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A model for network panel data is discussed, based on the assumption
that the observed data are discrete observations of a continuous-time Markov
process on the space of all directed graphs on a given node set, in which
changes in tie variables are independent conditional on the current graph.
The model for tie changes is parametric and designed for applications to so-
cial network analysis, where the network dynamics can be interpreted as be-
ing generated by choices made by the social actors represented by the nodes
of the graph. An algorithm for calculating the Maximum Likelihood estimator
is presented, based on data augmentation and stochastic approximation. An
application to an evolving friendship network is given and a small simula-
tion study is presented which suggests that for small data sets the Maximum
Likelihood estimator is more efficient than the earlier proposed Method of
Moments estimator.

1. Introduction. Relations between social actors can be studied by methods
of social network analysis [e.g., Wasserman and Faust (1994); Carrington, Scott
and Wasserman (2005)]. Examples are friendship between pupils in a school class
or alliances between firms. A basic data structure for social networks is the directed
graph or digraph, where the actors are represented by the nodes, and the arcs be-
tween the nodes indicate the social ties. Social network analysis traditionally has
had a focus on rich description of network data, but the recent development of
methods of statistical inference for network data [e.g., Airoldi et al. (2007); Hunter
and Handcock (2006)] has the potential of moving this field toward a wider use of
inferential approaches. Longitudinal studies are especially important for obtain-
ing insight into social networks, but statistical methods for longitudinal network
data that are versatile enough for realistic modeling are only just beginning to be
developed.

This article considers repeated observations of a relation, or network, on a given
set of actors N = {1, . . . , n}, observed according to a panel design, and repre-
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sented as a sequence of digraphs x(tm) for m = 1, . . . ,M , where t1 < · · · < tM
are the observation moments. The nodes represent social actors (which may be
individuals, companies, etc.), and the node set N is the same for all observation
moments. A digraph is defined here as an irreflexive relation, that is, a subset x

of {(i, j) ∈ N 2 | i �= j}, and when (i, j) ∈ x we shall say that there is an arc, or
a tie, from i to j . It often is realistic to assume that the social network has been
developing between the observation moments, which leads to the assumption that
the observations x(tm) are realizations of stochastic digraphs X(tm) embedded in
a continuous-time stochastic process X(t), t1 ≤ t ≤ tM . Holland and Leinhardt
(1977) proposed to use continuous-time Markov chains, defined on the space of
all digraphs with a given node set, for modeling social network dynamics even
if the observations are made at a few discrete time points and not continuously.
Continuous-time Markov chains provide a natural starting point for modeling lon-
gitudinal network data. Wasserman (1979, 1980) and Leenders (1995) elaborated
dyad-independent models, where the ties between pairs of actors (dyads) develop
according to processes that are mutually independent between dyads. This is not
realistic for social processes, because dependence between the set of ties among
three or more actors can be very strong, as was found already by Davis (1970) who
showed that a basic feature of many social networks is the tendency toward transi-
tivity (“friends of my friends are my friends”). Snijders and van Duijn (1997) and
Snijders (2001) proposed so-called actor-oriented models, explained in the next
section, which do allow such higher-order dependencies.

The actor-oriented models are too complicated for the calculation of likelihoods
or estimators in closed form, but they represent stochastic processes which can be
easily simulated. This was exploited by the estimation method proposed in the pa-
pers mentioned, which is a Method of Moments (MoM) estimator implemented al-
gorithmically by stochastic approximation [Robbins and Monro (1951); also see,
e.g., Kushner and Yin (2003)]. This estimator usually performs well [some em-
pirical applications are given in de Federico (2003), van de Bunt, van Duijn and
Snijders (1999), and van Duijn et al. (2003)].

It is to be expected, however, that the statistical efficiency of the Maximum
Likelihood (ML) estimator will be greater. ML estimation also paves the way for
likelihood-based model selection, which will be a marked improvement on existing
methods of model selection. This article presents an MCMC algorithm for approx-
imating the ML estimator, combining and extending ideas in Gu and Kong (1998),
Snijders (2001), and Koskinen and Snijders (2007), the latter of which proposed
for this model a MCMC algorithm for Bayesian inference. Section 2 presents the
model definition. The algorithm for obtaining the ML estimator is described in
Section 3. Section 4 reports results of an empirical example and Section 5 presents
a very small simulation study comparing the ML and MoM estimators. The paper
finishes with an algorithm for approximating the likelihood ratio test in Section 6
and a discussion in Section 7.
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2. Model definition. We assume that repeated observations x(t1), . . . , x(tM)

on the network are available for some M ≥ 2. The network, or digraph, x will be
identified with its n × n adjacency matrix, of which the elements denote whether
there is a tie from node i to node j (xij = 1) or not (xij = 0). Self-ties are not
allowed, so that the diagonal is structurally zero. Random variables are denoted by
capitals. The stochastic process X(t), in which the observations x(tm) are embed-
ded, is modeled as being right-continuous.

Various models have been proposed, most of them being Markov processes
of some kind. We focus on actor-oriented models [Snijders (2001)]. Tie-oriented
models [Snijders (2006)] can be treated similarly. The basic idea of actor-oriented
models [Snijders (2001)] is that the nodes of the graph represent social actors, who
have control, albeit under constraints, of their outgoing ties; and the graph devel-
ops as a continuous-time Markov process (even though it is observed only at M

discrete time points). The constraints are that ties may change only one by one,
and actors do not coordinate their changes of ties. Thus, at any given moment, one
actor i may create one new tie or delete one existing tie, where the probability
distribution of such changes depends on the current digraph; excluded are simulta-
neous changes such as swapping one tie for another, or bargaining between actors
over ties. This constraint was proposed already by Holland and Leinhardt (1977),
and it has the virtue of splitting up the change process in its smallest possible
constituents.

The actor-oriented model is further specified as follows; further discussion and
motivation is given in Snijders (2001).

1. Opportunities for change

Each actor i gets at stochastically determined moments the opportunity to
change one of the outgoing tie variables Xij (t) (j ∈ N , j �= i). Since the process is
assumed to be Markovian, waiting times between opportunities have exponential
distributions. Each of the actors i has a rate function λi(α, x) which defines how
quickly this actor gets an opportunity to change a tie variable, when the current
value of the digraph is x, and where α is a parameter. At any time point t with
X(t) = x, the waiting time until the next opportunity for change by any actor is
exponentially distributed with parameter

λ(α, x) = ∑
i

λi(α, x).(1)

Given that an opportunity for change occurs, the probability that it is actor i who
gets the opportunity is given by

πi(α, x) = λi(α, x)/λ(α, x).(2)

The rate functions can be constant between observation moments, or they can de-
pend on functions rik(x) which may be covariates or positional characteristics of
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the actors such as outdegrees
∑

j xij . A convenient assumption is to use an expo-
nential link function,

λi(α, x) = exp
(∑

k

αkrik(x)

)
.(3)

2. Options for change

When actor i gets the opportunity to make a change, this actor has a permitted
set Ai (x

0) of values to which the digraph may be changed, where x0 is the current
value of the digraph. The assumption that the actor controls his or her outgoing
ties, but can change only one tie variable at the time, is equivalent to

Ai (x
0) ⊂ {x0} ∪ Ar

i (x
0),(4a)

where Ar
i (x

0) is the set of adjacency matrices differing from x in exactly one
element,

Ar
i (x

0) = {x | xij = 1 − x0
ij for one j �= i,

(4b)
and xhk = x0

hk for all other (h, k)}.
Including x0 in Ai (x

0) can be important for expressing the property that actors
who are satisfied with the current network will prefer to keep it unchanged. There-
fore, the usual model is Ai (x

0) = {x0}∪ Ar
i (x

0). This does not lead to identifiabil-
ity problems because the ratio between not making a change and making a change
is not a free parameter, but fixed by assumption (5) for the conditional probabilities
of the new state of the network.

Some alternatives are models with structurally impossible ties, where the im-
possible digraphs are left out of Ai (x

0), and models where the actor is required to
make a change whenever there is the opportunity, obtained by leaving the current
element x0 out of Ai (x

0).
It is assumed that the network dynamics is driven by a so-called objective func-

tion fi(β, x0, x) that can be interpreted as the relative attractiveness for actor i of
moving from the network represented by x0 to the network x, and where β is a
parameter. Under the condition that the current digraph is x0 and actor i gets the
opportunity to make a change, the conditional probability that the next digraph
is x is modeled as

pi(β, x0, x) =
⎧⎨
⎩

exp(fi(β, x0, x))/
∑
x̃

exp(fi(β, x0, x̃)), x ∈ Ai (x
0),

0, x /∈ Ai (x
0),

(5)

where the summation extends over x̃ ∈ Ai(x
0). This formula can be motivated by

a random utility argument as used in econometrics [see, e.g., Maddala (1983)],
where it is assumed that the actor maximizes fi(β, x0, x) plus a random distur-
bance having a standard Gumbel distribution. Assumption (4) implies that instead
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of pi(β, x0, x) we can also write pij (β, x0) where the correspondence between x

and j is defined as follows: if x �= x0, j is the unique element of N for which
xij �= x0

ij ; if x = x0, j = i. This less redundant notation will be used in the sequel.

Thus, for j �= i, pij (β, x0) is the probability that, under the condition that actor i

has the opportunity to make a change and the current digraph is x0, the change
will be to xij = 1 − x0

ij with the rest unchanged, while pii(β, x0) is the probability
that, under the same condition, the digraph will not be changed.

The most usual models are based on objective functions that depend on x only.
This has the interpretation that actors wish to maximize a function fi(β, x) in-
dependently of “where they come from.” The greater generality of (5), where the
objective function can depend also on the previous state x0, makes it possible to
model path-dependencies, or hysteresis, where the loss suffered from withdraw-
ing a given tie differs from the gain from creating this tie, even if the rest of the
network has remained unchanged.

Various ingredients for specifying the objective function were proposed in Sni-
jders (2001). A linear form is convenient,

fi(β, x0, x) =
L∑

k=1

βksik(x
0, x),(6)

where the functions sik(x
0, x) are determined by subject-matter knowledge and

available social scientific theory. These functions can represent essential aspects
of the network structure, assessed from the point of view of actor i, such as

sik(x
0, x) = ∑

j

xij (outdegree)(7)

∑
j

xij xji (reciprocated ties)(8)

∑
j,k

xij xjkxik (transitive triplets)(9)

∑
j

(1 − xij )max
k

xikxkj (indirect ties)(10)

∑
j

x0
ij x

0
jixij xji (persistent reciprocity);(11)

they can also depend on covariates—such as resources and preferences of the ac-
tors, or costs of exchange between pairs of actors—or combinations of network
structure and covariates. For example, de Federico (2003) found in a study of
friendship between foreign exchange students that friendship formation tends to
be reciprocal, with a negative parameter for forming indirect ties (thus leading
to relatively closed networks), and that friendships are more likely to be formed
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between individuals from the same region (a covariate effect), but that recipro-
cation adds less to the tendency to form ties between persons from the same re-
gion than between arbitrary individuals (negative interaction between covariate
and reciprocity).

3. Intensity matrix; time-homogeneity

The model description given above defines X(t) as a continuous-time Markov
process with Q-matrix or intensity matrix [e.g., Norris (1997)] for x �= x0 given
by

q(x0, x) =
⎧⎨
⎩

λi(α, x0)pi(β, x0, x), if x ∈ Ai (x
0), i ∈ N ,

0, if x /∈ ⋃
i

Ai(x
0).(12)

The assumptions do not imply that the distribution of X(t) is stationary. The in-
tensity matrix is time-homogeneous, however, except for time dependence re-
flected by time-varying components in the functions sik(x

0, x).
For the data-collection designs to which this paper is devoted, where observa-

tions are done at discrete time points t1, . . . , tM , these time points can be used for
marking time-heterogeneity of the transition distribution (cf. the example in Sec-
tion 6). For example, covariates may be included with values allowed to change
at the observation moments. A special role is played here by the time durations
tm − tm−1 between successive observations. Standard theory for continuous-time
Markov chains [e.g., Norris (1997)] shows that the matrix of transition proba-
bilities from X(tm) to X(tm−1) is e(tm−tm−1)Q, where Q is the matrix with ele-
ments (12). Thus, changing the duration tm− tm−1 can be compensated by multipli-
cation of the rate function λi(α, x) by a constant. Since the connection between an
externally defined real-valued time variable tm and the rapidity of network change
is tenuous at best, it usually is advisable [e.g., see Snijders (2001)] to include a
multiplicative parameter in the rate function which is constant between observa-
tion moments tm but differs freely between periods (tm−1, tm). With the inclusion
of such a parameter, the numerical values tm become unimportant because changes
in their values can be compensated by the multiplicative rate parameters.

2.1. Comparison with discrete-time Markov chain models. Popular models
for analyzing cross-sectional network data are exponential families of graph dis-
tributions such as the Markov model of Frank and Strauss (1986), generalized to
the p∗ Exponential Random Graph (ERG) model by Frank (1991) and Wasserman
and Pattison (1996), and elaborated and further specified by Hunter and Handcock
(2006) and Snijders et al. (2006). Discrete-time Markov chain models, as longitu-
dinal models of this kind, were proposed by Robins and Pattison (2001), Krack-
hardt and Handcock (2007), and Hanneke and Xing (2007). There are a number
of essential differences between these models and the actor-oriented model treated
here, with respect to interpretation as well as statistical procedures.
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When applying the actor-oriented model to a sequence of two or more repeated
observations, these observations are embedded in a continuous-time model. This
has clear face validity in applications where changes in the network take place at
arbitrary moments between observations. Singer (2008) gives an overview of the
use of this principle for continuously distributed data. This approach yields a ma-
jor advantage over the cited longitudinal ERG models: our probability model is
defined independently of the observational design. Data from irregularly spaced
observation intervals can be analyzed without the need to make any adaptations.
Another advantage is that the dynamic process is defined parsimoniously as a func-
tion of its elementary constituents—in this case, the conditional probability of a
single tie change. The random utility interpretation of (5), discussed above, gives
an interpretation in terms of myopic optimization of an objective function to which
a random disturbance is added, and which can be used to represent a “social mech-
anism” that could have given rise to the observed dynamics.

The discrete-time ERG models constitute exponential families, which has the
advantage that many standard techniques can be directly applied. The distribution
of the continuous-time process {X(t), t1 ≤ t ≤ tM} for the actor-oriented model
constitutes an exponential family, so for discrete observation moments our model
can be regarded as an incompletely observed exponential family. For both types of
model, inference is computer-intensive and time-consuming because of the need to
implement elaborate MCMC procedures. The definition of the model given above
can be used directly to simulate data from the probability distribution, conditional
on an initial state of the network. This contrasts with models in the ERG fam-
ily, which can be simulated only indirectly, by regarding them as the stationary
distribution of an auxiliary Markov chain, and applying a Gibbs or Metropolis–
Hastings algorithm. The near degeneracy problem [Snijders et al. (2006)] which
plagues some specifications of ERG models is, in practice, not a problem for the
actor-oriented model.

3. ML estimation. This section presents an algorithm for MCMC approxi-
mation of the maximum likelihood estimate. Estimation is done conditional on the
first observation x(t1). This has the advantage that no model assumptions need to
be invoked concerning the probability distribution that may have led to the first
observed network x(t1), and the estimated parameters refer exclusively to the dy-
namics of the network.

The algorithm proposed below can be sketched as follows. For each m

(m = 2, . . . ,M) the observed data are augmented with random draws from the
sequence of intermediate digraphs x(t) that could have led from one observation,
x(tm−1), to the next, x(tm) (Section 3.1). These draws can be simulated using a
Metropolis–Hastings algorithm (Section 3.3). They are then used in the updating
steps of a Robbins–Monro algorithm, following ideas of Gu and Kong (1998), to
find the solution of the likelihood equation (Section 3.2). These elements are put
together in Section 3.4.
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3.1. Augmented data. The likelihood for the observed data x(t2), . . . , x(tM)

conditional on x(t1) cannot generally be expressed in a computable form. There-
fore, the observed data will be augmented with data such that an easily computable
likelihood is obtained, employing the general data augmentation principle pro-
posed by Tanner and Wong (1987). The data augmentation can be done for each
period (tm−1, tm) separately and, therefore, this section considers only the obser-
vations x(t1) and x(t2).

Denote the time points of an opportunity for change by Tr and their total number
between t1 and t2 by R, the time points being ordered increasingly so that t1 =
T0 < T1 < T2 < · · · < TR < t2. The model assumptions imply that at each time Tr ,
there is one actor, denoted Ir , who gets an opportunity for change at this time
moment. Define Jr as the actor toward whom the tie variable is changed, and
define formally Jr = Ir if there is no change [i.e., if x(Tr) = x(Tr−1)]:

(Ir , Jr) is the only (i, j) for which xij (Tr−1) �= xij (Tr)

if there is such an (i, j); else Jr = Ir .

Given x(t1), the outcome of the stochastic process (Tr, Ir , Jr), r = 1, . . . ,R com-
pletely determines x(t), t1 < t ≤ t2.

The augmenting data consist of R and (Ir , Jr), r = 1, . . . ,R, without the time
points Tr . It may be noted that this differs from the definition of a sample path in
Koskinen and Snijders (2007) in that the times in between opportunities for change
are integrated out; the reason is to obtain a simpler MCMC algorithm. The possible
outcomes of the augmenting data are determined by the condition

�{r | 1 ≤ r ≤ R, (ir , jr) = (i, j)} =
{ even, if xij (t2) = xij (t1),

odd, if xij (t2) �= xij (t1),
(13)

for all (i, j) with i �= j . The stochastic process V = ((Ir , Jr), r = 1, . . . ,R) will be
referred to as the sample path; the elements for which Ir = Jr , although redundant
to calculate x(t2) from x(t1), are retained because they facilitate the computation of
the likelihood. Define x(k) = x(Tk); the digraphs x(k) and x(k−1) differ in element
(Ik, Jk) provided Ik �= Jk , and in no other elements.

The probability function of the sample path, conditional on x(t1), is given by

psp{V = ((i1, j1), . . . , (iR, jR));α,β}
= Pα,β

{
TR ≤ t2 < TR+1|x(0), (i1, j1), . . . , (iR, jR)

}
(14)

×
R∏

r=1

πir

(
α,x(r−1))pir ,jr

(
β,x(r−1)),

where πi is defined in (2) and pij in and just after (5). Denote the first component
of (14) by

κ
(
α,x(0), (i1, j1), . . . , (iR, jR)

)
(15)

= Pα,β

{
TR ≤ t2 < TR+1|x(0), (i1, j1), . . . , (iR, jR)

}
.
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Conditioning on x(0), (i1, j1), (i2, j2), . . . , [and not on x(t2)!], the differences
Tr+1 − Tr are independently exponentially distributed with parameters λ(α, x(r)).
Hence, under this conditioning the distribution of TR − t1 is the convolution of ex-
ponential distributions with parameters λ(α, x(r)) for r = 0, . . . ,R − 1. In the spe-
cial case that the actor-level rates of change λi(α, x) are constant, denoted by α1,
R has a Poisson distribution with parameter nα1(t2 − t1); (15) then is given by

κ
(
α,x(0), (i1, j1), . . . , (iR, jR)

) = exp
(−nα1(t2 − t1)

)(nα1(t2 − t1))
R

R! .(16)

In the general case where the change rates are nonconstant, the probability (15) can
be approximated as follows. Denote by pTR

(t) the density function of TR , con-
ditional on x(0), (i1, j1), (i2, j2), . . . , or, equivalently, on the embedded process
x(0), x(1), x(2), . . . . The distribution of TR − t1 is a convolution of exponential dis-
tributions and, therefore, the central limit theorem implies that the density function
pTR

(t) is approximately the normal density with expected value

μα =
R−1∑
r=0

{
λ
(
α,x(r))}−1(17)

and variance

σ 2
α =

R−1∑
r=0

{
λ
(
α,x(r))}−2

.(18)

Hence,

pTR
(t) ≈ 1√

(2πσ 2
α )

exp
(−(t − t1 − μα)2

2σ 2
α

)
.(19)

Probability (15) now can be expressed as

κ
(
α,x(0), (i1, j1), . . . , (iR, jR)

)

=
∫ t2

t1

pTR
(s)P {TR+1 − TR > t2 − TR | TR = s}ds

=
∫ t2

t1

pTR
(s) exp

(−λ
(
α,x(R))(t2 − s)

)
ds(20)

≈ pTR
(t2)

∫ t2

t1

exp
(−λ

(
α,x(R))(t2 − s)

)
ds

≈ pTR
(t2)

λ(α, x(R))
.

The approximations are valid for large R and t2 − t1, under boundedness conditions
on the rate functions λi . The first approximation in (20) is based on splitting the
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integration interval into two intervals (t1, t2 −L) and (t2 −L, t2) for a bounded but
large L; the first interval then gives an asymptotically negligible contribution and
on the second interval pTR

(s) is approximately constant since var(TR) = O(R).
The second approximation uses that t2 − t1 is large. Combining the preceding
equations yields

κ(α, x(0), (i1, j1), . . . , (iR, jR))
(21)

≈ 1

λ(α, x(R))
√

(2πσ 2
α )

exp
(−(t2 − t1 − μα)2

2σ 2
α

)
.

This shows that, for observed data (x(t1), x(t2)) augmented by the sample path,
the likelihood conditional on x(t1) can be expressed directly, either exactly or in a
good approximation.

3.2. Missing data principle and stochastic approximation. An MCMC algo-
rithm will be used that finds the ML estimator based on augmented data. Several
methods for MCMC maximum likelihood estimation have been proposed in the
literature. We shall use the Markov Chain Stochastic Approximation (MCSA) al-
gorithm proposed by Gu and Kong (1998) and used (in a slightly different spec-
ification) also by Gu and Zhu (2001). This algorithm is based on the missing in-
formation principle of Orchard and Woodbury (1972) and Louis (1982)—going
back to Fisher (1925); cf. Efron (1977). The principle can be summarized as fol-
lows. Suppose that x is observed, with probability distribution parameterized by
θ and having probability density pX(x; θ) w.r.t. some σ -finite measure. To fa-
cilitate estimation, the observed data is augmented by extra data v (regarded as
missing data) such that the joint density is pXV (x, v; θ). Denote the observed data
score function ∂ log(pX(x; θ))/∂θ by SX(θ;x) and the total data score function
∂ log(pXV (x, v; θ))/∂θ by SXV (θ;x, v). It is not hard to prove (see the cited liter-
ature) that

Eθ {SXV (θ;x,V ) | X = x} = SX(θ;x).(22)

This is the first part of the missing information principle. This equation implies
that the likelihood equation can be expressed as

Eθ {SXV (θ;x,V ) | X = x} = 0,(23)

and, therefore, ML estimates can be determined, under regularity conditions, as
the solution of (23).

This is applied in situations where the observed data score function SX(θ;x) is
too difficult to calculate, while the total data score function SXV (θ;x, v) is com-
putable. In our case, we condition on X(t1), so this is treated as being fixed; we
observe X = (X(t2), . . . ,X(tM)); and between each pair of consecutive observa-
tions X(tm−1) and X(tm) the data are augmented, as discussed in the previous
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section, by the sample path that could have brought the network from X(tm−1)

to X(tm). These sample paths combined for m = 2 to M constitute V . The follow-
ing two subsections supply the additional elements for how the augmenting data
are used.

In the MCSA algorithm of Gu and Kong (1998), the solution of (23) is obtained
by stochastic approximation [Robbins and Monro (1951); Kushner and Yin (2003)]
which is defined by the updating step

θ̂ (N+1) = θ̂ (N) + aND−1SXV

(
θ̂ (N);x,V (N)),(24)

where V (N) is generated according to the conditional distribution of V , given
X = x, with parameter value θ̂ (N). The sequence aN , called the gain sequence,
consists of positive numbers, tending to 0. The matrix D is a suitable matrix. It is
efficient [see Kushner and Yin (2003)] to use a gain sequence tending to zero as
aN ∼ N−c for a c < 1, and to estimate θ not by the last element θ̂ (N) produced by
the algorithm, but by a tail average (N − n0 + 1)−1 ∑N

n=n0
θ̂ (n). For fixed n0 and

N → ∞, this average converges to the solution of (23) for a wide range of positive
definite matrices D.

The second part of the missing information principle [Orchard and Woodbury
(1972)] is that the observed Fisher information matrix for the observed data can be
expressed as

DX(θ) = −∂SX(θ;x)/∂θ
(25)

= Eθ {DXV (θ) | X = x} − Covθ {SXV (θ;x,V ) | X = x},
where DXV (θ) is the complete data observed Fisher information matrix,

DXV (θ) = −∂SXV (θ;x,V )/∂θ.(26)

Expression (25) can be interpreted loosely as “information is total (but partially
unobserved) information minus missing information.” This formula allows us to
calculate standard errors.

3.3. Simulating the sample path. The MCSA method relies on Monte Carlo
simulations of the missing data V . The Markov property allows us to treat all
periods (tm−1, tm) separately and, therefore, we simplify the treatment and nota-
tion here by treating only one of those periods, temporarily assuming that M = 2.
The missing data then is the sample path ((I1, J1), . . . , (IR, JR)) which specifies
the sequence of tie changes that brings the network from X(t1) to X(t2). The ad-
vantage of having integrated out the time steps Tr—with the use of the expres-
sions (16) and (20)—is that less random noise is introduced, and the simulated
variable V is discrete rather than including a Euclidean vector with a varying di-
mension R, which would require a more complicated MCMC procedure.

The set of all sample paths connecting x(t1) and x(t2) is the set of all fi-
nite sequences of pairs (i, j), i, j ∈ N , where for i �= j the parity of the num-
ber of occurrences of (i, j) is given by (13). Such sequences will be denoted
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by v = ((i1, j1), . . . , (iR, jR)), and the set of all these sequences is denoted V .
The probability of the sample path conditional on X(t1) = x(t1),X(t2) = x(t2) is
proportional to (14), rewritten here as

κ
(
α,x(0), (i1, j1), . . . , (iR, jR)

) ×
R∏

r=1

πIr

(
α,x(r−1))pIr ,Jr

(
β,x(r−1)),(27)

where κ is given by (16) or approximated by (21), depending on the specification
of λi . Draws from this distribution can be generated by the Metropolis–Hastings
algorithm, provided that a proposal distribution is used which connects any two
elements of V .

Such a proposal distribution will now be given, denoting the proposal probabili-
ties by u(ṽ|v) and the target probabilities, which are proportional to (27), by p(v).
Then the acceptance probabilities in the Metropolis–Hastings algorithm, for a cur-
rent state v and a proposed state ṽ, are

min
{

1,
p(ṽ)u(v|ṽ)

p(v)u(ṽ|v)

}
.(28)

A proposal distribution is used that consists of small changes in v. The construc-
tion of the proposal distribution was based on the considerations that the proposal
distribution should mix well in the set of all sample paths, and the Metropolis–
Hastings ratios in (28) should be computable relatively easily. This led to proposal
distributions consisting of the following types of small changes in v:

1. Paired deletions. Of all pairs of indices r1, r2 with (ir1, jr1) = (ir2, jr2),
ir1 �= jr1 , one pair is randomly selected, and (ir1, jr1) and (ir2, jr2) are deleted
from v.

2. Paired insertions. A pair (i, j) ∈ N 2 with i �= j is randomly chosen, two in-
dices r1, r2 are randomly chosen, and the element (i, j) is inserted immediately
before r1 and before r2.

3. Single insertions. At a random place in the path (allowing beginning and end),
the element (i, i) is inserted for a random i ∈ N .

4. Single deletions. Of all elements (ir , jr) satisfying ir = jr , a randomly chosen
one is deleted.

5. Permutations. For randomly chosen r1 < r2, where r2 − r1 is bounded from
above by some convenient number to avoid too lengthy calculations, the seg-
ment of consecutive elements (ir , jr), r = r1, . . . , r2 is randomly permuted.

It is evident that these five operations yield new sequences within the permitted
set V [cf. (13)]. Paired insertions and paired deletions are each others’ inverse op-
erations, and the same holds for single insertions and single deletions. These four
types of operation together are sufficient for all elements of V to communicate.
Permutations are added to achieve better mixing properties.
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The detailed specification of how these elements are combined in the proposal
distribution can be obtained from the authors. Two considerations guided this spec-
ification. In the first place, transparency of the algorithm. Paired insertions and
paired deletions are not always unique inverses of each other. Nonuniqueness of
the inverse operation would lead to complicated counting procedures to determine
proposal probabilities. Therefore, the restriction is made that pairs of elements
(i, j) can only be inserted at, or deleted from a pair of positions in the sequence,
if there are no occurrences of the same (i, j) between these positions; and only
if at least one other (i ′, j ′) (with i ′ �= i or j ′ �= j ) occurs in between these posi-
tions. In this restricted set of operations, paired insertions and paired deletions are
each other’s unique inverses, which simplifies proposal probabilities. Due to the
presence of permutations, all elements of the space V still are reachable from any
element.

The second consideration is computational efficiency. When proposing that a
pair of elements (i, j) is inserted or deleted at certain positions, then also proposing
to permute a segment between those positions entails no increase in computational
load for calculating the Metropolis–Hastings ratios, and this permutation will lead
to larger changes in v, and thereby, hopefully, better mixing for a given number of
computations.

3.4. Putting it together. This subsection combines the elements presented in
the preceding subsections to define an algorithm for MCMC approximation of the
ML estimate. It is now assumed that an arbitrary number M ≥ 2 of repeated obser-
vations has been made: x(t1), x(t2), . . . , x(tM). As argued before, we condition on
the first observation x(t1). The further data is denoted by x = (x(t2), . . . , x(tM)).
The parameter (α,β) is denoted by θ .

The Markov property entails that the observed data score function, conditional
on X(t1) = x(t1), can be decomposed as

SX|X(t1)(θ;x(t2), . . . , x(tM)|x(t1))
(29)

=
M∑

m=2

SX(tm)|X(tm−1)(θ;x(tm)|x(tm−1)),

where SX(tm)|X(tm−1) is the score function based on the conditional distribution of
X(tm), given X(tm−1).

For the period from tm−1 to tm, the data set is augmented by Vm, which defines
the order in which ties are changed between these time points, as described in
Section 3.1; this can be denoted by

Vm = ((Im1, Jm1), . . . , (ImRm, JmRm))

with outcome vm. The augmenting variable as used in Section 3.1 is V =
(V2, . . . , VM). Denote the probability (14) for the period from tm−1 to tm by
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pm(vm; θ |x(tm−1)), and the corresponding total data score function by

Sm(θ;x(tm−1), vm) = ∂ logpm(vm; θ |x(tm−1))

∂θ
.(30)

From (22) and (29), and using the Markov property, it can be concluded that the
observed data score function now can be written as

SX|X(t1)(θ;x|x(t1))
(31)

=
M∑

m=2

Eθ {Sm(θ;x(tm−1),Vm)|X(tm−1) = x(tm−1),X(tm) = x(tm)}.

The ML estimate is obtained as the value of θ for which (31) equals 0 [cf. (23)].
The algorithm is iterative, and the N th updating step now can be represented as

follows:

1. For each m = 2, . . . ,M , make a large number of the Metropolis–Hastings steps
as described in Section 3.3, yielding v(N) = (v

(N)
2 , . . . , v

(N)
M ).

2. Compute

SXV

(
θ̂ (N);x, v(N)) =

M∑
m=2

Sm

(
θ̂ (N);x(tm−1), v

(N)
m

)
,

using (30) with pm(vm; θ |x(tm−1)) defined by (14) for the period from tm−1 to
tm, and using (15) and (16) or (21).

3. Update the provisional parameter estimate by

θ̂ (N+1) = θ̂ (N) + aND−1SXV

(
θ̂ (N);x, v(N)).

As mentioned in Section 3.2, the estimate θ̂ML is calculated as a tail average of
the values θ̂ (N) generated by this algorithm. The covariance matrix of the ML
estimator is estimated using (25), where the expected values in the right-hand side
are approximated by Monte Carlo simulation of the conditional distribution of V

given X = x, for θ = θ̂ML. This involves the matrix of partial derivatives (26),
which can be estimated by a score-function method as elaborated in Schweinberger
and Snijders (2006).

The main implementation details are the following:

a. The Method of Moments (MoM) estimator [Snijders (2001)], in practice, yields
a good initial value θ̂ (1).

b. To avoid long burn-in times for step (1.), the Metropolis–Hastings algorithm
for generating V (N) can be started from the previous value, V (N−1), rather
than independently. This leads to some autocorrelation in the updates defined
in step (3.), and the number of Metropolis–Hastings steps must be large enough
that this autocorrelation is not too high. It may be noted that the Robbins Monro
algorithm is robust to moderate dependence between successive updates [Kush-
ner and Yin (2003)]. We have found good results when the number of steps is
tuned so that the autocorrelations between the elements of θ̂ (N) are less than 0.3.
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c. For D in step (3.) we use a Monte Carlo estimate of the complete data observed
Fisher information matrix (26), estimated for θ = θ̂ (1) before making the itera-
tion steps.

d. For the other numerical parameters of the algorithm we use the same values
as described, for the stochastic approximation algorithm to compute the MoM
estimator, in Snijders (2001).

This algorithm is implemented in Siena version 3.3 [Snijders et al. (2009)].
The executable program as well as the code can be found at http://www.stats.ox.
ac.uk/siena/.

4. Empirical example. As an illustrative example, the data set is used that
was also analyzed in van de Bunt, van Duijn and Snijders (1999) and in Snijders
(2001). This is a friendship network between 32 freshman students in a given dis-
cipline at a Dutch university. Initially most of the students were unknown to each
other. There were six waves denoted t1 − t6 of data collection, with 3 weeks be-
tween waves for the start of the academic year, and 6 weeks in between later.
The relation studied is “being friends or close friends.” The data set is obtainable
from website http://www.stats.ox.ac.uk/siena/.

The transitions between observations t2 to t3, and t3 to t4, will here be studied
separately. To identify the rate function, we assume (arbitrarily but conveniently)
that the duration of the time periods is unity, t3 − t2 = t4 − t3 = 1. To keep the
model specification relatively simple, the rate function is supposed to be constant
across actors, given by α1 from t2 to t3 and by α2 from t3 to t4; and the objective
function (6) is chosen independent of the previous state x0, containing contribu-
tions of the effects of outdegree, number of reciprocated ties, number of transitive
triplets, number of 3-cycles, gender of the sender of the tie (“ego”), gender of the
receiver of the tie (“alter”), and gender similarity:

fi(β, x) = β1
∑
j

xij + β2
∑
j

xij xji

+ β3
∑
j,k

xij xjkxik + β4
∑
j,k

xij xjkxki + β5
∑
j

xij (zj − z̄)

+ β6
∑
j

xij (zi − z̄) + β7
∑
j

xij {1 − |zi − zj |},

where variable zi indicates the gender of actor i (F = 0, M = 1) and z̄ its average
over the 32 individuals. This model illustrates two types of triadic dependence
(transitive triplets and 3-cycles) and the use of covariates (gender).

For this model the parameters are estimated for the two transitions t2 − t3 and
t3 − t4 separately both by the Method of Moments (MoM) and by Maximum Like-
lihood. For models where the functions sik used in (6) depend only on x and not
on x0, so that they can be expressed as sik(x), the MoM estimator as defined by

http://www.stats.ox.ac.uk/siena/
http://www.stats.ox.ac.uk/siena/
http://www.stats.ox.ac.uk/siena/
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Snijders (2001) is based on the vector with components
∑

i,j |Xij (tm)−Xij (tm−1)|
for m = 2, . . . ,M and

∑M
m=2

∑
i sik(X(tm)) for k = 1, . . . ,L. The MoM estimator

is defined as the parameter vector for which the observed and expected values of
this statistic are equal, and can be determined by stochastic approximation.

Both the moment equation and the likelihood equation can be represented as
EθS = 0, where S is the difference between observed and estimated moments or
the complete-data score function, respectively. For both estimators, after running
the stochastic approximation algorithm, convergence was checked by simulating
the model for the obtained parameters for 2000 runs and calculating, for each com-
ponent Sh of S, the ratio of the average simulated Sh to its standard deviation. In
all cases, this ratio was less than 0.1, indicating adequate convergence.

Parameter estimates and standard errors are reported in Table 1. Assuming that
the estimators are approximately normally distributed (which is supported by the
simulations reported in the next section, although we have no proof), the signifi-
cance can be tested by referring the ratios of estimate to standard error to a standard
normal distribution. The Method of Moments and Maximum Likelihood estimates
are different but lead to the same substantive conclusions. The parameters reflect-
ing network structure, β1 to β4, give the same picture for both transitions. The neg-
ative β̂1 indicates that an outgoing tie which is not reciprocated and not transitively
embedded is not considered attractive; the positive β̂2 and β̂3 indicate that there is
evidence for tendencies toward reciprocation and transitivity of friendship choices,
when controlling for all other effects in the model. For interpreting the 3-cycles
effect, note that closed 3-cycles are structures denying a hierarchically ordered re-
lation. The negative β̂4 indicates a tendency away from closed 3-cycles, which—in

TABLE 1
Parameter estimates (Method of Moments and Maximum Likelihood) for data set of van de Bunt,

van Duijn and Snijders (1999)

Effect (t2, t3) (t3, t4)

MoM ML MoM ML

Est. S.E. Est. S.E. Est. S.E. Est. S.E.

Rate function
α Rate parameter 3.95 0.64 2.61 0.36 3.43 0.59 5.67 0.75
Objective function
β1 Outdegree −1.66 0.26 −1.02 0.26 −2.19 0.30 −2.00 0.22
β2 Reciprocated ties 2.06 0.47 1.94 0.39 2.26 0.55 1.70 0.35
β3 Transitive triplets 0.30 0.06 0.18 0.06 0.36 0.07 0.26 0.05
β4 3-cycles −0.59 0.23 −0.42 0.17 −0.59 0.27 −0.31 0.14
β5 Gender alter 0.28 0.30 0.14 0.36 0.70 0.39 0.61 0.33
β6 Gender ego −0.34 0.32 −0.41 0.41 −0.04 0.38 −0.10 0.33
β7 Gender similarity 0.33 0.30 0.34 0.36 0.48 0.37 0.44 0.32
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conjunction with the positive transitive triplets parameter—could be interpreted as
a tendency toward a local (i.e., triadic) popularity hierarchy in friendship. For gen-
der, there is only a close to significant effect of gender alter for the t3–t4 transition,
suggesting that male students tend to be more popular as friends, when controlling
for the other effects.

From this single data example, of course no conclusions can be drawn concern-
ing the relative value of these two estimation methods.

5. Simulation examples. A comparison between the finite sample behavior
of the MoM and the ML estimators can be based on simulations. Here we present
a small simulation study as a very limited exploration of the relative efficiency of
the two estimators, which is expected to be in favor of the ML estimator. The lim-
ited nature of this simulation study does not allow generalization, but the study
design is meant to be typical for applications to friendship networks in rather small
groups, and replicates approximately the empirical study of the previous section.

The model is identical to that of the previous section: there are three repeated
observations, 32 actors, one binary covariate called gender, and the first observed
network as well as the distribution of the covariate are identical to the van de Bunt
data set at observation t2. Therefore, the observation moments are again referred
to as t2, t3, t4. The parameter values are rounded figures close to the estimates
obtained in the preceding section. Networks for times t3 and t4 are generated and
parameters estimated under the assumption that parameters βk are the same in
periods (t2, t3) and (t3, t4). The simulation model has parameters α1 = 2.5 and
α2 = 3.5, β1 = −2, β2 = 1, β3 = 0.2, β4 = 0, β5 = 0.5, β6 = −0.25, and β7 = 0.5.
A total of 1000 data sets were generated and the estimates calculated by both
methods. Table 2 reports the average estimates, the root mean squared errors, the
rejection rates for testing the data-generating value of the parameter as the null
hypothesis (estimating type-I error rates), and the rejection rates for testing that
the parameters equal 0 (estimating power), where the tests were two-sided tests
based on the t-ratio for the corresponding parameter estimate, assuming a standard
normal reference distribution, at a nominal significance level of 5%.

Out of the 1000 generated data sets, 5 were excluded because they did not pro-
duce well converging results in the default specification of the algorithm for one
or both estimators. Table 2 shows that the results for the two estimators are very
similar, and the type-I error rates are close to the nominal value, except for the
inflated type-I rates of the ML estimators for the two rate parameters. The latter
is related to the skewed distribution of the rate parameter estimators. The corre-
lations between the estimators are more than 0.93 for all coordinates; note that
correlations are attenuated due to the stochastic nature of the algorithms. It can be
concluded that for this type of model, characterized by 32 actors and 3 waves with
rates of change 2.5 and 3.5, with 7 parameters in the objective function, MoM and
ML estimation yield quite similar results.
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TABLE 2
Simulation results, 3 waves for 32 actors: average parameter estimates (“Ave”), root mean squared

errors (“RMSE”), estimated type-I error rates (“α”), estimated power (“β”)

Effect MoM estimator ML estimator

Ave RMSE α β Ave RMSE α β

Rate function
α1 = 2.5 Rate t2 − t3 2.46 0.44 0.063 – 2.37 0.44 0.114 –
α2 = 3.5 Rate t3 − t4 3.47 0.55 0.045 – 3.39 0.54 0.099 –
Objective function
β1 = −2.0 Outdegree −2.01 0.15 0.053 1.00 −1.96 0.14 0.047 1.00
β2 = 1.0 Reciprocation 1.03 0.26 0.044 0.96 0.97 0.26 0.042 0.95
β3 = 0.2 Transitivity 0.186 0.052 0.043 0.94 0.180 0.054 0.064 0.93
β4 = 0.0 3-cycles 0.02 0.14 0.042 – 0.03 0.14 0.060 –
β5 = 0.5 Gender alter 0.53 0.24 0.043 0.65 0.51 0.25 0.046 0.57
β6 = −0.25 Gender ego −0.28 0.26 0.062 0.21 −0.28 0.27 0.059 0.20
β7 = 0.5 Gender sim. 0.52 0.24 0.031 0.64 0.52 0.25 0.052 0.60

To explore data sets with less information, a similar simulation study was con-
ducted with 20 actors, where the first network was induced by the t2 network of 20
of the actors in the van de Bunt data set, and the rest of the simulation design dif-
fered from the previous study by including an interaction effect of reciprocity by
gender similarity, represented by the term

β8
∑
j

xij xji{1 − |zi − zj |},

with parameter β8 = 0.5. This effect is included to achieve a higher correlation of
the parameter estimators, which together with the smaller number of actors should
lead to greater difficulties in estimation.

The results are shown in Table 3. Of the 1000 generated data sets, 20 were
excluded from the results because of questionable convergence of the algorithm.
The table shows that the ML estimator here performs clearly better than the MoM
estimator. The estimated relative efficiency of MoM compared to ML expressed
as ratio of mean squared errors ranges for these 10 parameters from 0.50 to 0.99.
The correlation between the estimators ranges from 0.71 (gender ego) to 0.98 (rate
period 1). For all parameters except β2, the estimated power of the test based on
the ML estimator is higher than that of the MoM-based test, which can be traced
back to the combination of a smaller mean squared error and a less conservative
test. The surprisingly low power of the MoM-based test for the gender-ego effect
reflects high standard errors that tend to be obtained for estimating β6.

6. Likelihood ratio tests. One of the important advantages of a likelihood
approach is the possibility of elaborating model selection procedures. Here we
only explain how to conduct a likelihood ratio test.
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TABLE 3
Simulation results, 3 waves for 20 actors: average parameter estimates (“Ave”), root mean squared

errors (“RMSE”), estimated type-I error rates (“α”), estimated power (“β”)

Effect MoM estimator ML estimator

Ave RMSE α β Ave RMSE α β

Rate function
α1 = 2.5 Rate t2 − t3 2.49 0.50 0.059 – 2.37 0.48 0.093 –
α2 = 3.5 Rate t3 − t4 3.51 0.70 0.044 – 3.36 0.67 0.094 –
Objective function
β1 = −2.0 Outdegree −2.09 0.29 0.009 0.98 −2.02 0.21 0.025 1.00
β2 = 1.0 Reciprocation 1.08 0.35 0.043 0.86 0.97 0.33 0.052 0.82
β3 = 0.2 Transitivity 0.170 0.099 0.022 0.51 0.158 0.096 0.059 0.52
β4 = 0.0 3-cycles 0.01 0.23 0.034 – 0.05 0.23 0.057 –
β5 = 0.5 Gender alter 0.59 0.44 0.020 0.15 0.60 0.38 0.048 0.43
β6 = −0.25 Gender ego −0.35 0.50 0.024 0.00 −0.34 0.36 0.034 0.11
β7 = 0.5 Gender sim. 0.61 0.50 0.013 0.12 0.63 0.43 0.051 0.35
β8 = 0.5 G. sim. × rec. 0.47 0.63 0.039 0.10 0.50 0.60 0.043 0.14

A convenient way to estimate the likelihood ratio is by a simple implementation
of the idea of the path sampling method described by Gelman and Meng (1998),
who took this method from the statistical physics literature where it is known as
thermodynamical integration. For arbitrary θ0 and θ1, defining the function θ(t) =
tθ1 + (1 − t)θ0, with θ̇ = ∂θ/∂t = θ1 − θ0, this method is based on the equation

log
(

pX(x; θ1)

pX(x; θ0)

)
=

∫ 1

0
θ̇SX(x; θ(t)) dt.(32)

This integral can be approximated by replacing the integral by a finite sum and us-
ing (22). Applying a simulation procedure which for each θ(h/H), h = 0, . . . ,H ,
generates L ≥ 1 draws Vh� from the conditional distribution of V given X = x

under parameter θ(h/H), the log likelihood ratio (32) can be approximated by

(θ1 − θ0)

L(H + 1)

L∑
�=1

H∑
h=0

SXV

(
θ(h/H);x,Vh�

)
.(33)

Burn-in time can be considerably reduced when starting the MCMC algorithm for
generating Vh1 by the end result of the algorithm used to generate V(h−1),L.

This was applied to the van de Bunt data set used in Section 4 to test the null hy-
pothesis that all parameters β1, . . . , β7 are for period (t3, t4) the same as for (t2, t3)

against the alternative that they are allowed to be different. The rate parameters α

were allowed to be different under the null as well as the alternative hypothesis.
For calculating (33) we used L = 10, H = 1000. The estimated likelihood ratio
was 18.7, which for a χ2

7 distribution yields p < 0.01, leading to rejecting the null
hypothesis at conventional levels of significance.
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7. Discussion. This article has presented a model for longitudinal network
data collected in a panel design and an algorithm for calculating the ML estima-
tor. The model can represent triadic and other complicated dependencies that are
characteristic for social networks. It is designed for applications in social network
analysis, but related models may be applied for modeling networks in other sci-
ences, such as biology. Earlier, a method of moments (MoM) estimator for this
model was proposed by Snijders (2001) and Bayesian inference methods by Kosk-
inen and Snijders (2007). The algorithm was constructed using stochastic approx-
imation according to the approach proposed by Gu and Kong (1998), and employs
Monte Carlo simulations of the unobserved changes between the panel waves, con-
ditional on the observed data. The simulation design used is more efficient than
that used in Koskinen and Snijders (2007) because here the waiting times between
unobserved changes are integrated out.

No proof is yet available for the consistency and asymptotic normality of the
ML estimator, which are intuitively plausible for the situation where n tends to
infinity, t1 and t2 are fixed, and the parameters are such that the average degree
n−1 ∑

i,j xij tends to a positive finite limit. Limited simulation results do support
the expectation that the estimators are asymptotically normal. The nonstandard
assumptions (lack of independence) imply, however, that a proof may be expected
to be rather complicated.

Our experience in the reported simulations and in working with empirical data
sets is that the algorithm converges well unless data sets are small given the num-
ber of estimated parameters, but the algorithm is time-consuming (e.g., each ML
estimation for one data set in Table 2 took about 35 minutes on a regular personal
computer, while each MoM estimation took about 2 minutes). Further improve-
ments in the algorithm are desirable for the practical use of ML estimators in these
models. This is the subject of future work.

Judging from our very limited simulations, the advantages of ML estimation
over MoM estimation in terms of root mean squared error and power of the associ-
ated tests seem strong for small data sets and small for medium to large data sets.
Further simulation studies are necessary. However, even if the statistical efficiency
is similar, likelihood-based estimation can have additional advantages, for exam-
ple, the possibility of extensions to more complicated models and of elaborating
model selection procedures.

Software implementing the procedures in this paper is available at http://www.
stats.ox.ac.uk/siena/.
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