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ABSTRACT

We study the problem of identifying nodes in a network
that are good blockers: individuals that are most effective
in blocking the spread of a dynamic process through the
population. We study several structural measures for iden-
tifying the best blockers in both static and dynamic social
networks. We find that for both static and dynamic net-
works, simple local measures such as a node’s degree are
surprisingly good indicators of how good a blocker it is.

1. INTRODUCTION
How can we stop the spread of a dynamic process through

a social network? This problem has applications to many
diverse areas such as preventing or inhibiting the spread of
diseases [5, 15, 24], computer viruses, rumors, and undesir-
able fads or behaviors [12, 13, 21, 22]. A common approach
to spread inhibition is to identify key individuals whose re-
moval will most dampen the spread. In the context of the
spread of a disease, it is a question of finding individuals
to be quarantined or vaccinated so that the disease is pre-
vented from becoming an epidemic. We call this set of key
individuals the blockers of the spreading process.

There has been significant previous work related to study-
ing and controlling the spread of dynamic processes in a net-
work (see e.g. [27, 15, 11, 35, 28]). Unfortunately, many past
results focus on either: 1) effectively starting the spread of
a process rather than blocking it; or 2) identifying locations
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to place sensors in order to quickly determine where and
when a spread has started. Moreover, algorithms proposed
in previous work require computationally intensive calcula-
tions to identify critical individuals. Finally, previous work
elides the dynamic nature of social interactions. The flow of
information through a social network is dependent on who
has the information at what point in time and who are the
individuals in contact at that moment with the information
carrier that are likely to acquire the information next.

In this paper, we show that simple local measures, such
as degree, can effectively predict an individual’s capacity to
block spreading processes, even in dynamic social networks.
The implication of our results are that there are practical
scalable heuristics for identifying quarantine and vaccination
targets in order to prevent an epidemic.

Related Work: Several previous results have addressed
the problem of identifying the best blockers in a network [3,
15, 24, 27, 28]. Aspnes at al. [3] proposed a game theo-
retic approach for inoculation strategies based on sum-of-
squares partition problem. In [28], Leskovec et al. propose
an elegant but computationally intensive algorithm that un-
fortunately, works only for a stable, relatively unchanging
network. Eubank et al. [15] and Kempe et al. [27] show that
a variant of this problem is NP-Hard, with no proposed al-
gorithmic solution.

2. DEFINITIONS
Populations of individuals interacting over time are often

represented as networks, where the nodes correspond to in-
dividuals and a pairwise interaction is represented as an edge
between the corresponding individuals. Typically, there is a
single network representing all interactions that have hap-
pened during the entire observation period. We call this rep-
resentation an aggregate network. We will represent aggre-
gate networks as multigraphs: multiple interactions between
a pair of individuals are represented as multiple unweighted
edges between them. In this paper we also use an explic-
itly dynamic network representation (described below) that
takes the history of interactions into account.

Dynamic Network: We represent a dynamic network as
a series 〈G1, . . . , GT 〉 of static networks where each Gt is a
snapshot of individuals and their interactions at time t. For
simplicity, we also assume that the time period is divided



into discrete steps {1, . . . , T}.

Definition 1. [23] Let {1, . . . , T} be a finite set of dis-
crete timesteps. Let V = {1, . . . , n} be a set of individ-
uals. Let Gt = (Vt, Et) be a graph representing a snap-
shot of a static network at time t. Vt ⊆ V , is a subset of
individuals V observed at time t. An edge (ut, vt) ∈ Et

if individuals u and v have interacted at time t. A dy-
namic network G = 〈G1, . . . , GT 〉 is the graph G = (V,E)
of the time series of graphs Gt such that V =

S

t
Vt and

E =
S

t
Et ∪

S

t−1
(vt, vt+1).

In general, in a dynamic network both edges and individ-
uals can change over time. The edges Et may be directed
or undirected and weighted or unweighted. The self-edges
of the type (vt, vt+1) are always directed.

2.1 Spread Blockers
We now formalize the notions of processes spreading in a

network and individuals blocking this spread.
Spread(.) is a function that gives the overall average ex-

tent of spread in a network, that is, the expected number of
individuals affected by a stochastic spreading process after
a specified number of timesteps. The estimate of the spread
is dependent on the model of the spreading process and the
structure of the network. Spreadv(.) is the expected spread
in a network, when the spreading process is initiated by the
individual v. Given a model of a spreading process M and a
distribution of the probability of infection X , we define the
spreading functions as follows:

Spreadv : {G,M,X} → R+

Spread(G) =
1

|V |

X

v∈V

Spreadv(G,M,X )

We define BlX(.) as a function that measures the reduc-
tion in the expected spread size after removing the set X of
individuals from the network. Hence, the blocking capacity
of a single individual v, Blv(.), is the reduction in expected
spread size after removing individual v from the network.

BlX : G → R+, BlX(G) = Spread(G)−Spread(G\X).

kBl(.) is the function that finds the set of individuals of
size k that results in the maximum reduction in spread in a
network when that set is removed from the network. That
is, this function finds the best blocker(s) in a network.

kBl(G) = max
X⊆V,|X|=k

BlX(G).

Thus, finding the best blockers in the network is equivalent
to finding the (set of) individuals whose removal from the
network minimizes the expected extent of spread.

kBl(G) = min
X⊆V,|X|=k

Spread(G \ X).

This definition of the individuals’ blocking capacity by re-
moval corresponds in the disease spread context to the quar-
antine action. Vaccination or inoculation leave the node
in the network but deactivate its ability to propagate the
spread. For the Independent Cascade model of spread (Sec-
tion 2.3) the two actions are equivalent at the abstract level
of estimating the spread and blockers in networks.

We next briefly define the structural network measures
used in this paper.

2.2 Network Structural Measures
In network analysis various properties of the representing

graph are studied as proxies of the properties of the individu-
als, their interactions, and the population. For example, the
degree, various centrality measures, clustering coefficients,
or the eigen values (PageRank) of the nodes have been used
to determine the relative importance of the individuals [9,
26]. Betweenness centrality has been used to identify cohe-
sive communities [18] and the distributions of shortest path
lengths employed to measure the “navigability” of the net-
work [41]. These and many other graph theoretic measures
have been translated to many social properties [31, 34, 35].

The blocking capacity of an individual is one such prop-
erty. Work has been done in finding efficient local strategies
for vaccination and network attack [24] using clustering co-
efficient and assortative mixing coefficient. In this paper we
evaluate the power of all the standard node properties to
indicate the blocking ability of the corresponding individ-
ual. Moreover, we extend the standard static measures to
reflect the dynamic nature of the underlying network. We
define the following measures: degree, average degree, be-
tweenness, closeness centralities and clustering coefficient.
We modify those to incorporate the time ordering of the
interactions.

We use the following terms interchangeably in this paper:
individuals or nodes are the vertices of the network and in-
teractions are edges that can be both directed or undirected.
Neighbors of a node, N(.), is the set of nodes adjacent to it.
The subscript T with a function name indicates the dynamic
variant of the function.
Degree of a node, DEG(.), is the number of neighbors of
that node. We refer to the degree in the aggregate network
as the aggregate degree.
Density is the fraction of the possible edges present in the
network: D(G) = |E|/

`

|V |
2

´

Dynamic Density average density of a timestep i.e. DT (G) =
P

1<t≤T
D(Gt)/T

Diameter is the maximum length of a shortest path.
Temporal Path [23] in a dynamic network is a sequence of
nodes v1, . . . , vp where each (vi, vi+1) ∈ E is either an edge
in Et for some t or is a self edge (ut, ut+1). Also, for any
i, j such that i + 1 < j, if vi ∈ Vt and vj ∈ Vs then t < s.
The length of a temporal path is the number of timesteps it
spans.
Dynamic Diameter of a dynamic network is the maximum
length of a shortest temporal path in the network.
Dynamic Degree is the change in the neighborhood of an
individual over time:

DEGT (u) =
X

1<t≤T

|N(ut−1) − N(ut)|

|N(ut−1) ∪ N(ut)|
|N(ut)|.

The dynamic degree captures the gregariousness of an indi-
vidual, an important quality from a spreading perspective.
Dynamic Average Degree is the average over all time-
steps of the interactions of an individuals in each timestep:

AV G-DEGT (u) =
1

T

X

1≤t≤T

DEG(ut).

Betweenness of an individual is the sum of fractions of
all shortest paths between all pairs of individuals that pass
through this individual. It measures the importance of in-
dividuals based on their position on the shortest paths con-



necting pairs of non-adjacent individuals [2, 16, 17].
Dynamic Betweenness of an individual is the fraction
of all shortest temporal paths that pass through it. This
version incorporates the measure of a delay between inter-
actions as well as the individual being at the right place at
the right time. We present different flavors of the traditional
betweenness centrality for dynamic networks based on po-
sition, time, and duration of interactions among individuals
in [23]. The general form of the definition is as follows.

Definition 2. Let gst be the number of shortest temporal
paths between s and t, gst(u) of which pass through u. Then
the temporal betweenness centrality, BT (u), of a node u is

BT (u) =
X

s6=t 6=u

gst(u)

gst

.

Closeness of an individual is the average distance of the
individual to any other individual in the network [17, 39].
Dynamic Closeness of an individual is the average time
it takes from that individual to reach any other individual
in the network, based on shortest temporal paths [23].
Clustering Coefficient of an individual is the fraction of
its neighbors who are neighbors among themselves [36].
Dynamic Clustering Coefficient is the sum over time of
fractions of an individual’s neighbors who have been inter-
acting among themselves in previous timesteps. Let CF (u)
be the number of friends of u that are already friends among
themselves. Then the dynamic clustering coefficient

CCT (u) =
X

0≤t<T

CF (ut)

|N(ut)|(|N(ut)| − 1)
.

Edges in Neighborhood is the number of edges in the
local neighborhood of an individual. It loosely captures the
local density of the neighborhood of an individual.

2.3 Spreading Model
The process of propagation in a network can be described

formally using many models of transmission. For this paper
we use Independent Cascade model of diffusion in networks.
The independent cascade model was first introduced in [19,
20] in the context of word-of-mouth marketing. This is
also the most commonly used simple model to study disease
transmission in networks [11, 32, 33, 35, 37] and is closely re-
lated to the simplest Susceptible-Infectious-Recovered (SIR)
models from epidemiology [1]. In the Independent Cascade
model, transmission from one individual to another happens
independent of interactions with all the other individuals.

The Independent Cascade model describes a spreading
process comprising of two types of individuals, active and
inactive. The process unfolds in discrete timesteps. In each
timestep, each active individual attempts to activate each
of its neighbor independently. The activation of each inac-
tive neighbor is determined by a probability of success. If
an active individual succeeds in affecting any of its neigh-
bors, those neighbors become active in the next time step.
Each attempt of activation is independent of all previous at-
tempts as well as the attempts of any other active individual
to activate a common neighbor.

More formally, the input to the independent cascade mo-
del is a set A0 ⊆ V of active individuals. In a dynamic net-
work, an active individual ut in timestep t tries to activate
each of its currently inactive neighbors vt only once with a
probability put,vt

, independent of all the other neighbors. If

ut succeeds in activating vt at timestep t, then vt will be
active in step t + 1, whether or not (ut+1, vt+1) ∈ Et+1. If
ut fails in activating vt, and at any subsequent timestep ut+i

gets reconnected to vt+i, it will again try to activate vt+i.
The process runs for a finite number of timesteps T . We de-
note by σ(A0) = AT the correspondence between the initial
set A0 and the resulting set of active individuals AT . We
call the size of the set AT , |AT |, the extent of spread.

The spreading process in the independent cascade model
in a dynamic network is different from the static network
in one important aspect. In the static case, each individ-
ual u uses all its attempts of activating each of its inactive
neighbors v with the same probability pu,v in one timestep
t. This is the timestep right after the individual u itself be-
comes active. After that single attempt the active individual
becomes latent: that is, it is active but unable to activate
others. However in the dynamic network model as defined
above, the active individuals never become latent during the
spreading process. For this paper, we only consider the pro-
gressive case in which an individual converts from inactive to
active but never reverses (no recovery in the epidemiological
model). It is a particularly important case in the context
of identifying blockers since the blocking action is typically
done before any recovery.

3. EXPERIMENTAL SETUP
We evaluate the effectiveness of each of the structural mea-

sures as indicators of individual’s blocking capacity under
the Independent Cascade spreading model. For each mea-
sure and for each dynamic network dataset, we follow the
following steps:

1. Order the individuals according to the ranking im-
posed by the measure.

2. For i = 0 to |V | do:

(a) Remove i nodes ranked top by the given measure.

(b) Estimate the extent of spread by averaging over
stochastic simulations of Independent Cascade mo-
del initiated at each node in turn, 3000 iterations
for each starting node.

(c) If the extent of spread is less than 10% of the
nodes then STOP.

The probability of activation in the Independent Cascade
model is set uniformly equal to the smallest probability
which achieves the extent of spread of 50% of that with
Pr = 1. The spreading process is simulated for T time-
steps, where T is the number of timesteps in the dynamic
network. The extent of spread is the number of individuals
active at the end of the T timesteps.

We use the following measures for comparison: dynamic
and aggregate versions of degree, betweenness, closeness cen-
tralities, and clustering coefficient, as well as the average
dynamic degree (turnover rate). For the datasets with di-
rected interactions we also use page rank.Overall, we use 17
different measures.

We compare the structural measures to a random ordering
of nodes as an upper bound and the best blockers as the
lower bound.



3.1 Lower Bound: Best Blockers
We identify the best blockers one at a time using exhaus-

tive search over all the individuals. To find one best blocker,
we remove each individual, in turn, from the network and
estimate the extent of spread using stochastic simulations of
the Independent Cascade model in the remaining network.
The best blocker, then, is the individual whose removal re-
sults in the minimum extent of spread. We then repeat the
process with the remaining individuals. This process im-
poses another ranking on the nodes.

Optimally, one needs to identify the set of top k block-
ers. However, this problem is computationally hard and an
exhaustive search is infeasible. We have conducted limited
experiments on the datasets considered in this paper and in
all cases the set of iterative best k blockers equals to the set
of top k blockers. This preliminary result warrants future
investigation and rigorous evaluation.

4. DATASETS
We now describe the data sets used in our experiments.

Grevy: A population of Grevy’s zebras (Equus grevyi) ob-
served by biologists [40] during June–August 2002 in the
Laikipia region of Kenya. Each node represents an individ-
ual animal and two animals are considered to be connected
if their physical locations are the same.
Onagers: A population of onagers (Equus hemionus), ob-
served by biologists [38, 40] in the Little Rann of Kutch, a
desert in Gujarat, India, during January–May 2003.
DBLP: Co-citations among computer scientists from 1967–
2005, from the Digital Bibliography and Library Project [30].
Enron: Network of e-mails sent among subpoenaed employ-
ees of the now defunct Enron corporation (available with a
full description at http://www.cs.cmu.edu/∼enron/).
Reality Mining: Co-location of individuals in a population
of MIT students; collected via mobile phone devices [14, 10].
UMass: Co-location of individuals in a population of stu-
dents at the University of Massachusetts Amherst; data col-
lected via portable motes(available with a full description at
http://kdl.cs.umass.edu/data/msn/msn-info.html).

5. RESULTS AND DISCUSSION
For each of the datasets we have evaluated all the mea-

sures to determine how effectively they identify good block-
ers. Figure 1 shows results for two datasets, Onagers and
Enron, that are representative of our results on all the data-
sets. The results for the other datasets are omitted due to
space limitations. For all the plots, the x-axis is the number
of individuals removed and the y-axis shows the correspond-
ing extent of spread. The lower the extent of spread, the
better is the blocking capacity of the individuals removed.
Thus, curves lower on the plot correspond to measures that
are better indicators of blocking power.

The comparison of all the measures showed that four mea-
sures performed consistently well as blocker indicators: de-
gree in aggregate network, the number of edges in the im-
mediate aggregate neighborhood (local density), dynamic
average degree, and dynamic clustering coefficient. This is
good news from the practical point of view of designing epi-
demic response strategies since all the measures are simple,
local, and easily scalable. Figure 2 shows the results of the
comparison of the four best measures, as well as the best
possible and random orderings, for all the datasets. Sur-

prisingly, while the local density and the dynamic clustering
coefficients seem to be good indicators, the aggregate clus-
tering coefficient turned out to be the worst, often perform-
ing worse than a random ordering. Betweenness and close-
ness performed inconsistently. Page Rank did not perform
well in the only dataset with directed interactions (Enron)1.
As seen in Figure 2, the ease of blocking the spread depends
very much on the structure of the dynamic network. In the
two bluetooth datasets, MIT Reality Mining and UMass, all
orderings, including the random, performed similarly. Those
are well connected networks. The only way to reduce the ex-
tent of spread to below 10% of the original population seems
to be to trivially remove nearly 90% of the individuals. On
the other hand, Enron and DBLP show the opposite trend
of being easily blockable by a good ranking measure.

In addition to comparing the extent of spread based on the
ranking by various measures, we compared the sets of the
top ranked blockers identified by the four best measures as
well as the best possible ordering. Figure 3 shows the scatter
plots of the pairwise comparisons of rankings induced by the
four measures. Due to space limitations, we show the two
datasets where the differences are most pronounced, onagers
and Enron. The scatter plots show that, in general, there
is little correspondence between the rankings imposed by
various measures. The only strong relationship, as expected,
is between the number of edges in the neighborhood of a
node and its degree in the aggregate network.

We further explore the difference in the sets of the top
ranked individuals by computing the size of the common in-
tersection of all the top sets ranked by the four measures
and the best possible ranking. We use the size of the set
determined by the best possible ordering as the set size for
all measures. Table 1 shows the size of the common inter-
section for all datasets. Again, we see a strong effect of the

Dataset Set size Inter. size Inter. frac

Grevys 5 2 .40
Onagres 9 3 .33
DBLP 16 0 0
Enron 13 4 .31
Reality Mining 60 48 .80
UMass 12 10 .83

Table 1: The size of the common intersection of all
the top sets ranked by the four measures and the
best ranking. Set size is the size of the sets deter-
mined by the best blocking ordering. The size of
the intersection is the number of the individuals in
the intersection and the Intersection fraction is the
fraction of the intersection of the size of the set.

structure of the network. The MIT Reality Mining and the
UMass datasets have most of the same nodes ranked as top
by all measures. On the other hand, in DBLP the four mea-
sures produced very different top ranked sets, yet all four
measures were extremely good indicators of the blockers. In
other networks, while there are some individuals that are
clearly good blockers according to all measures, there is a
significant difference among the measures. Overall, these
results lead to two future directions: 1) investigating the
effect of the overall network structure on the “blockability”

1On undirected graphs, Page Rank is equivalent to degree
in aggregate network



Figure 1: [Best viewed in color.] Comparison of the reduction of extent of spread after removal of nodes
ranked by various aggregate (top) and dynamic (bottom) measures in Onager (left) and Enron (right) dynamic
networks. The x-axis shows the number of individuals removed and the y-axis shows the average spread size
after the removal of individuals.

of the network; and 2) designing consensus techniques that
combine rankings by various measures into a possible better
list of blockers.

6. CONCLUSIONS AND FUTURE WORK
We have studied the problem of identifying nodes in a

network that are good blockers in the sense that their re-
moval results in a large reduction in the extent of spread
in a network. We empirically tested 17 different measures
for identifying good blockers and determined that simple lo-
cal measures, such as the degree of a node, perform as well
at identifying blockers as any other measures. Moreover,
these simple local measures identify good blockers on both
static and dynamic networks. Several areas for future work
remain, including the following. First, can we devise a theo-
retical model for social network formation that explains why
simple local properties would so effectively predict which
nodes are good blockers? Second, there are certain data sets
(e.g. MIT Reality Mining and UMass datasets) in which it is
inherently challenging to find good blockers, no matter what
measures are used. Can we determine structural properties
of the network that determine how hard it is to find good
blockers?
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