UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Sabine Cornelsen Design and Analysis of Algorithms Winter 2018/2019

Assignment 5

Post Date: 19 Nov 2018 **Due Date:** 26 Nov 2018, 11:30 am You are permitted and encouraged to work in groups of two.

Problem 1: Minimum Spanning Tree

Find an MST for the graph on the right using

- (a) the coloring method of Tarjan,
- (b) the algorithm of Kruskal, and
- (c) the algorithm of Prim.

Indicate in each step the edge that has to be colored together with the corresponding color. When you apply the algorithm of Prim, use a Fibonacci heap and give for each step the necessary heap operations and show how the heap looks like.

Problem 2: Height of a Fibonacci Heap

Prove or disprove that the height of a tree of a Fibonacci heap with n vertices is in $\mathcal{O}(\log n)$.

4 Points

7 Points

Problem 3: Cascading Cut

In the following we consider the Fibonacci heap from the lecture, but without cascading cut.

Let $T_k(i)$ be a Fibonacci heap with k root nodes with 0 to k children, where the root node with i children is missing. No tree has nodes of depth two or more. Further, the keys of the roots must decrease with increasing degree.

Figure 1: Example of a Fibonacci heap $T_6(4)$, where the root node with 4 children is missing.

- (a) Given a heap $T_k(i), i = 1, ..., k$, show how to construct $T_k(i-1)$ using two Insert, one ExtractMin, and at most k DecreaseKey (without cascading cut) operations.
- (b) Given a heap $T_k(0)$, show how to construct $T_{k+1}(k+1)$ with only one operation.
- (c) Conclude that a heap $T_k(k)$ can be constructed with $\mathcal{O}(k^3)$ operations.
- (d) Show that you can construct a $T_k(k)$ from a $T_k(k)$ by applying 1 Insert and 1 ExtractMin operations that need $\Omega(k)$ time.
- (e) Conclude that the worstcase runtime is in $\Omega(m^{1+\epsilon})$ for *m* operations of Insert, Extract-Min, and DecreaseKey without cascading cuts for some $\epsilon > 0$.