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Problem 1: Truck Loading 4 Points

Suppose a ship arrives with n containers of positive weight w1, . . . , wn. You want to load the
containers into trucks, each of which can hold cargo of weight at most K ≥ maxiwi.

You apply the following scheme: Start with an empty truck and fill it with containers 1, 2, . . .
until the next container does not fit into the truck. Then send this truck off and continue
the process by filling the next truck. Iterate this scheme until all containers were loaded into
trucks.

Show that the number of trucks used by this scheme is at most twice the minimum number
of trucks possible.

Problem 2: Central Points 6 Points

In the `-central points problem, you are given a set P of n points in the plane with Euclidean
distances d and a positive integer `. We call the points in P sites. You want to build at
most ` centers such that the maximum distance of any site to its nearest center is minimized.
I.e. the feasible solutions are the sets C of at most ` points in the plane, the cost of C is its
covering radius r(C) = maxp∈P minc∈C d(p, c) and you want to find a feasible solution with
minimum cost.

(a) Consider the following method: Start with the empty set C. Keep adding points to C
reducing the covering radius each time by as much as possible. I.e., iteratively find a
point c∗ in the plane (not necessarily from P ) such that

r(C ∪ {c∗}) = min
c′∈R2

r(C ∪ {c′})

and add c∗ to C until the size of C is `.

Does this yield a k-approximation for the `-central points problem for some constant
k ≥ 1?

(b) Assuming you knew the optimum covering radius r, consider the following algorithm.
Start with C = ∅ and P ′ = P . While P ′ is not empty, iteratively pick a site p ∈ P ′,
add it to C, and remove all points from P ′ that have distance at most 2r from p.

Prove that this yields a 2-approximation for the `-central points problem.
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(c) Also consider the following algorithm. Select a site c ∈ P and start with C = {c}.
Iteratively select a site p ∈ P that maximizes minc∈C d(p, c) and add p to C until the
size of C is ` or C = P .

Does this yield a k-approximation for the `-central points problem for some constant
k ≥ 1?

Problem 3: Approximating Knapsack 10 Points

Algorithm 1: Approximation Algorithm for Knapsack

Input: positive integers w1, . . . , wn, v1, . . . , vn, W such that v1/w1 ≥ · · · ≥ vn/wn

Output: A feasible solution I ⊆ {1, . . . , n}
I ← ∅;
for i = 1, . . . , n do

if
∑

j∈I∪{i}wj ≤W then

I ← I ∪ {i};

for i = 1, . . . , n do
if wi ≤W and vi > v(I) then

I ← {i};

(a) Suppose you omit the first for loop of Algorithm 1. Show that such an algorithm is not
a k-approximation algorithm for Knapsack for any k ∈ N+.

(b) Suppose you omit the second for loop of Algorithm 1. Show that such an algorithm is
not a k-approximation algorithm for Knapsack for any k ∈ N+.

In order to analyze the quality of the approximation produced by the algorithm, consider now
the following continuous variant of the Knapsack problem:

Instance: weights (w1, . . . , wn) ∈ Nn, values (v1, . . . , vn) ∈ Nn, maximum weight W ∈ N.

feasible solutions: vectors I = (x1, . . . , xn) ∈ [0, 1]n with
∑n

i=1 xiwi ≤W .

value of I: v(I) =
∑n

i=1 xivi

optimum solution: a feasible solution with maximum value.

(c) Suppose you are given an instance of the continuous Knapsack problem such that
v1/w1 ≥ · · · ≥ vn/wn. Show that there exists an integer k ∈ {1, . . . , n} and an op-
timum solution (x1, . . . , xn) such that xi = 1 for 1 ≤ i < k, 0 ≤ xk ≤ 1, and xi = 0 for
n ≥ i > k.

(d) Show that the unmodified Algorithm 1 is a 2-approximation algorithm.

Hint: You may use (c), even if you did not prove it.

(e) Is Algorithm 1 a k-approximation algorithm for some k < 2? Prove your claim.


