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Abstract: We propose a family of statistical models for social network
evolution over time, which represents an extension of Exponential Random
Graph Models (ERGMs). Many of the methods for ERGMs are readily
adapted for these models, including maximum likelihood estimation al-
gorithms. We discuss models of this type and their properties, and give
examples, as well as a demonstration of their use for hypothesis testing
and classification. We believe our temporal ERG models represent a useful
new framework for modeling time-evolving social networks, and rewiring
networks from other domains such as gene regulation circuitry, and com-
munication networks.

Received November 2009.

1. Introduction

The field of social network analysis is concerned with populations of actors,
interconnected by a set of relations (e.g., friendship, communication, etc.). These
relationships can be concisely described by directed graphs, with one vertex for
each actor and an edge for each relation between a pair of actors. This network
representation of a population can provide insight into organizational structures,
social behavior patterns, emergence of global structure from local dynamics, and
a variety of other social phenomena.

There has been increasing demand for flexible statistical models of social
networks, for the purposes of scientific exploration and as a basis for practical
analysis and data mining tools. The subject of modeling a static social network
has been investigated in some depth. For time-invariant networks, represented
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as a single directed or undirected graph, a number of flexible statistical models
have been proposed, including the classic Exponential Random Graph Mod-
els (ERGM) and extensions (Frank and Strauss, 1986; Wasserman and Robins,
2005; Snijders, 2002; Robins and Pattison, 2005), which are descriptive in na-
ture, latent space models that aim towards clustering and community discovery
(Handcock et al., 2007), and mixed-membership block models for role discovery
(Airoldi et al., 2008). Of particular relevance to this paper is the ERGM, which
is particularly flexible in that it can be customized to capture a wide range of
signature connectivity patterns in the network via user-specified functions rep-
resenting their sufficient statistics. Specifically, if N is some representation of a
social network, and N is the set of all possible networks in this representation,
then the probability distribution function for any ERGM can be written in the
following general form.

P(N) =
1

Z(θ)
exp

{

θ
′u(N)

}

.

Here, θ ∈ R
k, and u : N → R

k. Z(θ) is a normalization constant, which
is typically intractable to compute. The u function represents the sufficient
statistics for the model, and, in a graphical modeling interpretation, can be
regarded as a vector of clique potentials. The representation for N can vary
widely, possibly including multiple relation types, valued or binary relations,
symmetric or asymmetric relations, and actor and relation attributes. The most
widely studied models of this form are for single-relation social networks, in
which case N is generally taken to be the weight matrix A for the network
(sometimes referred to as a sociomatrix ), where Aij is the strength of directed
relation between the ith actor and jth actor.

Often one is interested in modeling the evolution of a network over multiple
sequential observations. For example, one may wish to model the evolution of
coauthorship networks in a specific community from year to year, trends in the
evolution of the World Wide Web, or a process by which simple local relationship
dynamics give rise to global structure. In such dynamic settings, where a time-
series of observations of the network structure is available, several formalisms
have been proposed to model the dynamics of topological changes of such net-
works over time. For example, Snijders (2006) has proposed a continuous-time
model of network dynamics, where each observed event represents a single ac-
tor altering his or her outgoing links to optimize an objective function based
on local neighborhood statistics. Robins and Pattison (2001) have indepedently
studied a family of models of network dynamics over discrete time steps, quite
similar to those presented below; in some sense, the present work can be viewed
as a further exploration of these models, their properties and uses. However,
this exploration goes beyond the (Robins and Pattison, 2001) work, in that we
explore the statistical properties of these models, such as their (non)degeneracy
tendencies, and the quality of fit that these models achieve when applied to real
network time series data; such properties have not previously been systemati-
cally investigated for these types of models, though related work has recently
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been done on static ERGMs (Handcock, 2003). We also explore algorithmic is-
sues in calculating the MLE estimators and performing hypothesis tests with
these models. Furthermore, we feel that the added flexibility in the parametriza-
tion of these models below makes them somewhat easier to specify and work
with, compared to the description in (Robins and Pattison, 2001), which al-
though quite elegant, requires the sufficient statistics to be nondecreasing in the
relation indicator variables for the network.

In the following sections, we propose a model family we would like to refer
to as temporal ERGM, or TERGM, that is capable of modeling network evo-
lution, while maintaining the flexibility of a fully general ERGM. Furthermore,
these models build upon a generic ERGM formalism, so that existing methods
developed for ERGMs over the past two decades are readily adapted to apply
to the temporal models as well. We prove that a very general subclass of the
TERGM is nondegenerate and explain how to calculate their maximum likeli-
hood estimates from network data. Furthermore we show that these models can
indeed be fitted to capture signature dynamic properties of real world evolving
networks, and can be applied in hypothesis testing, nodal classification, and
other applications.

2. Discrete temporal models

We begin by describing the basic form of the type of model we study. Specifically,
one way to simplify a statistical model for evolving social networks is to make a
Markov assumption on the network from one time step to the next. If At is the
weight matrix representation of a single-relation social network at time t, then
we might make the assumption that At is independent of A1, . . . , At−2 given
At−1. Put another way, a sequence of network observations A1, . . . , At has the
property that

P(A2, A3, . . . , At|A1) = P(At|At−1)P(At−1|At−2) · · · P(A2|A1).

With this assumption in mind, we can now set about deciding what the form of
the conditional PDF P(At|At−1) should be. Given our Markov assumption, one
natural way to generalize ERGMs for evolving networks is to assume At|At−1

admits an ERGM representation. That is, we can specify a function Ψ : Rn×n×
Rn×n → R

k, which can be understood as a temporal potential over cliques
across two time-adjancent networks, and parameter vector θ ∈ R

k, such that
the conditional PDF has the following form.

P(At|At−1, θ) =
1

Z(θ, At−1)
exp

{

θ
′Ψ(At, At−1)

}

. (1)

We refer to such a model as a TERGM, for Temporal Exponential Random
GraphModel. Note that specifying the joint distribution requires one to specify a
distribution over the first network: A1. This can generally be accomplished fairly
naturally using an ERGM. For simplicity of presentation, we avoid these details
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in subsequent sections by assuming the distribution over this initial network is
functionally independent of the parameter θ.

In particular, we will be especially interested in the special case of these
models in which

Ψ(At, At−1) =
∑

ij

Ψij(A
t
ij , A

t−1). (2)

This form of the temporal potential function represents situations where the
conditional distribution of At given At−1 factors over the entries At

ij of At. As
we will see, such models possess a number of desirable properties.

2.1. An example

To illustrate the expressiveness of this framework, we present the following sim-
ple example model. For simplicity, assume the weight matrix of the network is
binary (i.e., an adjacency matrix). Define the following statistics, which repre-
sent density, stability, reciprocity, and transitivity, respectively:

ΨD(At, At−1) =
1

(n−1)

∑

ij

At
ij

ΨS(A
t, At−1) =

1

(n−1)

∑

ij

[

At
ijA

t−1
ij +(1−At

ij)(1−A
t−1
ij )

]

ΨR(A
t, At−1) = n





∑

ij

At
jiA

t−1
ij





/





∑

ij

At−1
ij





ΨT (A
t, At−1) = n





∑

ijk

At
ikA

t−1
ij At−1

jk





/





∑

ijk

At−1
ij At−1

jk



 .

The statistics are each scaled to a constant range (in this case [0, n]) to enhance
interpretability of the model parameters (take 0/0 = 0 for our purposes). The
conditional probability mass function (1) is governed by four parameters: θD
relates to the density, or the number of ties in the network as a whole; θS
relates to the stability, or the tendency of a link that does (or does not) exist
at time t − 1 to continue existing (or not existing) at time t; θR relates to the
reciprocity, or the tendency of a link from i to j to result in a link from j to i
at the next time step; and θT relates to the transitivity, or the tendency of a
tie from i to j and from j to k to result in a tie from i to k at the next time
step. The transition probability for this temporal network model can then be
expressed as

P(At|At−1, θ) =
1

Z(θ, At−1)
exp







∑

j∈{D,S,R,T}

θjΨj(A
t, At−1)







.
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2.2. More general models

For simplicity, we will only discuss the simple models described above. How-
ever, one can clearly extend this framework to allow multiple relations in the
network, actor attributes, relation attributes, longer-range Markov dependen-
cies, or a host of other possibilities. In fact, many of the results below can easily
be generalized to deal with these types of extensions.

3. Estimation

The estimation task for models of the form (1) is to use the sequence of ob-

served networks, N1, N2, . . . , NT , to find an estimator θ̂ that is close to the
actual parameter values θ in some sensible metric. As with ERGMs, in general
the normalizing constant Z could be computationally intractable, often making
explicit solutions of maximum likelihood estimation difficult. However, general
techniques for MCMC sampling to enable approximate maximum likelihood
estimation for ERGMs have been studied in some depth and have proven suc-
cessful for a variety of models (Snijders, 2002). By a slight modification of these
algorithms, we can apply the same general techniques as follows.

Let
L(θ;N1, N2, . . . , NT ) = logP(N2, N3, . . . , NT |N1, θ), (3)

M(t, θ) = Eθ

[

Ψ(Nt, N t−1)|N t−1
]

,

C(t, θ) = Eθ

[

Ψ(Nt, N t−1)Ψ(Nt, N t−1)′|N t−1
]

.

where expectations are taken over the random variable Nt, the network at time
t. Note that

∇L(θ;N1, . . . , NT ) =

T
∑

t=2

(

Ψ(N t, N t−1)−M(t, θ)
)

and

∇2L(θ;N1, . . . , NT ) =

T
∑

t=2

(M(t, θ)M(t, θ)′ − C(t, θ)) .

The expectations can be approximated by Gibbs sampling from the conditional
distributions (Snijders, 2002), so that we can perform an unconstrained opti-
mization procedure akin to Newton’s method: approximate the expectations,
update parameter values in the direction that increases (3), repeat until con-
vergence. A related algorithm is described by (Geyer and Thompson, 1992) for
general exponential families, and variations are given by (Snijders, 2002) that
are tailored for ERG models. The following is a simple version of such an esti-
mation algorithm.
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1. Randomly initialize θ
(1)

2. For i = 1 up until convergence

3. For t = 2, 3, . . . , T
4. Sample N̂ t,1

(i) , . . . , N̂
t,B

(i) ∼ P(N
t|N t−1, θ(i))

5. µ̂t
(i) =

1
B

∑B

b=1 Ψ(N̂ t,b

(i) , N
t−1)

6. Ĉt
(i) =

1
B

∑B

b=1 Ψ(N̂ t,b

(i) , N
t−1)Ψ(N̂ t,b

(i) , N
t−1)′

7. Ĥ(i) =
∑T

t=2[µ̂
t
(i)µ̂

t′
(i) − Ĉt

(i)]

8. θ
(i+1) ← θ

(i) − Ĥ−1
(i)

∑T

t=2

[

Ψ(N t, N t−1)− µ̂t
(i)

]

The choice of B can affect the convergence of this algorithm. Generally, larger
B values will give more accurate updates, and thus fewer iterations needed
until convergence. However, in the early stages of the algorithm, precise up-
dates might not be necessary if the likelihood function is sufficiently smooth,
so that a B that grows larger only when more precision is needed may be
appropriate. If computational resources are limited, it is possible (though less
certain) that the algorithm might still converge even for small B values (see
(Carreira-Perpignán and Hinton, 2005) for an alternative approach to sampling-
based MLE, which seems to remain effective for small B values).

3.1. Product transition probabilities

Although the general case (1) may often require a sampling-based estimation
procedure such as that given above, it turns out that the special case of (2) does
not. In this case, as long as the Ψij functions are computationally tractable, we
can tractably perform exact updates in Newton’s method, rather than approx-
imating them with sampling.

3.2. Evalutation of parameter recovery

To examine the convergence rate empirically, we display in Figure 1 the con-
vergence of this algorithm on data generated from the example model given
in Section 2.1. The simulated data is generated by sampling from the example
model with randomly generated θ, and the loss is plotted in terms of Euclidean
distance of the estimator from the true parameters. To generate the initial N1

network, we sample from the pmf 1
Z(θ) exp{θ

′Ψ(N1, N1)}. The number of actors

n is 100. The parameters are initialized uniformly in the range [0, 10), except
for θD, which is initialized to −5θS − 5θR − 5θT . This tends to generate net-
works with reasonable densities. The results in Figure 1 represent averages over
10 random initial configurations of the parameters and data. In the estimation
algorithm used, B = 100, but increases to 1000 when the Euclidean distance
between parameter estimates from the previous two iterations is less than 1.
Convergence is defined as the Euclidean distance between θ

(i+1) and θ
(i) being

within 0.1. Since this particular model is simple enough for exact calculation
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Fig 1. Convergence of estimation algorithm on simulated data, measured in Euclidean dis-
tance of the estimated values from the true parameter values. The approximate MLE from
the sampling-based algorithm is almost identical to the MLE obtained by direct optimization.

of the likelihood and derivatives thereof (see above), we also compare against
Newton’s method with exact updates (rather than sampling-based). We can
use this to determine how much of the loss is due to the approximations be-
ing performed, and how much of it is intrinsic to the estimation problem. The
parameters returned by the sampling-based approximation are usually almost
identical to the MLE obtained by Newton’s method, and this behavior manifests
itself in Figure 1 by the losses being visually indistinguishable.

4. (Non)degeneracy of temporal ERGMs

There has been much concern expressed in the literature over certain degener-
acy issues that arise when working with Exponential Random Graph Models.
Specifically, Handcock (Handcock, 2003) has recently been exploring the fact
that, for many ERGMs, most of the parameter space is populated by distribu-
tions that place almost all of the probability mass on a small number of networks
(typically the complete or empty graphs). This leads to several negative effects.
For instance, since we do not expect the true generating distribution to be de-
generate, the prevalence of these degenerate distributions intuitively reflects a
mismatch between the model and the type of process we wish to capture with
it. Additionally, it is often the case that degenerate distributions can be found
very close to any nondegenerate distribution, so that slight variations in the
parameters cause the distribution to become degenerate. This also leads to an-
other problem, namely inference degeneracy. Even if the generating distribution
is modeled by some parameter values with a nondegenerate distribution, the
degeneracy of nearby distributions may prevent commonly used maximum like-
lihood estimation techniques from converging to it within a reasonable sample



S. Hanneke et al./Discrete temporal models of social networks 592

size; specifically, the aforementioned MCMC techniques may require an imprac-
tically large number of samples, or may even fail to work at all (Handcock,
2003).

One natural question to ask is whether such issues also affect these temporal
extensions. In the simple case where the transition distribution factors over
the edges, as in (2), it turns out these models avoid such problems entirely.
The intuitive reason for this is that, since the edges of At are conditionally
independent given At−1, as long as the individual conditional distributions for
the At

ij given At−1 are not too extreme, the conditional entropy of At given

At−1 should be large, and thus the entropy of At itself must be large. Of course,
this argument only works if the dependence of At on At−1 is not too strong,
and the strength of this dependence can be controlled by the magnitudes of the
parameters. The formal argument is given below.

4.1. Nondegeneracy of the example model

To keep the initial explanation of this phenomenon as simple as possible, we
begin this discussion by looking at the special case of the example model from
Section 2.1.

For any given entry At
ij , the networks At−1 that minimize and maximize the

probability that At
ij = 1 are the empty graph and complete graph; which one

maximizes and which one minimizes it depends on the parameter values. If At−1

is the empty graph, then

P(At
ij = 1|At−1) =

exp{θD/(n− 1)}

exp{θD/(n− 1)}+ exp{θS/(n− 1)}
.

Under At−1 as the complete graph, it is

P(At
ij = 1|At−1) =

exp{(θD + θS + θT + θR)/(n− 1)}

exp{(θD + θS + θT + θR)/(n− 1)}+ 1
.

So the entropy is lower bounded as follows:

H(At) ≥ min
A

H(At|At−1 = A)

= min
A

∑

ij

H(At
ij |A

t−1 = A) ≥
∑

ij

min
A

H(At
ij |A

t−1 = A).

We can lower bound min
A

H(At
ij |A

t−1 = A) by the quantity

p ln
1

p
+ (1− p) ln

1

1− p
,

where

p =
exp{(|θD|+|θS|+|θR|+|θT |)/(n−1)}

exp{(|θD|+|θS|+|θR|+|θT |)/(n−1)}+exp{−(|θD|+|θS|+|θR|+|θT |)/(n−1)}

=
1

exp{−2(|θD|+ |θS |+ |θR|+ |θT |)/(n− 1)}+ 1
.
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(p is an upper bound on P(At
ij = 1|At−1), and 1− p is a lower bound on it). So

the entropy lower bound is at most n(n− 1)(p ln(1/p) + (1 − p) ln(1/(1− p))),
and thus as long as |θD| + |θS | + |θR| + |θT | is not too large, the entropy is
guaranteed to be reasonably large.

Other than the entropy, we can get a somewhat more intuitive grasp of this
type of nondegeneracy result by bounding the expected number of nonzero en-
tries in At. In particular, a consequence of the above reasoning is that the
expected number of nonzero entries in At is at most

n(n− 1)
1

exp{−2(|θD|+ |θS |+ |θR|+ |θT |)/(n− 1)}+ 1
,

and is at least

n(n− 1)
1

exp{2(|θD|+ |θS |+ |θR|+ |θT |)/(n− 1)}+ 1
.

So again, as long as |θD|+ |θS |+ |θR|+ |θT | is not too large, we are guaranteed
a reasonable expected number of nonzero entries in At.

To give an example of the types of entropy values one gets from a model of
this type, in Figure 2 we plot the exact entropy values for the example model
as a function of θD and θS (with θR = θT = 0 to make a two-dimensional
plot possible), and as a function of θD and θT (with θR = θS = 0); other
options, such as fixing the unused parameters to nonzero values, yield similar
plots. Specifically, the plotted values are the entropy of A2, where each Ai is a
n × n matrix (where n = 7 in the left plot, and n = 6 in the right plot), and
A1 is sampled from the basic Bernoulli graph model, in which each entry A1

ij is
an independent Bernoulli random variable with probability of being 1 equal to
0.25.

It is worth briefly mentioning how these plots are generated. Since it is not
computationally tractable to enumerate all graphs for each parameter setting,
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Fig 2. Entropy plots for the example model. In both plots, small magnitudes of the parameters
give distributions with high entropy, as predicted.
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we instead calculate it for equivalence classes of graphs which can be analytically
shown to have identical probability values, and weight each class according to its
size in the entropy calculation. For the first plot, since the conditional probability
of A2 given A1 is only a function of how many edges are present in A2 and how
many ij values have A2

ij = A1
ij , and since the edges of A1 are exchangeable,

we can write the marginal distribution of A2 purely in terms of the number of
edges. Thus we need only calculate n(n− 1) probability values, and the entropy
is a weighted sum, where the weights are combinatorial quantities reflecting the
number of graphs with that many edges. For the second plot, the situation is
more complex but the idea is similar. In this case, we define the equivalence
classes based purely on graph isomorphisms. The number of distinct isomorphic
networks of six nodes is 156, a significant reduction from the total number of
networks, rendering the calculation of entropy computationally tractable.

In both plots, small magnitudes of the parameters give distributions with
high entropy, as predicted.

4.2. Nondegeneracy under general product transitions

We can generalize the preceding discussion beyond the simple example model, by
considering general transition distributions that factor over entries of At

ij as fol-

lows. Suppose {Ψk(A
t, At−1)}k is a sequence of functions such that Ψk(A

t, At−1)
=

∑

ij Ψijk(A
t
ij , A

t−1) (i.e., satisfying (2)), where each Ψijk has range contained
in [−β, β] for some β > 0, so that the range of Ψk is in [−n(n− 1)β, n(n− 1)β].
Then we consider transition models of the form (1), with these Ψ values. That
is,

P(At|At−1, θ) =
1

Z(θ, At−1)
exp

{

∑

k

θkΨk(A
t, At−1)

}

. (4)

Note that these models factor over the entries At
ij given At−1.

Theorem 4.1. Let

p =
1

exp{2β
∑

k |θk|}+ 1
.

For models of the form (4), the expected number of nonzero entries in At is in

the range

[n(n− 1)p, n(n− 1)(1− p)] ,

and the entropy can be lower bounded as

H(At) ≥ n(n− 1)

(

p log
1

p
+ (1− p) log

1

1− p

)

.

In particular, as long as
∑

k |θk| is not too large, this bound implies the entropy

will be reasonably large.
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Proof. Since each Ψijk(A
t
ij , A

t−1) ∈ [−β, β], we can upper bound the probability

of a particular entry At
ij taking value 1, given At−1, by

P(At
ij = 1|At−1) =

exp{
∑

k θkΨijk(1, A
t−1)}

exp{
∑

k θkΨijk(1, At−1)} + exp{
∑

k θkΨijk(0, At−1)}

≤
exp{

∑

k |θk|β}

exp{
∑

k |θk|β}+ exp{−
∑

k |θk|β}
= 1− p, (5)

and lower bound it by

P(At
ij = 1|At−1) =

exp{
∑

k θkΨijk(1, A
t−1)}

exp{
∑

k θkΨijk(1, At−1)} + exp{
∑

k θkΨijk(0, At−1)}

≥
exp{−

∑

k |θk|β}

exp{
∑

k |θk|β}+ exp{−
∑

k |θk|β}
= p. (6)

Since the conditional distribution given At−1 factors over the edges of At, the
expected number of edges given At−1 is in this range, multiplied by n(n − 1).
Since these bounds are independent of At−1, they also hold for the expectation
under the marginal distribution of At. Similarly, as before we can lower bound
the entropy under the marginal distribution of At as

H(At) ≥ H(At|At−1) ≥ min
A

H(At|At−1 = A)

= min
A

∑

ij

H(At
ij |A

t−1 = A) ≥
∑

ij

min
A

H(At
ij |A

t−1 = A),

and due to the bounds (5) and (6) on the conditional P(At
ij = 1|At−1), we have

min
A

H(At
ij |A

t−1 = A) ≥ p log
1

p
+ (1− p) log

1

1− p
,

so that

H(At) ≥
∑

ij

p log
1

p
+(1−p) log

1

1− p
= n(n−1)

(

p log
1

p
+ (1− p) log

1

1− p

)

,

as claimed.

5. Hypothesis testing: A case study

As an example of how models of this type might be used in practice, we present
a simple hypothesis testing application. Here we see the generality of this frame-
work pay off, as we can use models of this type to represent a broad range of sci-
entific hypotheses. The general approach to hypothesis testing in this framework
is first to write down potential functions representing transitions one expects
to be of some significance in a given population, next to write down potential
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functions representing the usual “background” processes (to serve as a null hy-
pothesis), and third to plug these potentials into the model, calculate a test
statistic, and compute a p-value.

The data involved in this example come from the United States 108th Senate,
having n = 100 actors. Every time a proposal is made in the Senate, be it a bill,
amendment, resolution, etc., a single Senator serves as the proposal’s sponsor

and there may possibly be several cosponsors. Given records of all proposals
voted on in the full Senate, we create a sliding window of 100 consecutive pro-
posals. For a particular placement of the window, we define a binary directed
relation existing between two Senators if and only if one of them is a sponsor
and the other a cosponsor for the same proposal within that window (where
the direction is toward the sponsor). The data is then taken as evenly spaced
snapshots of this sliding window, A1 being the adjacency matrix for the first 100
proposals, A2 for proposal 31 through 130, and so on shifting the window by
30 proposals each time. In total, there are 14 observed networks in this series,
corresponding to the first 490 proposals addressed in the 108th Senate.

In this study, we propose to test the hypothesis that intraparty reciprocity is
inherently stronger than interparty reciprocity. To formalize this, we use a model
similar to the example given previously. The main difference is the addition of
party membership indicator variables. Let Pij = 1 if the ith and jth actors are
in the same political party, and 0 otherwise, and let P̄ij = 1−Pij. Define the fol-
lowing potential functions, representing stability, intraparty density, interparty
density,1 overall reciprocity, intraparty reciprocity, and interparty reciprocity.
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The null hypothesis supposes that the reciprocity observed in this data is the
result of an overall tendency toward reciprocity amongst the Senators, regardless

1We split density to intra- and inter-party terms so as to factor out the effects on reciprocity
of having higher intraparty density.
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of party. The alternative hypothesis supposes that there is a stronger tendency
toward reciprocity among Senators within the same party than among Senators
from different parties. Formally, the transition probability for the null hypothesis
can be written as

P0(A
t|At−1, θ(0)) =

1

Z0(θ
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while the transition probability for the alternative hypothesis can be expressed
as
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For our test statistic, we use the likelihood ratio. To compute this, we compute
the maximum likelihood estimators for each of these models, and take the ratio
of the likelihoods. For the null hypothesis, the MLE is

(θ̂
(0)
S = 336.2, θ̂

(0)
WD = −58.0, θ̂

(0)
BD = −95.0, θ̂

(0)
R = 4.7)

with likelihood value of e−9094.46. For the alternative hypothesis, the MLE is

(θ̂
(1)
S = 336.0, θ̂

(1)
WD = −58.8, θ̂

(1)
BD = −94.3, θ̂

(1)
WR = 4.2, θ̂

(1)
BR = 0.03)

with likelihood value of e−9088.96. The likelihood ratio statistic (null likelihood
over alternative likelihood) is therefore about 0.0041. Because the null hypoth-
esis is composite, determining the p-value of this result is more difficult, since
we must determine the probability of observing a likelihood ratio at least this
extreme under the null hypothesis for the parameter values θ(0) that maximize

this probability. That is,
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P0







sup
θ̂
(0) P0(A

1, . . . , A14|θ̂
(0)

)

sup
θ̂
(1) P1(A1, . . . , A14|θ̂

(1)
)
≤ 0.0041

∣

∣

∣

∣

∣

θ
(0)







.

In general this seems not to be tractable to analytic solution, so we employ
a genetic algorithm to perform the unconstrained optimization, and approxi-
mate the probability for each parameter vector by sampling. That is, for each
parameter vector θ(0) (for the null hypothesis) in the GA’s population on each
iteration, we sample a large set of sequences from the joint distribution. For each
sequence, we compute the MLE under the null hypothesis and the MLE under
the alternative hypothesis, and then calculate the likelihood ratio and compare
it to the observed ratio. We calculate the empirical frequency with which the
likelihood ratio is at most 0.0041 in the set of sampled sequences for each vec-
tor θ

(0), and use this as the objective function value in the genetic algorithm.
Mutations consist of adding Gaussian noise (with variance decreasing on each
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iteration), and recombination is performed as usual. Full details of the algorithm
are omitted for brevity (see (Mitchell, 1996) for an introduction to GAs). The
resulting approximate p-value we obtain by this optimization procedure is 0.024.

Because it has the form (2), this model has the property that we can com-
pute the likelihoods and derivatives thereof analytically. In particular, in models
of this form, we can compute likelihoods and perform Newton-Raphson opti-
mization directly, without the need of sampling-based approximations. How-
ever, in general this might not be the case. For situations in which one cannot
tractably compute the likelihoods, an alternative possibility is to use bounds on
the likelihoods. Specifically, one can obtain an upper bound on the likelihood
ratio statistic by dividing an upper bound on the null likelihood by a lower
bound on the alternative likelihood. When computing the p-value, one can use
a lower bound on the ratio by dividing a lower bound on the null likelihood
by an upper bound on the alternative likelihood. See (Opper and Saad, 2001;
Wainwright et al., 2005) for examples of how such bounds on the likelihood can
be tractably attained, even for intractable models.

In practice, the problem of formulating an appropriate model to encode one’s
hypothesis is not well-posed. One general approach which seems intuitively ap-
pealing is to write down the types of motifs or patterns one expects to find
in the data, and then specify various other patterns which one believes those
motifs could likely transition to (or would likely not transition to) under the al-
ternative hypothesis. For example, perhaps one believes that densely connected
regions of the network will tend to become more dense and clique-like over time,
so that one might want to write down a potential representing the transition of,
say, k-cliques to more densely connected structures.

6. Classification: A case study

One can additionally consider using these temporal models for classification.
Specifically, consider a transductive learning problem in which each actor has
a static class label, but the learning algorithm is only allowed to observe the
labels of some random subset of the population. The question is then how to use
the known label information, in conjunction with observations of the network
evolving over time, to accurately infer the labels of the remaining actors whose
labels are unknown.

As an example of this type of application, consider the alternative hypothesis
model from the previous section (model 1), in which each Senator has a class
label (party affiliation). We can slightly modify the model so that the party
labels are no longer constant, but random variables drawn independently from
a known multinomial distribution. Assume we know the party affiliations of a
randomly chosen 50 Senators. This leaves 50 Senators with unknown affiliations.
If we knew the parameters θ, we could predict these 50 labels by sampling from
the posterior distribution and taking the mode for each label. However, since both
the parameters and the 50 labels are unknown, this is not possible. Instead, we
can perform Expectation Maximization to jointly infer the maximum likelihood
estimator θ̂ for θ and the posterior mode given θ̂.
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Specifically, let us assume the two class labels are Democrat and Republi-

can, and we model these labels as independent Bernoulli(0.5) random variables.
The distribution on the network sequence given that all 100 labels are fully
observed is the same as given in the previous section. Since one can compute
likelihoods in this model, sampling from the posterior distribution of labels given
the network sequence is straightforward using Gibbs sampling. We can there-
fore employ a combination of MCEM and Generalized EM algorithms (call it
MCGEM) (McLachlan and Krishnan, 1997) with this model to infer the party
labels as follows. In each iteration of the algorithm, we sample from the posterior
distribution of the unknown class labels under the current parameter estimates
given the observed networks and known labels, approximate the expectation
of the gradient and Hessian of the log likelihood using the samples, and then
perform a single Newton-Raphson update using these approximations.

We run this algorithm on the 108th Senate data from the previous section.
We randomly select 50 Senators whose labels are observable, and take the re-
maining Senators as having unknown labels. As mentioned above, we assume
all Senators are either Democrat or Republican; Senator Jeffords, the only inde-
pendent Senator, is considered a Democrat in this model. We run the MCGEM
algorithm described above to infer the maximum likelihood estimator θ̂ for θ,
and then sample from the posterior distribution over the 50 unknown labels un-
der that maximum likelihood distribution, and take the sample mode for each
label to make a prediction.

The predictions of this algorithm are correct on 70% of the 50 Senators with
unknown labels. Additionally, it is interesting to note that the parameter val-
ues the algorithm outputs (θ̂S = 336.0, θ̂WD = −59.7, θ̂BD = −96.0, θ̂WR =

3.8, θ̂BR = 0.28) are very close (Euclidean distance 2.0) to the maximum like-
lihood estimator obtained in the previous section (where all class labels were
known). Compare the above accuracy score with a baseline predictor that always
predicts Democrat, which would get 52% correct for this train/test split, indicat-
ing that this statistical model of network evolution provides at least a somewhat
reasonable learning bias. However, there is clearly room for improvement in the
model specification, and it is not clear whether modeling the evolution of the
graph is actually of any benefit for this particular example. For example, af-
ter collapsing this sequence of networks into a single weighted graph with edge
weights equal to the sum of edge weights over all graphs in the sequence, run-
ning Thorsten Joachims’ Spectral Graph Transducer algorithm (Joachims, 2003)
gives a 90% prediction accuracy on the Senators with unknown labels. These
results are summarized in Table 1. Further investigation is needed into what

Table 1

Summary of classification results

Method Accuracy
Baseline 52%
Temporal Model 70%
SGT 90%
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types of problems can benefit from explicitly modeling the network evolution,
and what types of models are most appropriate for basing a learning bias on.

7. Assessing statistic importance and quality of fit: A case study

In this section, we use TERGMs to model the network transitions of the 108th

U.S. Senate network, described in Section 5. The dynamic network has 100
nodes and 12 time points2. We perform two types of experiments here: the
first is simply to assess which statistics are important for modeling the network
transitions, by observing the magnitudes of the estimated parameters, and the
second assesses the quality of fit of a model with a cross-validation experiment.

We start with including three statistics: Density, Stability, and Reciprocity.
The estimated parameters are plotted in Figure 3. We have estimated 11 sets of
model parameters, so each box plot in a subplot contains 11 values. Judging by
the magnitudes of the weights, we can see that Density and Stability play big
roles, whereas Reciprocity plays a minor role in this case.

The 3-statistic TERGMmodel is so simple that we would not expect it to have
enough modeling power. Therefore, we introduce some 3-node statistics 3 and
expand to include 7 statistics in the model. The 4 new statistics are Transitivity,
Reverse-Transitivity, Co-Supported, and Co-Supporting, which are illustrated in
Figure 4. Transitivity has been explained in earlier sections. Reverse-Transitivity
means that if person B supports person C and person C supports person A at
time (t− 1), then it is likely that person A will support person B at time t. Co-
Supported says that if both A and B are supported by a third person at time t,
then it is likely that person A will support person B at time t. Co-Supporting
is defined similarly. In all of the cases, we are looking at the influence from the
previous time point on the link from A to B at time t.
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Fig 3. Estimated parameter values (weights) for a TERGM with 3 statistics (features). Fea-
ture 1 is Density; Feature 2 is Stability; Feature 3 is Reciprocity.

2We have removed the first two time points from the original 14-step series of Section 5,
due to outlier behavior in the initial two time points. This behavior is explained by an initial
surge in activity when the Senate reconvenes after a vacation, but is not part of the usual
“stationary” behavior, so we chose to exclude it when evaluating the quality of fit.

3We call Density, Stability, and Reciprocity 2-node features because their decomposed
forms only involve two nodes.
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Fig 4. Graph illustrations of six 3-node statistics corresponding to Features 4−9 in Figure 5
and 6. Blue circles are nodes; black solid arrows represent links (or a supporting relationship)
at time (t− 1); red dotted arrows represent an edge at time t.
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More formally, the new statistics are defined as
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Figure 5 shows the parameter values for the TERGM model with these 7
statistics. Among the 4 new statistics, Transitivity and Co-Supporting are ma-
jor contributors, while Reverse-Transitivity and Co-Supported are neglectable.
The effectiveness of Transitivity is intuitive, but the big contrast between the
weights for Co-Supporting and for Co-Supported could be intricate. It can be
explained by the nature of the data. Each proposal has a single sponsor and
possibly multiple co-sponsors. Therefore, each Senator is likely to be a sponsor
(supported by others) for few proposals, while she or he could potentially be
a co-sponsor (supporter) for many more proposals. When the Co-Supporting

case happens, it is likely that the two Senators supported a third Senator on
the same proposal, which suggests a shared position on the issue, which could
further lead to a cooperation on another proposal at a later time. In contrast,
when the Co-Supported situation happens, it is certain that the two Senators
are supported by a third senator on different proposals.4 Although they are

4Links corresponding to a proposal are pointing to a single node, since there is only one
sponsor for each proposal.
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Fig 6. Estimated parameter values (weights) for a TERGM with 9 statistics (features).

co-sponsored by a same Senator, these proposals can be in very different areas,
which does not necessarily suggest a common interest for the two sponsors.

Next, we add two more 3-node statistics, Popularity and Generosity, to the
model to have a set of 9 statistics. As illustrated in Figure 4, Popularity says that
if one has a supporter, she or he is likely to have another supporter. Generosity

can be understood in the same manner. More formally, they are defined as
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Figure 6 shows the estimated parameter values for the TERGM with 9 statis-
tics. Both Popularity and Generosity have significant weights, while Transitivity
has a weight with low magnitude. In some sense, the Transitivity statistic can be
viewed as Popularity plus Generosity with some constraints. This plot indicates
that the importance of Popularity and Generosity was the indirect cause of our
emphasis on Transitivity in the simpler models, since in a model containing
these statistics, Transitivity becomes irrelevant.

Next, we heuristically evaluate the quality of fit of the model using a cross-
validation style experiment. Hunter, Goodreau, and Handcock (2008) have re-
cently proposed a method for evaluating goodness-of-fit for ERGMs, modeling
a single network. The idea is to hold out one statistic and fit the parameters
for the remaining statistics, and then determine how well the distribution of the
held-out statistic under the fit parameters captures its observed value from the
data. Although a similar approach should be possible in our present setting, we
have chosen to take a slightly different approach to assessing fitness. Instead,
we propose holding out one of the temporal transitions. Specifically, for each
of the time points t (except t = 1), we estimate the entire set of parameters
for a TERGM to fit all the observed transitions except the transition from time
point t− 1 to time point t. We then assess how well the fit parameters predict
the transition of the statistics’ values for the held-out transition, as follows. We
sample a number of networks from the conditional distribution over the net-
work at time t given the observed network at time t − 1, under the estimated
parameters. Then we compare the Ψ(At, At−1) statistic values from the sampled
At networks to the Ψ(At, At−1) statistic values from the true At network. We
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Fig 7. Statistic values of real networks and sampled networks based on a TERGM with 9
statistics. The comparisons are grouped by statistic. Blue solid lines indicate the observed
(true) network statistics. Box plots are for the sampled networks (in the described cross-
validation experiments) and green dotted lines indicate 5- and 95-percentiles.

repeat this entire process for each t > 1 to generate our plots. The results of
this comparison reflect relatively how well this TERGM models the transitions,
given that we are committed to a Markov assumption for the transitions.

Figure 7 presents the comparison of statistic values between ground-truth and
sampled networks from the estimated TERGMs from the cross-validation pro-
cess described above. For a few statistics, the blue lines lie within the green lines
(i.e., in the range of sampled networks) for most time points, which means that
the model does a fairly good job of predicting the change in statistic values: for
example, Reciprocity, Reverse-Transitivity, Co-Supported, Co-Supporting, and
Popularity. It is worth noting that we can even capture some sharp changes with
these models: for instance, Reverse-Transitivity, Co-Supporting, and Popularity

at time point 7 (the last of these is particularly dramatic). This is somewhat
surprising, as it intuitively seems like sharp changes might be quite difficult
to predict with a Markov assumption and such simple statistics. On the other
hand, not all statistics are predicted well, such as Stability, where the predictions
are quite poor; as such, there is clearly room for improvement in the design of
statistics to more accurately model time-evolving networks.
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8. Future work

If we think of this type of model as describing a process giving rise to the net-
works one observes in reality, then one can think of a single network observation
as a snapshot of this Markov chain at that time point. Traditionally one would
model a network at a single time point using an ERGM. However, in light of the
degeneracy issues found in ERGMs, and the lack thereof for the temporal models
with product conditional distributions, it seems worthwhile to investigate mod-
eling a single network as the end-point of an unobservable sequence. Directly
modeling this with latent variables would seem to make inference computation-
ally difficult. However, it may be possible to indirectly model this by studying
the stationary distribution of these Markov chains. To our knowledge, it remains
an open problem to directly specify the family of stationary distributions that
a given TERGM corresponds to.

Moving forward, we hope to move beyond these ERG-inspired models to-
ward models that incorporate latent variables, which may also evolve over time
with the network. For example, it may often be the case that the phenomena
represented in data can most easily be described by imagining the existence of
unobserved groups or factions, which form, dissolve, merge and split as time pro-
gresses. The flexibility of the ERG models and the above temporal extensions
allows a social scientist to “plug in” his or her knowledge into the formula-
tion of the model, while still providing general-purpose estimation algorithms
to find the right trade-offs between competing and complementary factors in the
model. We would like to retain this flexibility in formulating a general family
of models that include evolving latent variables in the representation, so that
the researcher can “plug in” his or her hypotheses about latent group dynamics,
evolution of unobservable actor attributes, or a range of other possible phenom-
ena into the model representation. At the same time, we would like to preserve
the ability to provide a “black box” inference algorithm to determine the pa-
rameter and variable values of interest to the researcher, as can be done with
ERGMs and now TERGMs.
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