UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Sabine Cornelsen

Assignment 11

Post Date: 14 Jan 2019 **Due Date:** 21 Jan 2019 You are permitted and encouraged to work in groups of two.

Problem 1: FPTAS

Consider an optimization problem Π with the following properties.

- (a) An instance of Π is a vector with integer entries.
- (b) The value of any feasible solution is a non-negative integer.
- (c) The optimum value is bounded by a polynomial in the size of the input and the maximum absolute value of any integer occuring in the input, i.e., there is a polynomial p with $v_{\text{OPT}}(x) < p(|x|, x_{\text{max}})$ for any instance x of Π , where $v_{\text{OPT}}(x)$ is the value of an optimum solution, |x| is the size of x and x_{max} is the maximum absolute value of the entries in x.

Prove that there is a pseudo-polynomial time algorithm for Π if there is an FPTAS for Π .

Problem 2: Vertex Cover Relaxation

Consider the LP relaxation of Vertex Cover:

 $\begin{array}{ll} \text{minimize} & \sum_{v \in V} x_v \\ \text{subject to} & x_u + x_v \ge 1 \quad \{u, v\} \in E \\ & x_v \ge 0 \qquad v \in V \end{array}$

Prove: There exists an optimal solution to the LP relaxation of Vertex Cover such that $x_v \in \{0, 0.5, 1\}$ for all vertices $v \in V$.

Winter 2018/2019

Design and Analysis of Algorithms

5 Points

5 Points

Problem 3: Euclidean Traveling Salesman Problem

Consider the Euclidean Traveling Salesman problem (Euclidean TSP) parameterized by the number of points in the interior of the convex hull of a given set of points:

Euclidean Traveling Salesman:

Input: set $V \subset \mathbb{R}^2$ of *n* points, threshold $\ell \in \mathbb{R}_{>0}$

Parameter: number k of points of V in the interior of the convex hull of V

Question: Is there a round trip of length at most ℓ ?

Recall that a round trip is an ordering v_1, \ldots, v_n of the points in V. The edges of a round trip v_1, \ldots, v_n are the line segments $\overline{v_1v_2}, \ldots, \overline{v_{n-1}v_n}, \overline{v_nv_1}$. The length of a round trip is the sum of the lengths of the edges on the round trip. Two edges cross if their intersection is finite and non-empty and does not consist only of common endpoints of the edges. For simplicity, you may assume in the following that no three points in V lie on a single line.

- (a) Show that no two edges of a shortest round trip cross.
- (b) Show that the points on the boundary of the convex hull appear consecutively in a shortest round trip.

Let p_1, \ldots, p_{n-k} be the points on the boundary of the convex hull in cyclic order. Let V_I be the set of points in V that are in the interior of the convex hull of V. We fix an arbitrary ordering q_1, \ldots, q_k of the points in V_I . We are looking for the length of the shortest round trip that contains p_1, \ldots, p_{n-k} and q_1, \ldots, q_k in this order as subsequences.

Let $F_p(i, j)$ and $F_q(i, j)$, respectively, be the length of a shortest p_1 - p_i - and p_1 - q_j -path that consist of the points p_1, \ldots, p_i and q_1, \ldots, q_j and respect their orderings.

- (c) Find recursive formulas for $F_p(i, j)$ and $F_q(i, j)$, and show that $F_p(i, j)$ and $F_q(i, j)$ can be computed in $\mathcal{O}(nk)$ time using dynamic programming.
- (d) Express the length of the shortest round trip that has p_1, \ldots, p_{n-k} and q_1, \ldots, q_k as subsequences in terms of $F_p(i, j)$ and $F_q(i, j)$.
- (e) Conclude that Euclidean TSP is fixed-parameter tractable for parameter k. What running time do you achieve when computing the shortest round trip with this approach?