UNIVERSITY OF KONSTANZ ALGORITHMICS GROUP V. Amati / J. Lerner Network Modeling Winter Term 2015/2016

Assignments $\mathcal{N}^{\underline{o}}$ 7

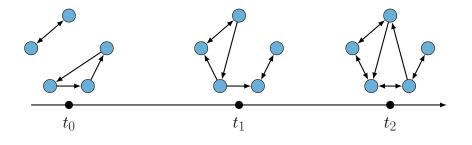
released: 09.12.2015 due: 14.12.2015

Task 1: Method of Moments

_

Suppose that 10 undirected, simple, loopless graphs were generated from a $\mathcal{G}(30, p)$. The following table shows the number of edges y_i in each graph

										g_{10}	
y_i	37	40	35	32	39	34	25	28	41	32	-


Let Y be a random variable describing the number of edges within $\mathcal{G}(30, p)$ such that:

$$P(Y = y) = {\binom{M}{y}} p^y (1-p)^{M-y}, \qquad M = \frac{n(n-1)}{2}$$

Estimate p using the Method of Moments and compare the estimate with that computed using the Maximum Likelihood estimation. (See slide 130 in slides_static.pdf)

Task 2: Estimating the parameter of the SAOM 5 points

A certain relation was observed over a set of 5 actors at three time points. The observed networks are represented in the picture below

5 points

Let us assume that the network evolution is explained by outdegree, reciprocuty and 3-cycles.

Given the picture and the specification of the evaluation function, specify the system of moment conditions that should be solved in order to estimate the parameter θ of the SAOM with the MoM.

Task 3: Chain probability in R10 points

Let us consider the data collected by Andrea Knecht.

- (a) Import the data collected by Andrea Knecht and available at http://algo.uni-konstanz.de/lehre/ws15/nm/local/data/data.html. Load the data in RSiena.
- (b) Specify a SAOM based on the following statistics: outdegree, reciprocity, transitivity and 3-cycles.
 - (b.1) Estimate the model
 - (b.2) Which effects are significant and how would you interpret them?
 - (b.3) Compute the contribution to the evaluation function associated to a tie that reciprocates another tie, closes 4 transitive triplets and 2 three-cycles. Interpret the result.
- (c) Consider the following three statements:
 - i. Girls are more active in friendship
 - ii. Boys are more popular in friendship
 - iii. Friendship between pupils having the same gender is more likely
 - (c.1) Specify a SAOM in order to test if these statements are supported by the data.
 - (c.2) Which statements are supported by the data?