪{d ,d ′})

P(GB∪d ′) + P(GB∪{d ,d ′})
=

P(GB∪{d})

P(GB) + P(GB∪{d})
.

which is true if and only if

P(GB∪{d ,d ′})

P(GB∪{d ′})
=

P(GB∪{d})

P(GB)
. (3)

d' d d' d
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Proof of the Hammersley-Clifford Theorem.

αA =
∑
B⊆A

(−1)|A\B| log P(GB) .

Let A ⊆ D, contain two conditionally independent dyads d ,d ′.

αA =
∑
B⊆A

d,d′∈B

(−1)|A\B| log P(GB) +
∑
B⊆A

d∈B, d′ 6∈B

(−1)|A\B| log P(GB)

+
∑
B⊆A

d 6∈B, d′∈B

(−1)|A\B| log P(GB) +
∑
B⊆A

d,d′ 6∈B

(−1)|A\B| log P(GB)

=
∑

B⊆A\{d ,d ′}

(−1)|A\B| log
(

P(GB∪{d ,d ′})

P(GB∪{d ′})

/
P(GB∪{d})

P(GB)

)
= 0 , follows from (3)

Thus, αA = 0 if A is not a clique in D.



Hammersley-Clifford Theorem.

Theorem (second part)
Conversely, if the probability P on G is defined by

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 ,

then two dyads d and d ′ are conditionally independent in (G,P),
unless there is a subset A ⊆ D with d ,d ′ ∈ A and αA 6= 0.



Proof of the Hammersley-Clifford Theorem.

Suppose that d , d ′ are two dyads such that there is no subset
A ⊆ D with αA 6= 0 and d ,d ′ ∈ A.

We show that d and d ′ are conditionally independent.

Equivalently, for any B ⊆ D with d ,d ′ 6∈ B it is

P(GB∪{d ,d ′})

P(GB∪{d ′})
=

P(GB∪{d})

P(GB)
.

d' d d' d



Proof of the Hammersley-Clifford Theorem.

(d , d ′ are two dyads for which there is no subset A ⊆ D with
αA 6= 0 and d ,d ′ ∈ A; d ,d ′ 6∈ B)

log
(

P(GB∪{d ,d ′})

P(GB∪{d ′})

)
=

∑
A⊆B∪{d ,d ′}

αA −
∑

A⊆B∪{d ′}

αA

=
∑

A⊆B∪{d,d′}
d∈A

αA

=
∑

A⊆B∪{d}
d∈A

αA

=
∑

A⊆B∪{d}

αA −
∑
A⊆B

αA

= log
(

P(GB∪{d})

P(GB)

)
.



Hammersley-Clifford Theorem; special case.

Theorem
Let (G,P) be a random graph satisfying P(G) > 0 for all G ∈ G.

There are constants {αA ∈ R ; A ⊆ D}, satisfying αA = 0 if A is
not a clique in D, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 . (4)

Conversely, if P is defined by (4), then two dyads d ,d ′ ∈ D are
conditionally independent, unless there is a subset A ⊆ D with
d ,d ′ ∈ A and αA 6= 0.
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