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Task 3: G(n, p) characterization 4 points

Proof the following three properties of the G(n, p) model:

(1) The edge probability of every dyad is equal to p.

(2) The model is fully independent.

(3) There is just one model satisfying properties (1) and (2).

Solution:

Let D′ = D1 ] D2 ⊆ D be a subset of dyads partitioned into two disjoint sets D1 and D2; both
sets D1 and D2 may be empty. Define m1 = |D1| and m2 = |D2| to be the numbers of dyads in
the two sets. Let

G′ = {(V,E) ∈ G ; D1 ⊆ E ∧D2 ∩ E = ∅}

be the set of all graphs in which the dyads in D1 are constrained to be edges and the dyads in D2

are constrained to be non-edges. We first show that

P (G′) = pm1 · (1− p)m2 . (1)

Let M = |D| denote the number of all dyads and for any graph G = (V,E) let m(G) = |E| denote
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the number of edges of G. It is

P (G′) =
∑
G∈G′

P (G) (2)

=
∑
G∈G′

pm(G) · (1− p)M−m(G) (3)

=

M−m2∑
m=m1

(
M −m1 −m2

m−m1

)
· pm · (1− p)M−m (4)

=

M−m1−m2∑
m′=0

(
M −m1 −m2

m′

)
· pm′+m1 · (1− p)M−(m

′+m1) (5)

= pm1 ·
M−m1−m2∑

m′=0

(
M −m1 −m2

m′

)
· pm′ · (1− p)M−m1−m′

(6)

= pm1 · (1− p)m2 ·
M−m1−m2∑

m′=0

(
M −m1 −m2

m′

)
· pm′ · (1− p)M−m1−m2−m′

(7)

= pm1 · (1− p)m2 · (p + (1− p))M−m1−m2 (8)

= pm1 · (1− p)m2 · (1)M−m1−m2 (9)

= pm1 · (1− p)m2 , (10)

which is Eq (1).

Some comments on the chain of equations above:

(2) is the definition of the probability of a set of graphs.

(3) puts in the probability function of the G(n, p) model.

(4) changes the order of summation. The summation-index now runs over all possible numbers
of edges of graphs in G′; note that the minimum number of edges is m1 (since all dyads in
D1 have to be edges) and the maximum number of edges is M −m2 (since all dyads in D2

have to be non-edges). The probability of any graph with m edges is pm · (1 − p)M−m and
the number of graphs with m edges in G′ is

(
M−m1−m2

m−m1

)
. To see that the last claim is correct

note that only m −m1 edges can be freely chosen (the m1 edges in D1 are fixed) and these
m−m1 edges can be chosen out of M −m1 −m2 unconstrained dyads.

(5) substitutes m′ = m−m1; note that m runs from m1 to M −m2 if and only if m′ runs from
zero to M −m1 −m2.

(6) pulls out the factor pm1 from every term of the sum.

(7) multiplies the whole sum with (1−p)m2 and divides every term of the sum by (1−p)m2 (note
that we subtract m2 from the exponents of (1− p) in all terms) which yields equality.

(8) is the binomial formula.
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(9) and (10) are obvious.

Now the proof of Task 3 (1) and (2) is quite simple.

(1) To show that the edge probability of every dyad is equal to p, let e ∈ D be a dyad and define
a set of constrained dyads D′ = D1 ]D2 by D1 := {e} and D2 = ∅. It is m1 = |D1| = 1 and
m2 = |D2| = 0 and thus, by Eq. (1), it is

P (e ∈ E) = P (Ge) = p .

(2) To show that the model is fully independent, let e ∈ D be a dyad, D′ = D1 ]D2 ⊆ D \ {e}
be a set of constrained dyads not containing e, and

G′ = {(V,E) ∈ G ; D1 ⊆ E ∧D2 ∩ E = ∅} .

Define m1 = |D1| and m2 = |D2|. Then it is, by applying Eq. (1) three times,

P (Ge ∩ G′) = p1+m1 · (1− p)m2 = p · pm1 · (1− p)m2 = P (Ge) · P (G′) ,

which shows that Ge is independent of G′.

Claim (3) of Task 3 follows directly from the lecture slides where we noted that the probabil-
ity function of a fully independent model is uniquely determined by the edge probabilities of all
dyads.
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