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Longitudinal network data.

Let G(1), . . . ,G(T ) be T > 1 graphs that represent the state of
the same network at T different points in time t1, . . . , tT .

Without any assumptions the joint probability of the T graphs is

P(G(1), . . . ,G(T )) =
T∏

h=1

P(G(h)|G(h−1), . . . ,G(1)) .

For any timepoint th with 1 < h ≤ T we are interested in the
conditional distribution

P(G(h)|G(h−1), . . . ,G(1)) ,

that is the distribution of the network at time th conditional on all
previous observations.



Longitudinal network data: Markov assumption.
Normally we make the (first-order) Markov assumption stating
that for any timepoint th with 1 < h ≤ T it is

P(G(h)|G(h−1), . . . ,G(1)) = P(G(h)|G(h−1)) .

This can be formulated informally as:

Given the present, the future is independent of the
past.

Or more simplistic:

Same present implies same future (even if the past
was different).

For k ≥ 1, the k -order Markov assumption states that for any
timepoint th with k < h ≤ T it is

P(G(h)|G(h−1), . . . ,G(1)) = P(G(h)|G(h−1), . . . ,G(h−k)) .



Temporal ERGM (TERGM).
A TERGM specifies the conditional probability of the graph at
time th, given the graph at the preceeding timepoint as

Pθ(G(h)|G(h−1)) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G(h),G(h−1))

)

with
I si : G × G → R for i = 1, . . . , k (statistics);
I θi ∈ R for i = 1, . . . , k (parameters); θ = (θ1, . . . , θk );
I normalizing constant κ defined by

κ(θ) =
∑

G′∈G

exp

(
k∑

i=1

θi · si(G′,G(h−1))

)
.

Note: the function Pθ(G) = Pθ(G|G(h−1)) defines a
(non-temporal) ERGM on G.



The remainder of these slides discusses the relation between
TERGM statistics and the network effects modeled by them.



Statistics of TERGMs: first distinction.

In general, TERGM statistics si(G(h),G(h−1)) are functions of
both, the preceeding network G(h−1) and the network G(h) of
the current time point. For instance,

I the number of persistent ties, i. e., ties of G(h) that were
also ties in G(h−1);

I the number of new ties, i. e., ties of G(h) that were
non-ties in G(h−1).

A TERGM statistic si(G(h),G(h−1)) can also be independent of
G(h−1), that is, be a function of only G(h). For instance,

I the number of ties, i. e., ties of G(h) (irrespective of
whether they were ties in G(h−1) or not).

Note that at most two of these three statistics can be used
together; which ones are used changes the interpretation of
positive vs. negative parameters.



Statistics of TERGMs: a remark.

A TERGM statistic si(G(h),G(h−1)) that is independent of G(h),
i. e., that is only a function of G(h−1), cannot be used.

Since the conditioning network G(h−1) is fixed for the whole
distribution

Pθ(G(h)|G(h−1)) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G(h),G(h−1))

)
,

such a statistic would be constant for all networks G(h). (Thus
the associated parameter could not be estimated.)



Homophily: tie existence, formation, or duration.

Assume nodes have a gender covariate.

A reasonable minimal TERGM to test for homophily would
include the four following statistics.

1. The number of ties, controling for the density of G(h).
2. The number of persistent ties, controling for the inertia of

ties when going from G(h−1) to G(h).
3. The number of same-gender ties, assessing homophily

in G(h).
4. The number of persistent same-gender ties, assessing

whether same-gender ties tend to last longer than
mixed-gender ties.

Exchanging “new” with “persistent” in statistics (2) and (4)
would test whether same-gender ties are more likely to be
created than mixed-gender ties.



Dyadic dependence vs. lagged dyadic dependence.

We represent a graph G(h) = (V ,E (h)) by its adjacency matrix

(y (h)
u,v )u,v=1,...,|V | where y (h)

u,v = 1⇔ (u, v) ∈ E (h) .

Can define two variants of a reciprocity statistic:

recip(G(h),G(h−1)) =
∑
u 6=v

y (h)
u,v · y

(h)
v ,u

lagged-recip(G(h),G(h−1)) =
∑
u 6=v

y (h)
u,v · y

(h−1)
v ,u

Note: a count in lagged-recip does not imply that there ever
was a mutual tie at the same point in time.

A count in lagged-recip implies that (v ,u) gets reciprocated
by the reverse tie (u, v) at the next time point.



Dyadic dependence vs. lagged dyadic dependence.

Can define two variants of a transitivity statistic:

trans(G(h),G(h−1)) =
∑

u,v ,w

y (h)
u,v · y

(h)
v ,w · y

(h)
u,w

lagged-trans(G(h),G(h−1)) =
∑

u,v ,w

y (h−1)
u,v · y (h−1)

v ,w · y (h)
u,w

u w
th

vth−1 th−1

A count in lagged-trans implies that the
I 2-path from u over v to w at time th−1

I gets closed by (u,w) at time th.



Characterization of fully independent TERGMs.

If all statistics are sums of products of (y (h)
u,v ) and (y (h−1)

u,v ),

and if all products contain at most one entry from (y (h)
u,v ),

then the TERGM is fully independent.

For instance, lagged-trans leaves dyads independent

lagged-trans(G(h),G(h−1)) =
∑

u,v ,w

y (h−1)
u,v · y (h−1)

v ,w · y (h)
u,w

trans(G(h),G(h−1)) =
∑

u,v ,w

y (h)
u,v · y

(h)
v ,w · y

(h)
u,w

but trans implies non-independence among incident dyads.



Separable temporal ERGMs.

(A specific sub-class of TERGMs.)



Existence, formation, and dissolution.

The existence of ties is the result of two sub-processes:
1. the formation process, explaining the rate at which new

ties are formed; and
2. the dissolution process, explaining how long existent ties

tend to last until they get dissolved.

It is plausible that formation and dissolution are shaped by
different social mechanisms.

For instance, it could be that homophily
1. explains the formation of ties (e. g., by providing

opportunities for friendship creation);
2. has no influence on the dissolution of ties (once a tie is

established, actor differences might be less important).
A non-temporal ERGM necessarily confounds formation and
dissolution; some temporal ERGMs too.



Separable temporal ERGMs (STERGMs).

An STERGM makes the assumption that formation and
dissolution are conditionally independent, given the
preceeding network.

This excludes, for instance, “contracts” of the form
I create a tie with you if you break up your tie with that
other person.

The separability assumption would also exclude modeling of
marriage ties if monogamy is the norm
(unless time lags are so short that divorce and re-marriage
never occurs in the same time-interval).



Formation network and dissolution network.

Let G(h) = (V ,E (h)) and G(h−1) = (V ,E (h−1)) be two
consecutive observations of a longitudinal network.

I The formation network G+ = (V ,E+) has edge set

E+ = E (h) ∪ E (h−1) .

I The dissolution network G− = (V ,E−) has edge set

E− = E (h) ∩ E (h−1) .

G(h) can be reconstructed from G(h−1), G+ and G− by

E (h) = E+ \ (E (h−1) \ E−) = E− ∪ (E+ \ E (h−1)) .

Thus, modeling G(h) given G(h−1) is equivalent to
modeling G+ and G− given G(h−1).



Formation model and dissolution model.

Modeling G(h) given G(h−1) is equivalent to
modeling G+ and G− given G(h−1); that is

P(G(h)|G(h−1)) = P(G+,G−|G(h−1)) .

By the separability assumption we have

P(G+,G−|G(h−1)) = P(G+|G(h−1)) · P(G−|G(h−1)) .

The two models on the right-hand side are called the formation
model and the dissolution model, respectively.



Separable temporal ERGMs.

Assumption: formation and dissolution are independent:

P(G(h)|G(h−1)) = P(G+|G(h−1)) · P(G−|G(h−1)) .

Specifically for TERGMs we have

Pθ(G(h)|G(h−1)) =
1
κ(θ)

· exp

(
k∑

i=1

θi · si(G(h),G(h−1))

)

Pθ+(G+|G(h−1)) =
1

κ+(θ+)
· exp

 k+∑
i=1

θ+i · s
+
i (G+,G(h−1))


Pθ−(G

−|G(h−1)) =
1

κ−(θ−)
· exp

 k−∑
i=1

θ−i · s
−
i (G−,G(h−1))


Note that the normalizing constants are different.



Formation model of an STERGM.

The formation network has edge set E+ = E (h) ∪ E (h−1).

Since G(h−1) is fixed, G+ is a random draw from

G+(G(h−1)) = {G = (V ,E) ∈ G ; E (h−1) ⊆ E} .

This implies the normalizing constant of the formation model:

Pθ+(G+|G(h−1)) =
1

κ+(θ+)
· exp

 k+∑
i=1

θ+i · s
+
i (G+,G(h−1))


κ+(θ+) =

∑
G∈G+(G(h−1))

exp

 k+∑
i=1

θ+i · s
+
i (G,G(h−1))


Formation model explains: which ties are added to E (h−1)?



Dissolution model of an STERGM.

The dissolution network has edge set E− = E (h) ∩ E (h−1).

Since G(h−1) is fixed, G− is a random draw from

G−(G(h−1)) = {G = (V ,E) ∈ G ; E ⊆ E (h−1)} .

This implies the normalizing constant of the dissolution model:

Pθ−(G
−|G(h−1)) =

1
κ−(θ−)

· exp

 k−∑
i=1

θ−i · s
−
i (G−,G(h−1))


κ−(θ−) =

∑
G∈G−(G(h−1))

exp

 k−∑
i=1

θ−i · s
−
i (G,G(h−1))


Dissolution model: which ties are removed from E (h−1)?



Interpretation of parameters in STERGMs.
Example: let θ be the parameter of the mutual statistic.

The formation model explains the creation of new ties.
I A positive (negative) θ implies that reciprocated ties are

created with higher (lower) probability.
I The formation model does not say anything about those

dyads that have been edges in the previous network.

The dissolution model explains the persistence of old ties.
I A positive θ implies that reciprocated ties are dissolved

with lower(!) probability;
that is, they are persistent with higher probability;
that is, they tend to have longer duration.

I A negative θ implies that reciprocated ties are dissolved
with higher(!) probability;
that is, they are persistent with lower probability;
that is, they tend to have shorter duration.

I The dissolution model does not say anything about those
dyads that have been non-edges in the previous network.



Fitting STERGMs with the tergm package.

General form of the tergm function:

tergm( dyn.net,
formation = ~<stat1> + <stat2> +...,
dissolution = ~<stat1’> + <stat2’> +...,
estimate = ...)

dyn.net is a list of networks or a networkDynamic object.

The formation and dissolution formulas can include
different terms.

estimate gives the estimation method; in our case it is
normally CMLE (conditional maximum likelihood estimation).



Modeling the four waves of the Knecht Data.

Model assumes that parameters are homogeneous over time.

statistics formation dissolution
edges -3.16(0.24)*** -1.06(0.35)**
mutual +1.54(0.24)*** +2.78(0.43)***
cyclicalties -0.35(0.12)** -0.98(0.20)***
transitiveties +0.80(0.19)*** +1.06(0.22)***
nodematch.gender +0.71(0.18)*** +0.46(0.26).
absdiff.delinq -0.43(0.12)*** -0.12(0.15)

Note: delinquency explains the formation but not the
dissolution of ties.

Transitive and cyclical ties suggest a latent hierarchical
structure.


