
University of Konstanz Design and Analysis of Algorithms

Department of Computer & Information Science Winter 2018/2019

Sabine Cornelsen

Assignment 3

Post Date: 05 Nov 2018 Due Date: 12 Nov 2018, 11:30 a.m.
You are permitted and encouraged to work in groups of two.

Problem 1: Union-Find with Extended Linked List Representation 6 Points

1 3 5 7

repr

head

Consider the following extended variant of the linked list representation:
Store for each item of the list also the representative of the list. Then an operation Find can
be performed in Θ(1), but for each Union operation, we have to update the pointers to the
representative of the items in the list that is appended to the head of the other list.

We also store the length of each list and always append the shorter list to the longer one
when performing a Union operation.

(a) Write easily understandable pseudocode for the operations MakeSet, Union, and
Find.

Consider a sequence of m operations MakeSet, Union, and Find, of which n are MakeSet
operations.

(b) Prove that the pointer repr of a fixed item can be updated at most log n times.

(c) Conclude that the whole sequence can be performed in O(m + n log n) time.

Problem 2: Sequence of Operations 6 Points

Consider sequences of operations MakeSet, Find with path compression, and weighted
Union where all Union operations are performed before the first Find operation.

(a) Show that the amortized cost for m operations is in O(m).

(b) Does (a) hold if Find still performs path compression but Union is unweighted?

(c) Does (a) hold if Union is still weighted but Find does not perform path compression?

[please turn over]

Problem 3: Application of Union-Find 8 Points

In this exercise we want to use Union-Find as the basis to solve a different problem.

We maintain a forest F = {Ti} of rooted trees under three operations:

• MakeTree(v): create a tree whose only node is v.

• FindDepth(v): return the depth (distance to the root) of node v within its tree.

• Append(r, v): make node r, which is assumed to be the root of a tree, become the child
of node v, which is assumed to be in a different tree than r but may or may not itself
be a root.

(a) Suppose that we use a tree representation similar to a disjoint-set forest: p[v] is the
parent of node v, except that p[v] = v if v is a root. If we implement Append(r, v) by
setting p[r]← v and FindDepth(v) by following the path from v up to the root in Ti

and returning a count of all nodes other than v encountered, show that the worst-case
running time of a sequence of m MakeTree, FindDepth, and Append operations is
in Θ(m2).

By using the weighted union and path compression heuristic, we can reduce the worst-case
running time. We use the disjoint-set forest S = {Si}, where each set Si (which is itself a tree)
corresponds to a tree Ti in the forest F . The tree structure within a set Si, however, does not
necessarily correspond to that of Ti. In fact, the implementation of Si does not record the
exact parent-child relationships but nevertheless allows us to determine any node’s depth in
Ti.

The key idea is to maintain a pseudodistance d[v] in each node v, which is defined so that
the sum of pseudodistances along the path from v to the root of its set Si equals the depth
of v in Ti. That is, if the path from v to its root in Si is v0, v1, . . . , vk, where v0 = v and vk is
Si’s root, then the depth of v in Ti is

∑k
j=0 d[vi].

(b) Give an implementation of MakeTree.

(c) Show how to modify Find (from Union-Find) to implement FindDepth. Your im-
plementation should perform path compression, and its running time should be linear
in the length of the path to the root. Make sure that your implementation updates
pseudodistances correctly.

(d) Show how to modify the weighted Union operation to implement Append(r, v), which
combines the sets containing r and v. Make sure that your implementation updates the
pseudodistances correctly. Note that the root of a set Si is not necessarily the root of
the corresponding tree Ti.

Let Sr and Sv be the trees containing r and v. Note that the choice to append Sr to
the root of Sv or vice-versa depends on whether |Sr| < |Sv| or |Sr| ≥ |Sv|.

