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Curved exponential family models
for social networks�
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Abstract

Curved exponential family models are a useful generalization of exponential random graph models
(ERGMs). In particular, models involving the alternating k-star, alternating k-triangle, and alternating k-
twopath statistics of Snijders et al. [Snijders, T.A.B., Pattison, P.E., Robins, G.L., Handcock, M.S., in press.
New specifications for exponential random graph models. Sociological Methodology] may be viewed as
curved exponential family models. This article unifies recent material in the literature regarding curved
exponential family models for networks in general and models involving these alternating statistics in par-
ticular. It also discusses the intuition behind rewriting the three alternating statistics in terms of the degree
distribution and the recently introduced shared partner distributions. This intuition suggests a redefinition
of the alternating k-star statistic. Finally, this article demonstrates the use of the statnet package in R for
fitting models of this sort, comparing new results on an oft-studied network dataset with results found in the
literature.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For a fixed set of n actors, or nodes, and a network on those nodes, assume that Y denotes the
n × n adjacency matrix for the network; that is

Yij =
{

1 if an edge exists from i to j,

0 otherwise
(1)
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In some social networks applications, the goal is to produce a probabilistic model for Y based on
an observed network dataset. It is the goal of this article to explain a particular class of models,
called curved exponential family models, for achieving this end. We assume here that the reader
is at least somewhat conversant in certain basic techniques of statistical modelling such as logistic
regression, though not necessarily familiar with the intricacies of statistical modelling of networks.

Implicit in definition (1) is the fact that we assume no valued or multiple edges are allowed;
furthermore, we disallow self-edges, so Yii = 0 for all i. Finally, we will treat only undirected
networks in this article, which implies that Yij = Yji, though we make this choice only to simplify
some of the arguments; there is little difficulty in extending all of the results here to the case of
directed networks.

Beyond the network information contained in Y, there are often additional data, such as a set of
measured characteristics for each node in the network. For instance, when the nodes are people,
we may know each person’s age and sex. Throughout this article, we let X denote the additional
data.

We assume throughout this article that the probability of observing a particular network is a
function of statistics that may depend on the network itself as well as covariates measured on the
nodes. For the particular class of models known as exponential random graph models (ERGMs),
the relationship between a particular graph y and its probability of occurrence conditional on the
additional data X is generally expressed as

Pη(Y = y) = exp{∑p
i=1 ηigi(y, X)}
κ(η)

= exp{ηtg(y, X)}
κ(η)

, (2)

where g(y, X) is a user-defined p-vector of statistics and η ∈ Rp denotes the statistical parameter
governing the probabilistic formation of the network. The denominator, κ(η), is a normalizing
constant that ensures that the sum of (2) over all possible y equals 1.

ERGMs are sometimes known in the social networks literature as p-star models (Wasserman
and Pattison, 1996). We use “ERGM” instead of “p-star” here due to the vast statistical literature
covering exponential family models (e.g., Barndorff-Nielsen, 1978; Brown, 1986). Nevertheless,
we consider “p-star” to be synonymous with “ERGM” in this article, with one caveat: Wasserman
and Pattison (1996) used a method of parameter estimation, maximum pseudo-likelihood esti-
mation, that has come to be closely associated with the p-star models themselves. However, in
this article we separate the name of the models (ERGMs or p-star models) from the method of
estimating their parameters. In particular, we do not discuss maximum pseudo-likelihood estima-
tion here, focusing instead on the better-understood method of maximum likelihood estimation.
ERGMs are discussed in detail by Robins et al. (2007a).

The remainder of this article concerns generalizations of (2) known as curved exponential
family models. Section 2 discusses these models in general terms, while Sections 3 and 4 focus
on specific examples—namely, models involving the alternating k-star, alternating k-triangle,
and alternating k-twopath statistics developed by Snijders et al. (in press). These statistics have
recently shown great promise in producing parsimonious models that fit certain social network
datasets well; they are discussed further by Robins et al. (2007b). Much of Sections 3 and 4 is
devoted to a reformulation of these statistics in terms of the degree statistics and the recently
developed shared partner statistics, as well as an attempt to reveal how this reformulation aids in
interpreting these statistics. Finally, Section 5 demonstrates the use of these models on real data.
The analysis, which recreates and extends some earlier work using the same dataset, is carried out
using the statnet package for R, available for use at csde.washington.edu/statnet.
The computer code used in Section 5 may be found in Appendix A.
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2. Curved exponential families

In model (2), the maximum likelihood estimator (MLE) of the parameter vector η is, by
definition, the vector that maximizes Pη(Y = yobs) as a function of η, where yobs is the observed
network. In other words, if we let η̂ denote the MLE and we assume that η is a vector contained
in p-dimensional space (denoted R

p), then we may write

η̂ = arg max
η∈Rp

exp{ηtg(yobs, X)}
κ(η)

. (3)

It is worth noting here that it is extremely difficult to find η̂ except in the case of a simplistic
model (e.g., one in which all edges are assumed independent of one another, so the model is
simply logistic regression) or a very small network of no more than about ten nodes. This is part
of the reason that the science of fitting models like (2) – that is, estimating the parameters – has
lagged so far behind the proposal of models like (2) in the literature. Two similar yet distinct
methods to approximate η̂ are outlined by Snijders (2002) and Hunter and Handcock (2006).
Though these methods are beyond the scope of the current article, suffice it to say that there are
many potential pitfalls; these are discussed by Snijders (2002), Handcock (2002, 2003), Hunter
and Handcock (2006), and Robins et al. (2007a).

To add yet another layer of complexity to the problem of finding η̂, suppose that η̂ is not allowed
to be any element of R

p, but rather that it must be contained in some subset S ⊂ R
p:

η̂∗ = arg max
η∈S

exp{ηtg(yobs, X)}
κ(η)

. (4)

Note that if S is taken to be R
p itself, then Eqs. (4) and (3) are identical; thus, (4) generalizes (3). The

reason for considering the constrained optimization problem of Eq. (4) may not be immediately
clear, especially since constrained optimization is generally more difficult to accomplish than
unconstrained optimization as in Eq. (3).

To see how a problem such as (4) might arise in theory, suppose that θ is a vector in it q-
dimensional space R

q, where q < p. That is, θ has fewer components than η. Now suppose that
we regard η as a function of θ, so that model (2) becomes:

Pη(Y = y) = exp{η(θ)tg(y, X)}
κ[η(θ)]

. (5)

Then the maximum likelihood estimator of θ is the q-dimensional vector θ̂ that maximizes (5) as
a function of θ:

θ̂ = arg max
θ∈Rq

exp{η(θ)tg(y, X)}
κ[η(θ)]

. (6)

One may think of this as constrained optimization (4) in which S is the set of all η(θ) as θ ranges
over all of R

q, but it is probably easier to view the problem as unconstrained maximization as in
(6).

Note that matters simplify considerably if η(θ) is a linear function of θ, say η(θ) = Mθ for
some constant p × q matrix M. For in that case, model (5) becomes:

Pη(Y = y) = exp{θtMtg(y, X)}
κ(Mθ)

;
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thus, by letting g∗(y, X) = Mtg(y, X) and κ∗(θ) = κ(Mθ), we obtain the model:

Pη(Y = y) = exp{θtg∗(y, X)}
κ∗(θ)

,

which is an ERGM just like (2). In other words, replacing η by η(θ) is only interesting if η(θ) is
not a linear function of θ, which is why we call model (5) a curved exponential family model.

Curved exponential families were first referred to as such by Efron (1975), who later wrote
another article discussing the geometric intuition behind them (Efron, 1978). Finding a maxi-
mum likelihood estimator (6) in a curved exponential family is generally more difficult than in
a regular (non-curved) exponential family. For instance, the Robbins–Monro algorithm (Robbins
and Monro, 1951), exploited by Snijders (2002) to approximate an MLE for model (2), is based
on an elegant equality that is true for regular exponential families but not for curved exponential
families. Nonetheless, it is still possible to perform approximate maximum likelihood estimation
for curved exponential families. Efron (1978) elegantly describes the geometry underlying such
maximization, and Hunter and Handcock (2006) discuss the technical details of implementing it
for the case of network models. However, we now lay general theory aside in favor of a particular
application, namely, the alternating statistics of Snijders et al. (in press).

3. Rewriting alternating k-stars

The first curved exponential family model we will consider involves the k-star statistics
S1(y), . . . , Sn−1(y), where Sk(y) denotes the number of k-stars in the graph y. A k-star is a set of
k distinct edges that all share an endpoint. In particular, a 1-star is simply an edge. Note that the
number of edges in the graph y is sometimes denoted by L(y), though we use S1(y) in this article.

When each k-star statistic has its own coefficient in an ERGM, the resulting model is

P(Y = y) = exp{∑n−1
i=1 ηiSi(y)}
κ(η)

. (7)

Recent work by Snijders et al. (in press) considers a more refined model based on the k-star
statistics. If λs is a known positive constant (the subscripted s is for “star”), then we may define
the scalar-valued network statistic:

a(s)(y; λs) = S2(y) − S3(y)

λs
+ · · · + (−1)n−3 Sn−1(y)

λn−3
s

. (8)

Because of the alternating signs in front of the Sk(y) terms, Snijders et al. (in press) call a(s)(y; λs)
an alternating k-star statistic. Now suppose that we formulate a simple ERGM with only a single
scalar parameter, say ξ, and the single statistic a(s). That is, suppose that

P(Y = y) = exp{ξa(s)(y; λs)}
κ(ξ, λs)

. (9)

As long as λs is fixed, then model (9) is a standard ERGM, by which we mean a model of the form
(2). But how should λs be chosen? Certainly there is no hope of making an appropriate selection
without having some sense of the intuitive meaning of λs. We will delve into this intuition later
in this section. But even if a reasonable value may be decided on for a particular application, how
can we know whether such a choice is the best choice?

If one wishes to automate the choice of λs, then λs becomes a parameter in the model just like
ξ. However, if both ξ and λs are parameters to be estimated, then model (9) is no longer a standard
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ERGM. Instead, one may check that model (9) is just like model (7) as long as the constraints:

η1 = 0 and ηi ≡ ηi(ξ, λs) = (−1)iξ

λi−2
s

, 2 ≤ i ≤ n − 1

are satisfied. Therefore, if λs is unknown and to be estimated, model (9) is a curved exponential
family model of the form (5), where θ is the vector (ξ, λs) in R

2 (we ignore the problems that
arise when λs ≤ 0 for now).

Now that we have established that model (9) is a curved exponential family model, it might
seem that we need only apply the ideas of Hunter and Handcock (2006) to obtain approximate
maximum likelihood estimates for the parameters ξ and λs. However, to do so blindly would be
poor modelling practice; it is better to develop a sense of what the model terms mean. It is partly
with this goal in mind that we now demonstrate one way to rewrite the alternating k-star statistic
in terms of the degree statistics D0, . . . , Dn−1, where Dk(y) denotes the number of nodes in the
network y that have k neighbors in the network.

A node with i neighbors is the center of
(

i
k

)
k-stars (but the “center” of a 1-star may be

considered arbitrarily to be either of two nodes), which implies that the k-star statistics may be
rewritten in terms of the degree statistics as follows:

Sk(y) =
n−1∑
i=k

(
i

k

)
Di(y), 2 ≤ k ≤ n − 1, and S1(y) = 1

2

n−1∑
i=1

i Di(y). (10)

Eq. (10) are linear in the Di and they may be inverted, though we do not give the inverse formulas
here.

Using Eq. (10) and the binomial expansion:(
1 − 1

λs

)i

=
i∑

j=0

(
i

j

) (
− 1

λs

)j

, (11)

the alternating k-star statistic (8) may be rewritten:

a(s)(y; λs) = λ2
s

n−1∑
i=1

{(
1 − 1

λs

)i

− 1

}
Di(y) + 2λsS1(y). (12)

Note that the S1(y) term in (12) is the number of edges, or 1-stars, in y. The derivation of expression
(12) proceeds by first rewriting the alternating k-star statistic (8) using summation notation:∑n−1

k=2

(
− 1

λs

)k−2
Sk(y) = ∑n−1

k=2
∑n−1

i=k

(
i
k

) (
− 1

λs

)k−2
Di(y) by (10)

= λ2
s
∑n−1

i=2
∑i

k=2

(
i
k

) (
− 1

λs

)k

Di(y)

= λ2
s
∑n−1

i=2

{(
1 − 1

λs

)i + i
λs

− 1

}
Di(y) by (11)

= λ2
s
∑n−1

i=1

{(
1 − 1

λs

)i − 1

}
Di(y) + 2λsS1(y) by (10).

Note that the second step above involves switching the order of summation.
We may rewrite Eq. (12) slightly as follows. First, to ensure that λs is positive, define a new

parameter θs such that λs = exp{θs}. Then Eq. (12) becomes:

a(s)(y; λs) = eθs
[
2S1(y) − u(y; θs)

]
, (13)
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where u(y; θs) is defined to be the geometrically weighted degree (GWD) statistic:

u(y; θs) = eθs

n−1∑
i=1

{
1 −

(
1 − e−θs

)i
}

Di(y). (14)

The G in GWD reflects the fact that this statistic is based on the geometric sequence (1 − e−θs )i.
Snijders et al. (in press), Eq. (14) give an equation very similar to Eq. (13), yet their equation
is slightly different because they use a different definition of the geometrically weighted degree
statistic; see the remark at the end of this section for an explanation of this difference.

Eq. (13) shows that the alternating k-star statistic a(s) is a linear combination of u and S1, and
it is easy to invert this expression to give u as a linear combination of a(s) and S1. Therefore, an
ERGM containing both a(s)(y; λs) and S1(y) is mathematically equivalent to a model containing
both u(y; log λs) and S1(y). Because of this equivalence, and the fact that nearly every model of
interest contains the S1(y) term (for much the same reason that nearly every linear regression model
contains an intercept term), the alternating k-star statistic and the GWD statistic are essentially
interchangeable from a modelling standpoint.

However, we argue that u is slightly preferable to a(s) for several reasons. First, the degree
statistics are more ubiquitous in the networks literature than the k-star statistics. Second, as we
see in the next section, u has an analogous form to the other two alternating statistics of Snijders
et al. (in press), the alternating k-triangle and alternating k-twopath statistics; it is only the alter-
nating k-star statistic that has a qualitatively different form than its corresponding geometrically
weighted statistic [to see why u is appealing in this light, compare Eq. (14) to Eqs. (25) and (26)].
Finally, u makes the interpretation of its parameter values slightly easier than a(s) does, as we now
demonstrate.

Instead of model (9), consider the related model:

P(Y = y) = exp{φu(y; θs)}
κ(φ, θs)

. (15)

To understand how θs and φ influence the probabilistic model for the formation of networks,
consider the effect of adding a single edge to the graph. The result of this addition is that the degrees
of each of the incident nodes increase by one. Let us focus on just one such increase, where a node
of degree k becomes a node of degree k + 1; i.e., (Dk, Dk+1) is replaced by (Dk − 1, Dk+1 + 1)
for some k and no other change to the degree distribution is made. How would this change affect
the probability of the graph? If pbefore and pafter denote the probabilities before and after this
change, substituting (14) into (15) reveals that

pafter

pbefore
= exp{φλs[(Dk − 1)(1 − ρk) + (Dk+1 + 1)(1 − ρk+1)]}

exp{φλs[Dk(1 − ρk) + Dk+1(1 − ρk+1)]} = exp{φρk}, (16)

where ρ = 1 − e−θs to simplify notation. Using Eq. (16) to account for the increase in degree of
both incident nodes, we see that adding an edge between two nodes of degrees k and 	 results in
an increase of φ(ρk + ρ	) in the log-probability. However, we continue to focus on Eq. (16) for
the sake of simplicity.

Whereas some network models entail preferential attachment, in which high-degree nodes are
more likely than low-degree nodes to form edges (e.g., Albert and Barabási, 2002), we see from
Eq. (16) that u(y; θs) may be thought of as a sort of anti-preferential attachment model term: The
benefit of adding an additional edge, expressed on the log-odds scale, decreases geometrically
with the degree of the nodes involved (after accounting for all other model terms, of course). The
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speed of the geometric decay is controlled by the θs parameter: As θs increases in the positive
real numbers, so does the ratio ρ that determines the geometric rate of decay of the log-odds; the
higher the θs, the slower the decay. The φ parameter is the multiplier for this effect. In particular,
φ > 0 implies a preference for adding edges, whereas φ < 0 implies a preference for deleting
them. When θs = 0, the preference for adding new nodes disappears regardless of the value of φ,
whereas for very large values of θs, this preference does not diminish much but remains roughly
constant at φ. Negative values of θs are allowed, but they are more difficult to interpret.

If we use model (9), containing the alternating k-star statistic a(s)(y; λs), instead of model (15),
then the analogue of Eq. (16) is

pafter

pbefore
= exp{ξλs(1 − ρk)} = exp{ξeθs (1 − ρk)}.

Recall that ρ = 1 − e−θs , so that the multiplier ξeθs is mixed up with the geometric ratio ρ. This
makes interpretation of the ξ coefficient slightly more difficult than in Eq. (16). Furthermore, as k
increases, the (1 − ρk) term increases to 1 at a geometric rate. This is a bit like preferential attach-
ment, as Snijders et al. (in press) point out; however, the preferential effect is nearly nonexistent
for ρ near zero and/or for nodes with large degree (large k), since (1 − ρk) ≈ 1 in either case.
This makes interpretation of the model parameters tricky: Using model (9) with ξ > 0 and λs > 1
(which gives 0 < ρ < 1) results in a preferential attachment effect for small-degree nodes, but
this preference tapers off and eventually disappears for larger-degree nodes.

We conclude that u and a(s) produce mathematically equivalent models, as long as they are
used together with the S1 statistic, yet the interpretation of the u parameters is slightly more
straightforward than the interpretation of the a(s) parameters. For this reason, we recommend
the use of the geometrically weighted degree statistic u instead of the alternating k-star statistic
a(s). Fortunately, this is not an issue for either of the alternating statistics in the next section:
Both the alternating k-triangle statistic and the alternating k-twopath statistic coincide exactly
with corresponding geometrically weighted statistics defined analogously to Eq. (14), as we shall
demonstrate in Section 4.

Interestingly, combining Eqs. (13) and (8) shows that

u(y; log λs) = 2S1(y) − S2(y)

λs
+ · · · + (−1)n

Sn−1(y)

λn−2
s

, (17)

which has the same look as the alternating k-star statistic, except that it begins with the S1 term
instead of the S2 term.

Remark. There is a geometrically weighted degree statistic in Snijders et al. (in press), but this
statistic is not the same as u in the current article. Their statistic, labeled u

(d)
α (y) and defined by

u(d)
α (y) =

n−1∑
k=0

exp{−αk}Dk(y), (18)

is used in Snijders et al. (in press) mostly to demonstrate the relationship between the alternating k-
star statistic and the degree statistics. Although it is in a certain sense mathematically equivalent
to the u statistic, u

(d)
α is not constructed to make its parameters interpretable in a meaningful,

intuitive way. Thus, by “geometrically weighted degree statistic” we will always mean the u

statistic of Eq. (14). The relationship among λs, θs, and the α parameter of Eq. (18) is summarized
by 1/λs = e−θs = 1 − e−α.
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4. Shared partner statistics

Section 3 defines the alternating k-star statistic and shows that it may be rewritten as in Eq. (12)
in terms of the degree statistics. In an analogous way, we now define the alternating k-triangle and
alternating k-twopath statistics of Snijders et al. (in press) and show that they may be rewritten in
terms of the edgewise and dyadic shared partner statistics, respectively, which we also define.

The k-triangle and the k-twopath are concepts that generalize the ideas of triangle and 2-star,
respectively. [Snijders et al. (in press) actually coin the term “k-independent 2-path,” but Hunter et
al. (2005) shorten this to the simpler “k-twopath”.] A k-triangle is defined to be a set of k distinct
triangles that share a common edge. A k-twopath is a set of k distinct paths of length two joining
the same pair of nodes. In particular, a 1-triangle is the same thing as a triangle and a 1-twopath is
the same thing as a 2-star—however, note in the latter case that a 1-twopath is usually associated
with its endpoints whereas a 2-star is usually associated with its center. We denote the number
of k-triangles and k-twopaths for the graph y by Tk(y) and Pk(y), respectively, where k may take
any value from 1 to n − 2.

In analogy to the alternating k-star statistic (8), Snijders et al. (in press) also define the alter-
nating k-triangle and alternating k-twopath statistics as

3T1(y) − T2(y)

λ1
t

+ · · · + (−1)n−3 Tn−2(y)

λn−3
t

(19)

and

P1(y) − 2P2(y)

λ1
p

+ · · · + (−1)n−3 Pn−2(y)

λn−3
p

, (20)

respectively. To complete the analogy, we will show how to rewrite (19) and (20) in a form similar
to (12). For this purpose, we need the shared partner statistics.

We define two distinct sets of shared partner statistics, the edgewise shared partner statis-
tics and the dyadic shared partner statistics. These statistics are closely related to the two-path
statistics L2ij defined by Snijders et al. (in press). The edgewise shared partner statistics are
denoted EP0(y), . . . , EPn−2(y), where EPk(y) is defined as the number of unordered pairs {i, j}
such that yij = 1 and i and j have exactly k common neighbors. The requirement that yij = 1
distinguishes the edgewise shared partner statistics from the dyadic shared partner statistics
DP0(y), . . . , DPn−2(y): We define DPk(y) to be the number of pairs {i, j} such that i and j have
exactly k common neighbors, regardless of the value of yij . By these definitions, it is always true
that DPk(y) ≥ EPk(y), and in fact DPk(y) − EPk(y) equals the number of unordered pairs {i, j}
for which yij = 0 and i and j share exactly k common neighbors. The edgewise shared partner
statistics first appear in Hunter and Handcock (2006), who refer to them merely as shared partner
statistics. Hunter et al. (2005) introduce the dyadic shared partner statistics.

Just as the degree statistics Di(y) are related to the k-star statistics Sk(y) by (10), the edge-
wise and dyadic shared partner statistics are related to the k-triangle and k-twopath statistics,
respectively, by the equations:

Tk(y) =
n−2∑
i=k

(
i

k

)
EPi(y), 2 ≤ k ≤ n − 2 (21)
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Fig. 1. For this simple five-node network, the edgewise and dyadic shared partner distributions are (EP0, . . . , EP3) =
(1, 4, 1, 0) and (DP0, . . . , DP3) = (2, 6, 2, 0), respectively; the k-triangle and k-twopath distributions are (T1, T2, T3) =
(2, 1, 0) and (P1, P2, P3) = (10, 1, 0), respectively.

and

Pk(y) =
n−2∑
i=k

(
i

k

)
DPi(y), 1 ≤ k ≤ n − 2, k 	= 2. (22)

The cases not covered in (21) and (22) are those of T1(y), the number of triangles, and P2(y), the
number of 4-cycles. In the former case, there is an extra factor of 1/3 because any of the three
edges in a triangle may be considered the “common” edge of a 1-triangle; in the latter case, there
is an extra factor of 1/2 because any 4-cycle can be considered a 2-path between two distinct pairs
of nodes. Thus, we obtain:

T1(y) = 1

3

n−2∑
i=0

i EPi(y), (23)

P2(y) = 1

2

n−2∑
i=2

(
i

2

)
DPi(y). (24)

A more detailed explanation of Eqs. (21) through (24) is given by Hunter et al. (2005).
As a concrete example, the simple network of Fig. 1 has two 1-triangles, one 2-triangle, 10

1-twopaths, and one 2-twopath. Note that the 2-twopath joining nodes 1 and 4 is the same as the
2-twopath joining nodes 2 and 3, so it is counted only once. One may check that Eq. (21)–(24)
hold for this network.

To rewrite the alternating k-triangle and alternating k-twopath statistics in terms of the EPk

and DPk statistics, begin by substituting Eq. (21) through (24) into (19) and (20). Next, simplify
as in the derivation of Eq. (12). Finally, introduce the parameters θt = log λt and θp = log λp to
ensure λt and λp are positive. The result is that the alternating k-triangle statistic equals:

v(y; θt) = eθt

n−2∑
i=1

{1 − (1 − e−θt )i}EPi(y) (25)

and the alternating k-twopath statistic equals:

w(y; θp) = eθp

n−2∑
i=1

{1 − (1 − e−θp )i}DPi(y). (26)
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Because of the geometric series (1 − e−θt )i and (1 − e−θp )i, we call v(y; θt) and w(y; θp) the
“geometrically weighted edgewise shared partner” (GWESP) and “geometrically weighted dyadic
shared partner” (GWDSP) statistics, respectively.

Because the functional forms of v(y; θt) and w(y; θp) are the same as the form of u(y; θu) – as
one may verify by comparing Eqs. (25) and (26) to Eq. (14) – their interpretations are also the
same, except of course that the interpretations involve the shared partner statistics instead of the
degree statistics. We will apply these interpretations to real data in Section 5.

5. Lazega’s Lawyer dataset

Lazega (Lazega and Pattison, 1999; Lazega, 2001) collected and analyzed data on working
relations among 36 partners in a New England law firm. Here, we deal with only a subset of
the data: An (undirected) edge will be said to exist between two partners if and only if each
indicates a collaboration with the other. These data are analyzed by both Snijders et al. (in press),
Hunter and Handcock (2006). Here, we employ models similar to those used in both of these
articles in order to compare and contrast the results. We refer to these two articles so frequently
in this section that we abbreviate them as SPRH (for the four authors’ names) and HH, respec-
tively.

The nodal covariates measured on each partner are sex, office location (there are three offices
in different cities), type of practice (there are two possible types of practice, litigation = 0 and
corporate law = 1), and seniority (rank order of entry into the firm, so that smaller numbers
correspond to more senior partners). These covariates comprise X, which in this case is a 36 × 4
matrix because there are 36 nodes and 4 covariates measured on each node.

As in both SPRH and HH, the goal here is to model the observed network of collaborations
as a function of both network statistics and nodal covariates. To do so requires the selection of
the g(y, X) statistics that will go into model (5). Following SPRH, we allow g(y, X) to include
several statistics that depend on both X and y. These include so-called main effects of seniority
and practice along with homophily effects of practice, sex, and office location. The main effect
of, say, seniority is defined to be the sum of the seniority value of the endpoints of each of the
edges of y. This may be expressed as∑ ∑

1≤i<j≤n

yij(seniorityi + seniorityj).

In other words, whenever an edge is added to the network, the seniority main effect is increased
by the sum of the seniority attributes of its two endpoints. The homophily effect of, say, practice is
defined to be the number of edges in y for which both endpoints have the same value of practice.
Thus, if an edge is added to the network, it increases the homophily effect of practice by one if
and only if the endpoints have the same value of practice. The homophily effects in SPRH are
defined to be twice as large, with the result that the corresponding parameter values are half as
large; this may be seen by comparing Table 1, Model 1 in HH with Table 1, Model 2 in SPRH.

The models are fit using the R package statnet, available for general use on a secure server at
csde.washington.edu/statnet. The first model, whose parameter estimates are shown
in Table 1, includes the edge count S1(y) along with the geometrically weighted degree (GWD),
geometrically weighted edgewise shared partner (GWESP), and geometrically weighted dyadic
shared partner (GWDSP) statistics and their respective θ parameters. In SPRH, these θ parameters
are considered fixed (which makes the model a standard ERGM), but here we estimate them as
curved exponential family model parameters. Actually, even in SPRH, the θ parameters are not
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Table 1
Approximate maximum likelihood results for a curved exponential family model containing the GWD, GWESP, and
GWDSP terms in which the corresponding parameters (θs, θt , and θp) are estimated

Parameter Estimate (S.E.)

Edges −6.714 (0.740)∗∗∗
Main seniority 0.023 (0.007)∗∗
Main practice 0.404 (0.124)∗∗
Homophily practice 0.786 (0.204)∗∗∗
Homophily sex 0.671 (0.264)∗
Homophily office 1.167 (0.212)∗∗∗

GWD 0.294 (0.385)
θs (= log λs) −0.741 (0.150)∗∗∗

GWESP 0.920 (0.265)∗∗
θt (= log λt) 0.808 (0.109)∗∗∗

GWDSP 0.035 (0.064)
θp (= log λp) −0.006 (3.162)

∗ 0.005 ≤ p < 0.05.
∗∗ 0.0005 ≤ p < 0.005.

∗∗∗ p < 0.0005.

quite fixed; those authors use several different values for each θ and settle on values that give high
estimates of the likelihood function. The curved exponential family techniques used here and in
HH automate this procedure.

The significance tests performed on each of the parameters, the results of which are indicated
by asterisks in Table 1, involve the usual null hypotheses that the true parameter values equal
zero. Note that in the case of the three parameters θs, θt , and θp, this test does not have the usual
interpretation due to the fact that the value zero does not indicate the absence of the corresponding
effect. Indeed, in the case of GWESP and GWDSP, the zero value was treated specially by SPRH:
For GWESP, a value of θt = 0 means that this statistic measures the number of pairs of nodes
that are connected both by a direct edge and by a two-path through another node; for GWDSP,
θp = 0 leads to a count of all pairs of nodes that are connected by a two-path. SPRH refers
to these statistics as “number of pairs directly & indirectly connected” and “number of pairs
indirectly connected”, respectively. Model 1 of Table 1 in SPRH even includes these two terms in
the ERGM, though it is pointed out that these terms are highly collinear with their GWESP and
GWDSP counterparts that use the non-zero values of θt and θp.

The estimated parameter values θ̂s = −0.741, θ̂t = 0.808, and θ̂p = −0.0061 given in Table 1
may be exponentiated to give their corresponding λ values 0.477, 2.243, and 0.994. SPRH fixes
λ = 3 for each of these values, which is clearly quite different from the estimates obtained for
the GWD and GWDSP statistics; however, neither of these statistics has a statistically significant
leading coefficient, which means we should not overinterpret the estimates of λs or λp. Only
the GWESP statistic, with its estimate of λ̂t = exp{.808} = 2.243, is significant, and its positive
coefficient of 0.898 indicates transitivity in this network.

The transitivity indicated by a significant and positive GWESP coefficient is beyond the tran-
sitivity that may be explained solely by nodal characteristics such as sex, office, practice, or
seniority, since terms for each of these characteristics are included in the model (recall that every
term in the model should be interpreted as though all other model effects have been accounted
for). Specifically, we may interpret the GWESP estimates of 0.898 and 0.779 by considering
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how the probability of the network changes due to the GWESP term when a single pair of con-
nected nodes increases its number of shared partners by one, assuming nothing else changes and
all other model effects have been accounted for. Thus, for some k, (EPk, EPk+1) is replaced by
(EPk − 1, EPk+1 + 1) but all other EPi statistics remain unchanged, and we let pbefore and pafter
denote the probabilities before and after this change. Even though such a specific change to the
EPi statistics is not generally possible by a simple alteration such as adding an edge, consideration
of this case helps aid intuition about which types of networks this model will favor. After a bit of
algebra we obtain

log

(
pafter

pbefore

)
= 0.898 × (1 − exp{−0.779})k = .898 × 0.54k.

In other words, it is easiest to complete a triangle when none exists already (k = 0); such a move
results in an increase of 0.898 on the log-probability scale beyond the effects predicted by the
model’s other terms. However, this additional increase is roughly halved for each unit increase
in k. Thus, completing a 2-triangle when a triangle already exists only results in an additional
increase of 0.898 × 0.54; completing a 3-triangle when a 2-triangle already exists only gives
0.898 × 0.542; so on. Thus, as two neighbors share more and more partners, the impetus to find
additional shared partners decreases.

In comparing parameter estimates of this article with parameter estimates in both SPRH and
HH, it is important to keep in mind a major difference among these models: The models here
include an edges term, whereas both SPRH and HH carry out model-fitting under the assumption
of a reduced sample space, including only those graphs that have exactly the same number of
edges – in this case, 115 – as the observed graph. Both SPRH and HH cite numerical expediency
as a reason for this choice (it is easier to carry out the very difficult computations necessary
for estimation using the reduced sample space), though HH is also motivated by the desire to
compare results directly with those of SPRH. We can see the effect of this major difference in
Table 2, where we compare two models side-by-side: In the right column are the results from
model 2 in Table 1 of HH, and in the left column are the same results for a model that includes
an edge term. These models have removed the insignificant GWD and GWDSP terms from the
earlier model; all remaining terms are statistically significant. The results with the edge term are
remarkably similar to the results without the edge term, underscoring a statement made in HH that

Table 2
Approximate maximum likelihood results for a reduced model that includes only the significant terms

Parameter Estimate (S.E.) HH

Edges −6.457 (0.649)∗∗∗ N/A
Main seniority 0.023 (0.007)∗∗ 0.023 (0.006)∗∗∗
Main practice 0.407 (0.121)∗∗ 0.390 (0.117)∗∗∗
Homophily practice 0.761 (0.192)∗∗∗ 0.757 (0.194)∗∗∗
Homophily sex 0.697 (0.250)∗ 0.688 (0.248)∗∗∗
Homophily office 1.131 (0.202)∗∗∗ 1.123 (0.194)∗∗∗

GWESP 0.898 (0.216)∗∗∗ 0.878 (0.279)∗∗∗
θt (= log λt) 0.779 (0.098)∗∗∗ 0.814 (0.196)∗∗∗

The HH column lists corresponding parameter estimates for the model reported in Hunter and Handcock (2006) for a
model fit conditional on the number of edges being fixed.

∗ 0.005 ≤ p < 0.05.
∗∗ 0.0005 ≤ p < 0.005.

∗∗∗ p < 0.0005.
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“the density of collaboration is approximately ancillary to the other statistics.” This statement,
which admittedly uses the term “ancillary” rather loosely, expresses the idea that the inclusion of
the density (number of edges) statistic in the model does not appear to influence the parameter
estimates for the other terms in this model.

In summary, in this section we have considered the GWDSP term, unlike HH; we have allowed
the θs, θt , and θp parameters to be estimated, unlike SPRH; we have dropped the restriction in
both SPRH and HH that considers only networks with 115 edges. Yet the overall findings, both
qualitative and quantitative, are remarkably similar among the three analyses.

6. Discussion

The class of curved exponential family models is a major generalization of the ERGM model
class. Though we have focused here only on very particular models arising from the work of
Snijders et al. (in press), we have shown how curved exponential family models can achieve par-
simonious descriptions of data by reducing a large number of parameters to only a few (e.g.,
in the case of the GWD term, reducing from n − 1 parameters to only two). These reduc-
tions also allow much better behavior of maximum likelihood estimation algorithms, which
until recently have been plagued by issues of model degeneracy. These models are beginning
to show great promise in their ability to fit social network data well. For example, both Hunter
et al. (2005), Goodreau (2007) apply these models to networks with more than a thousand
nodes.

Finally, we should stress that this is only the beginning. The models discussed here, since
they are applied only to cross-sectional data (networks observed only at a single point in time),
are static by nature. They assume that the parameter values are unchanging over time, and even
the set of nodes is static. Currently, much work is being done on dynamic network models that
will describe the evolution of a network over time. Yet quality longitudinal network data sets are
scarce, and allowing models to take changes over time into account can lead to an explosion in
their complexity. Therefore, curved exponential family models, which can achieve parsimonious
yet high-quality fit to data, may have an important role to play in the development of dynamic
network models.

Appendix A. R code

Here, we give the computer code that produced the two models summarized in Tables 1 and
2. These models are fit using a random algorithm. As such, the results are slightly different each
time the algorithm is run. However, repeated runs always produce nearly the same results for all
of the models in this article. The essential idea of the algorithm is that we run a Markov chain that
produces a random sample from a particular probability distribution on the sample space of all
networks. We then use this sample to approximate the true likelihood function in much the same
way that a sample mean is often used to approximate a population mean. Finally, the approximated
likelihood function is maximized, which yields the parameter estimates. This entire procedure is
described in detail in Hunter and Handcock (2006).

The code below is written for the R environment and requires the loading of a package called
ergm that is part of statnet. See csde.washington.edu/statnet for information on
statnet.

After invoking R and ensuring that the statnet package is properly installed, type
library(statnet). Then, the following two commands will create R objects called model1



D.R. Hunter / Social Networks 29 (2007) 216–230 229

and model2 as long as the lazega network is correctly in place (naturally, lazega may be
replaced by another network dataset). To learn more about the ergm function used below, type
help(ergm). Note that the ergm function by default uses a burnin of 1000 Markov chain steps
and only samples once every 100 steps; thus, the declaration MCMCsamplesize=10,000
actually results in running a Markov chain for over 1,000,000 steps.

Model from Table 1:

Model from Table 2:
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