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1. Introduction

Many processes within a society, such as diseases, opin-
ions, information, or behavior, spread through a net-
work of personal interactions. Whether a phenomenon
is going to spread widely within a population depends
on the influence of affected individuals and the suscep-
tibility of the unaffected ones, as well as the pattern
of the interactions among individuals. Such spread-
ing phenomena have been studied in numerous domains
including epidemiology (Dezsö & Barabási, 2002; Eu-
bank et al., 2004; Kempe et al., 2003; May & Lloyd,
2001; Morris, 1993; Newman, 2002; Pastor-Satorras &
Vespignani, 2001), diffusion and adoption of novel prod-
ucts and technologies (Chen & Carley, 2005; Domingos,
2005; Goldenberg et al., 2001; Leskovec et al., 2006;
Rogers, 2003; Young, 2006), voting and rumors (Gra-
novetter, 1978; Moreno et al., 2004; Zanette, 2002), and
numerous others.

One important question in the context of spreading pro-
cesses is to find a set of individuals whose removal would
result in the largest reduction of the extent of spread.
We call this set of individuals “blockers” of the spread.
For example, the blockers of a spreading disease are the
set of individuals who are the best candidates for vac-
cination or quarantine. It is necessary to highlight here
that while epidemiologically both quarantine and vac-
cination have the similar goal of reducing the extent of
spread of a disease computationally they are two dif-
ferent problems. Quarantine is modeled by removing a
node from the network while vaccination deactivates its
ability to pass on a disease while leaving it in the net-
work. Under some disease spread models those actions
are equivalent.

Related questions of identifying the source of an out-
break and optimizing some outbreak detection criteria
by strategically placing sensors (Berger-Wolf et al.,
2005; Berry et al., 2005a; Hart et al., 2006; Eubank
et al., 2004; Kempe et al., 2002; Leskovec et al., 2007)
have been addressed in the context of various applica-
tions but there has been little work done for the identi-
fication of the critical individuals whose removal mini-
mizes the spread of a phenomenon in the network once
it has started spreading. The sensor placement prob-

lem can be viewed as one of identifying individuals who
minimize the extent of spread while remaining in the
network (somewhat similar to vaccination). In our work
we focus on identifying the best blockers to be removed.
The related work, including the recent developments on
monotonic submodular functions (Kempe et al., 2003;
Leskovec et al., 2007), is significantly different from this
formulation and the computational and algorithmic re-
sults, unfortunately, do not apply. Thus, in this work
we propose a set of structural network measures and a
heuristic, yet systematic, approach based on those mea-
sures to identify good blockers.

An intrinsic property of populations missing in most
analysis of the spreading processes on networks is the
changing nature of the interactions. For example, in the
context of disease spread, two individuals may be in con-
tact for a long period of time while they are in the sus-
ceptible stage, but they may not be in close proximity
of each other when either of them gets infected. Here,
the explicit timing and order of interactions affect the
resulting spread of the disease. Moreover, for diseases
like bird flu the exact sequence of the contacts in birds
is known and can be used to predict disease spread.
Similarily, zebras are influenced by those with whom
they have been in close proximity most recently (Fis-
chhoff et al., 2007). Thus, a change in the behavior in
zebra population will spread only over those recent con-
tacts. Here again, the exact observed sequence of move-
ments is available and our conclusions can be tested by
comparing them with the field observations. The very
nature of a spreading process implies an explicit time
axis (Kempe et al., 2002). In this paper, we focus on
explicitly dynamic networks, defined in Section 2.1.

2. Preliminaries and Definitions

2.1. Dynamic Network

Definition 1 Let {1, . . . , T} be a finite set of discrete
timesteps. Let V = {1, . . . , n} be a set of individuals.
Let Gt = (Vt, Et) be a graph representing a snapshot
of a static network at time t: Vt ⊆ V , is a subset of
individuals V observed at time t and an edge (ut, vt) ∈
Et if individuals u and v have interacted at time t.
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A dynamic network G = 〈G1, . . . , GT 〉 is the graph G =
(V, E) of the time series of graphs Gt such that V =⋃

t Vt and E =
⋃

t Et ∪
⋃

t−1 (vt, vt+1).

In general, in a dynamic network both edges and indi-
viduals can change over time. However, for simplicity,
we assume that the set of individuals remains the same
throughout the entire time period: V = V1 = . . . = VT .
However, our results easily extend to networks where
this assumption does not hold. The edges Et may be
directed or undirected and weighted or unweighted. The
self-edges of the type (vt, vt+1) are always directed.

2.2. Independent Cascade Spreading Model

The independent cascade model describes a spreading
process of activation of individuals. In each discrete
timestep, each active individual attempts to activate
each of its neighbors independently with some proba-
bility of success. If an active individual succeeds those
neighbors become active in the next time step. Each
attempt of activation is independent of all previous at-
tempts as well as the attempts of any other active indi-
vidual to activate a common neighbor.

More formally, the input to the independent cascade
model is a set A0 ⊆ V of active individuals. In a dy-
namic network, an active individual ut in timestep t
tries to activate each of its currently inactive neighbors
vt only once with a probability put,vt , independent of all
the other neighbors. If ut succeeds in activating vt at
timestep t, then vt will be active in step t + 1, whether
or not (ut+1, vt+1) ∈ Et+1. If ut fails in activating vt,
and at any subsequent timestep ut+i gets reconnected
to vt+i, it will again try to activate ut+i. The process
runs for a finite number of timesteps T or until no more
activations are possible. We denote by σ(A0) = AT the
correspondence between the initial set A0 and the re-
sulting set of active individuals AT . We call the size of
the set AT , |AT |, the extent of spread.

The spreading process in the independent cascade
model in a dynamic network is different from the static
network in one important aspect. In the static case,
each individual u uses all its attempts of activating each
of its inactive neighbors v with the same probability pu,v

in one timestep t. This is the timestep right after the
individual u itself becomes active. After that single at-
tempt the active individual becomes latent: that is, it
is active but unable to activate others. However in the
dynamic network model as defined above, the active in-
dividuals never become latent during the spreading pro-
cess. For this paper, we only consider the progressive
case in which an individual converts from inactive to
active but never reverses (SI epidemiological model). It
is a particularily important case in the context of identi-
fying blockers since the blocking action is typically done

before any recovery.

2.3. Spread Blockers

We now formalize the notioins of processes spreading in
a network and individuals blocking this spread.

Spread(.) is a function that gives the overall average
extent of spread in a network, that is, the expected
number of individuals affected by a stochastic spread-
ing process after a specified number of timesteps. The
estimate of the spread is dependent on the model of
the spreading process and the structure of the network.
Spreadv(.) is the expected spread in a network, when
the spreading process is initiated by the individual v.
Given a model of a spreading process M and a distri-
bution of the probability of infection X , we define the
spreading functions as follows:

Spreadv : {G,M,X} → R+

Spread(G) =
1
|V |

∑

v∈V

Spreadv(G,M,X )

We define BlX(.) as a function that measures the reduc-
tion in the expected spread size after removing the set
X of individuals from the network. Hence, the blocking
capacity of a single individual v, Blv(.), is the reduc-
tion in expected spread size after removing individual v
from the network.

BlX(G) = Spread(G)− Spread(G \X).

kBl(.) is the function that finds the set of individuals of
size k that results in the maximum reduction in spread
in a network when that set is removed from the net-
work. That is, this function finds the best blocker(s) in
a network.

kBl(G) = max
X⊆V,|X|=k

BlX(G).

Thus, finding the best blokers in the network is equiva-
lent to finding the (set of) individuals whose removal
from the network minimizes the expected extent of
spread in that network.

kBl(G) = min
X⊆V,|X|=k

Spread(G \X).

2.4. Dynamic Network Measures

Standard network analysis employs various graph mea-
sures such as centrality or a clustering coefficient of a
node to determine the relative importance of that node.
Such highly ranked individual may be a good candidate
blocker of a spreading process. We extend these mea-
sures to explicitly dynamic networks.
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Dynamic Degree is the change in the neighborhood
of an individual over time:

degT (u) =
∑

1<t≤T

|N(ut−1)−N(ut)|
|N(ut−1) ∪N(ut)| ∗N(ut),

where N(ut) is the neighborhood of u at time t.

Dynamic Average Degree of an individual is the
fraction of other individuals that it interacts with
over T timesteps:

dega(u) =

∑
1≤t≤T |N(ut)|

T

Dynamic Betweenness of an individual, similarily
to the static betweenness, is the fraction of all
the shortest temporal paths that pass through the
individual. Temporal paths are formally defined
in (Kempe et al., 2002; Habiba et al., 2007). Intu-
itively, the edges in a temporal path appear in the
increasing time order. We present in detail differ-
ent flavors of the traditional betweenness central-
ity concept in dynamic networks based on position,
time, and duration of interactions among individ-
uals in (Habiba et al., 2007).

Dynamic Closeness of an individual to all other in-
dividuals is the average time it takes from that in-
dividual to reach any other individual in the net-
work. Dynamic closeness is also based on shortest
temporal paths (Habiba et al., 2007) between indi-
viduals. Hence, the geodesic here is defined as the
time duration of the shortest temporal path.

Dynamic Clustering Co-efficient of an individual
at a given time t is the fraction its neighbors who
have been neighbors among themselves in any pre-
vious timesteps:

CCT (u) =
∑

v∈N(uT )

∣∣∣∣∣∣
⋃

1≤t<T

N(vt) ∩N(uT )

∣∣∣∣∣∣
N(uT )

.

3. Experimental Setup

Given the dynamic network graph G = (V,E) we com-
pute the individual ranks based on graph theoretic mea-
sures defined in Section 2.4. We simulate the inde-
pendent cascade spreading process on the dynamic net-
work G = (V, E) initiating it from one active individual
at a time. We calculate the average extent of spread
in the network over all starting individuals. For each
graph measure we remove from the network the highest
ranked individual in the current network based on that

measure and calculate the average extent of spread on
the remaining network. We repeat this processes un-
til ≤ 20% of the individuals have been removed. We
compare the reduction of the extent of spreads based
on the removal of highest ranked individuals for each
measure and, thus, identify most effective measures to
use as indicators of blockers of spread.

4. Datasets Used in Experiments

Grevys: Populations of Grevy’s zebras (Equus grevyi)
were observed by biologists (Sundaresan et al.,
2006) in the summer 2002 in Kenya. In the re-
sulting dynamic network, each node represents an
individual animal and an interaction corresponds
to physical proximity.

Onagers: Populations of onagers (Equus hemionus)
were observed by biologists (Rubenstein et al.,
2007) in January–May 2003 in India. The network
is similar to that of zebras.

DBLP: We use a cleaned sample from 1967–2005 of
the Digital Bibliography and Library Project (Ley,
2005), a Computer Science bibliography. In the
dynamic network each node represents an author
and an interaction is a co-authorship.

Table 1. Dynamic network dataset statistics.
Here V = #individuals, E = #edges, T = #timesteps,
D =density, d =diameter, and p =ave. path length.

Dataset V E T D d p
Grevys 28 779 44 0.52 36 4.81
Onagers 29 402 82 0.36 3 7.51
DBLP 1374 2262 38 0.09 37 5.12

5. Results and Conclusions

Figures 1, 2, and 3 show the reduction in the extent
of spread for different measures based on experiments
on Grevys, Onagers and DBLP datasets. The slope of
the curves indicates how quickly the extent of spread
reduces in a given network based on each measure. We
also experimented with randomly picking and removing
individuals from the network as the baseline.

The removal of the individuals with highest degree, av-
erage degree, or clustering coefficient from the network
results in the quickest reduction of the spread in the net-
work. Hence, these three measures are better candidate
indicators of key blockers of spreads in a dynamic net-
work than betweenness and closeness. As future work
we plan to experiment with the extent of spreads based
on the criteria of minimizing the time to spread rather
than, as in this paper, the extent of spread within a
fixed time. Intuitively, in that case betweenness and
closeness should perform relatively better as indicator
of blockers of spreads.
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Figure 1. Independent Cascade-Grevys

Figure 2. Independent Cascade-Onagers
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Dezsö, Z., & Barabási, A.-L. (2002). Halting viruses in scale-free
networks. Phys. Rev. E, 65.

Domingos, P. (2005). Mining social networks for viral marketing.
IEEE Intel. Sys., 20, 80–82.

Eubank, S., Guclu, H., Kumar, V., Marathe, M., Srinivasan, A.,
Toroczkai, Z., & Wang, N. (2004). Modelling disease outbreaks in
realistic urban social networks. Nature, 429, 429:180–184.

Fischhoff, I. R., Sundaresan, S. R., Cordingley, J., & Rubenstein, D. I.
(2007). Habitat use and movements of plains zebra (equus burchelli)
in response to predation danger from lions. Submitted.

Goldenberg, J., Libai, B., & Muller, E. (2001). Using complex systems
analysis to advance marketing theory development. Academy of
Mkt. Sci. Rev..

Granovetter, M. (1978). Threshold model for collective behavior.
American J. of Socio., 83, 1420–1443.

Habiba, & Berger-Wolf, T. Y. (2007). Influence maximization in
dynamic networks (DIMACS TR 2007-20).

Figure 3. Independent Cascade-DBLP

Habiba, Tantipanananadh, C., & Berger-Wolf, T. (2007). Between-
ness centrality in dynamic networks (DIMACS TR 2007-19).

Hart, J. B. W., Phillips, C., Uber, J. G., & Watson, J. (2006). Sensor
placement in municipal water networks with temporal integer pro-
gramming models. J. Water Resources Planning and Management,
132, 218–224.

Kempe, D., Kleinberg, J., & Kumar, A. (2002). Connectivity and
inference problems for temporal networks. J. Comput. Syst. Sci.,
64, 820–842.

Kempe, D., Kleinberg, J., & Tardos, E. (2003). Maximizing the
spread of influence through a social network. Proc. of the 9th ACM
SIGKDD Int. Conf. on KD and DM.

Leskovec, J., Adamic, L. A., & Huberman, B. A. (2006). The dynam-
ics of viral marketing. Proc. 7th ACM EC. (pp. 228–237).

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., & VanBriesen,
J. (2007). Cost-effective outbreak detection in networks. Proc. 13th
KDD

Ley, M. (2005). Digital bibliography & library project (DBLP).
http://dblp.uni-trier.de/. A digital copy available online.

May, R. M., & Lloyd, A. L. (2001). Infection dynamics on scale-free
networks. Phys. Rev. E, 64.

Moreno, Y., Nekovee, M., & Pacheco, A. F. (2004). Dynamics of
rumor spreading in complex networks. Phys. Rev. E, 69, 066130.

Morris, M. (1993). Epidemiology and social networks:modeling struc-
tured diffusion. Socio. Methods and Research, 22, 99–126.

Newman, M. E. (2002). Spread of epidemic disease on networks. Phys.
Rev. E, 66.

Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in
scale-free networks. Phys. Rev. Lett., 86, 3200–3203.

Rogers, E. M. (2003). Diffusion of innovations. Simon & Shuster,
Inc. 5th edit.

Rubenstein, D. I., Sundaresan, S., Fischhoff, I., & Saltz, D. (2007).
Social networks in wild asses: Comparing patterns and processes
among populations. In A. Stubbe, P. Kaczensky, R. Samjaa,
K. Wesche and M. Stubbe (Eds.), Explor. into the bio. resou. of
mongolia, vol. 10. Martin-Luther-Univ. Halle-Wittenberg.

Sabidussi, G. (1966). The centrality index of a graph. Psychometrika,
31, 581–603.

Sundaresan, S. R., Fischhoff, I. R., Dushoff, J., & Rubenstein, D. I.
(2006). Network metrics reveal differences in social organization
between two fission-fusion species, Grevy’s zebra and onager. Oe-
cologia.

Young, H. P. (2006). Innovation diffusion and population heterogene-
ity.

Zanette, D. H. (2002). Dynamics of rumor propagation on small-world
networks. Phys. Rev. E, 65, 041908.


