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ABSTRACT

This thesis covers three aspects in the field of graph analysis and drawing.
Firstly, the depth-first-search–based algorithm for finding triconnected compo-
nents in general biconnected graphs is presented. This linear-time algorithm was
originally published by Hopcroft and Tarjan [17], and corrected by Mutzel and
Gutwenger [13]. Since the original paper is hard to understand, the algorithm
is presented with illustrations to ease getting the vital ideas. Also, the crucial
proposition is stated and proven in a way which is closer to the actual proceed-
ing of the algorithm. Secondly, a simple linear-time algorithm for triangulating
a biconnected planar graph is presented. Finally, a vertex-weighted variant of
the so-called “shift-method” algorithm by de Fraysseix, Pach and Pollack [11] is
introduced. The shift method is a linear-time algorithm to produce a straight-
line drawing of triangulated graphs on a grid with an area bound quadratic
in the number of vertices of the graph. The original algorithm is modified to
draw vertices as diamond shapes with area according to vertex weights. It is
proven that the modified algorithm still produces a straight-line grid drawing
of the graph in linear time with an area bound quadratic in the sum of vertex
weights, and that edges do not cross the drawings of other vertices’ representa-
tions. The algorithm is presented within a framework to draw a special class of
clustered graphs. The algorithm for finding triconnected components is imple-
mented in JAVA for the yFiles graph drawing library [27]. The vertex-weighted
shift method is implemented in JAVA for the visual analysis tool GEOMI [1].



1. INTRODUCTION

This thesis covers three aspects in the field of graph analysis and drawing. In
the first part, the depth-first-search–based algorithm for finding triconnected
components in general biconnected graphs is presented. Finding triconnected
components in graphs is a very important task, especially in planar graph draw-
ing, as it is possible to efficiently optimize criteria over all embeddings of a planar
graph, when the triconnected components are known. The original linear-time
algorithm was published by Hopcroft and Tarjan [17], and corrected by Mutzel
and Gutwenger [13]. However, the original paper is hard to understand and the
corrected version does not provide an easier or more detailed description. Here,
the algorithm is presented in more detail and illustrations are provided to ease
getting the vital ideas. Also, the main proposition is stated and proven in a way
which is closer to the actual proceeding of the algorithm.

The following parts deal with triangulated planar graphs. The second part
presents a simple algorithm to triangulate a biconnected planar graph by adding
edges. Many graph drawing algorithms only work for triangulated graphs. A
common paradigm to apply these algorithms to general graphs is to triangulate
a graph, apply the drawing algorithm, and then remove edges and vertices from
the drawing, which were introduced during triangulation. It is shown that the
proposed algorithm can be implemented to run in linear time, and that the
number of edges, which are added by the algorithm, is bounded linearly in the
number of vertices.

The third part of the thesis introduces a vertex-weighted variant of the so-
called “shift-method” algorithm by de Fraysseix, Pach and Pollack [11] for a
special class of graphs. The shift method is a linear-time algorithm to pro-
duce a straight-line drawing of maximally triconnected, that is, triangulated
graphs on a grid with an area bound quadratic in the number of vertices of
the graph. Here, we consider clustered graphs, where the single clusters are
arbitrary graphs, and the abstract graph representing the connections between
clusters is a triangulated planar graph called “super-graph”. The original algo-
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rithm is modified to draw vertices of the super-graph as diamond shapes with
area according to vertex weights, into which the drawings of the single clusters
are later inserted. It is proven that the modified algorithm still produces a
straight-line grid drawing of the super-graph in linear time with an area bound
quadratic in the sum of vertex weights, and that inter-cluster edges of the final
drawing of the whole graph do not cross the drawings of other clusters.

The algorithm for finding triconnected components is implemented in JAVA
for the yFiles graph drawing library [27]. The vertex-weighted shift method is
implemented in JAVA for the visual analysis tool GEOMI [1].

The thesis is organized as follows. Chapter 2 introduces the preliminaries.
The algorithm for finding triconnected components is presented in Chapter 3.
The triangulation algorithm is displayed in Chpater 4. Chapter 5 presents the
vertex-weighted version of the shift method and its application in clustered
graph drawing. Chapter 6 gives a conclusion and an outlook on open problems
concerning the algorithm presented in Chapter 5. Implementation details may
be found in Appendix A and B. Related literature regarding the single topics is
given at the beginning of each chapter.



2. PRELIMINARIES

2.1 Graphs

Let V be a set of vertices and E, the set of edges, be a set of unordered pairs
(u, v) with u, v ∈ V . Then G = (V,E) is called an undirected graph. If the edges
are ordered pairs of vertices, G is a directed graph. Let e = (v, w) be a directed
edge. Then v is the tail of e, and w its head. Also, e is an outgoing edge of v and
an incoming edge of w. If E is a multi-set, G is called multi-graph, and edges,
which occur more than once in E are called multiple edges. An edge (v, v) is
a self-loop. A graph G is simple, if it contains neither self-loops nor multiple
edges. Vertices u and v are adjacent if there is an edge (u, v). The edge (u, v)
is incident to the vertices u and v and vice versa. The degree of a vertex v,
denoted by deg(v), is the number of edges incident to v.

If E′ is a subset of edges, then V (E′) denotes all vertices incident to at least
one edge in E′. If G = (V,E) and G′ = (V ′, E′) are two (multi-) graphs with
V ′ ⊆ V and E′ ⊆ E, then G′ is a subgraph of G.

A path p : v ∗⇒ w in G is a sequence of vertices and edges leading from v

to w. A path p is called simple if all its vertices are distinct. If p : v ∗⇒ w is
a simple path, then p and the edge (w, v) form a cycle. Two cycles which are
cyclic permutations of each other are considered to be the same cycle.

2.2 Connectivity and triconnected components

An undirected multi-graph G = (V,E) is connected if there exists a path con-
necting v and w for every pair {v, w} ∈ G. A connected multi-graph G is bicon-
nected, if for each triple of distinct vertices {v, w, a}, there is a path p : v ∗⇒ w

that does not contain a.1

Let G = (V,E) be a biconnected multi-graph and {a, b} a pair of ver-
tices with a, b ∈ V . The edges of G can be divided into equivalence classes

1 G remains connected after removing an arbitrarily chosen vertex.
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(a) Sample graph and separation classes with
respect to vertices a and b.

(b) Complete decomposition into split components. Dotted edges are
virtual edges.

Fig. 2.1: A graph G and its triconnected components.

E1, E2, . . . , En such that two edges lying on a common path not containing a
or b except as an endpoint are in the same class. The classes Ei are called
separation classes of G with respect to {a, b}. {a, b} is called a separation pair
of G if there are at least two separation classes, unless (i) there are exactly two
separation classes, and one consists of a single edge, or (ii) there are exactly
three separation classes, each consisting of a single edge. If G has no separation
pair, then G is called triconnected.2 Figure 2.1a shows a sample graph with a
separation pair {a, b} and the three corresponding separation classes.

Let now {a, b} be a separation pair of a biconnected multi-graph G, and
the separation classes of G with respect to {a, b} be E1, E2, . . . , En. Let E′ =

2 G remains connected after removing two arbitrarily chosen vertices.
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⋃k
i=1Ei and E′′ =

⋃n
i=k+1Ei be such that |E′| ≥ 2 and |E′′| ≥ 2. The graphs

G1 = (V (E′), E′ ∪ e) and G2 = (V (E′′), E′′ ∪ (a, b)) are called split graphs of
G with respect to {a, b}, where the new edge e = (a, b) is called a virtual edge.
Replacing a graph G with two split graphs is called splitting G. Each split graph
is again biconnected. The virtual edge e identifies the split operation.

Suppose a graph G is split, the split graphs are split, and so on, until no
more split operations are possible. The resulting graphs are triconnected, since
there is no separation pair left, and are called split components of G. Each split
component is of one of three types: (i) a set of three multiple edges (triple bond),
(ii) a cycle with length three (triangle), or (iii) a simple triconnected graph, as
illustrated in Figure 2.1b.

Lemma 1 ([13, 17]). Let G = (V,E) be a biconnected multi-graph.

1. Each edge in E is contained in exactly one split component, and each
virtual edge in exactly two split components.

2. The total number of edges in all split components is bounded by 3|E| − 6.

The split components of a graph are not necessarily unique. To get the
unique triconnected components of a graph G, its split components have to
be partially reassembled. Let G1 = (V1, E1) and G2 = (V2, E2) be two split
components which contain the same virtual edge e. Then the graph G′ =
(V1 ∪ V2, (E1 ∪ E2) \ {e}) is called merge graph of G1 and G2. Replacing G1

and G2 with their merge graph is called merging G1 and G2. The triconnected
components are obtained from the split components by merging the triple bonds
into maximal sets of multiple edges (bonds) and the triangles to maximal simple
cycles (polygons).

Lemma 2 ([13, 17]). The triconnected components of a graph G are unique.

2.3 Trees

A tree T = (V,E) is a directed graph, where every vertex has exactly one
incoming edge, except for one vertex called the root of T , which has no incoming
edges at all. An edge (v, w) ∈ E is denoted by v → w, where v is called the
parent of w, and w a child of v. A directed path from a vertex v to another
vertex w with v, w ∈ V is denoted with v ∗→ w, v is called an ancestor of w and
w a descendant of v. Every vertex v is an ancestor and descendant of itself. We
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denote the set of descendants by D(v). A tree T = (VT , ET ) is a spanning tree
of a directed graph G = (VG, EG), if T is a subgraph of G and VT = VG. A
disjoint union of trees is called a forest.

2.4 Embedding and planar graphs

Let G = (V,E) be a graph with |V | = n and |E| = m. A combinatorial
embedding of a graph G is a set of orderings πv for each vertex v ∈ V , where
πv specifies a cyclic ordering of edges incident to v. Observe that any drawing
of G directly implies a combinatorial embedding. A combinatorial embedding
is called a planar embedding if it corresponds to a crossing-free drawing in the
plane, that is, a drawing such that no two edges intersect geometrically except at
a vertex to which they are both incident. Note that it is not demanded here that
edges are drawn as straight lines. A graph G is called planar if it has a planar
embedding. A plane graph G is a planar graph with a fixed planar embedding.
A plane graph divides the plane into which it is drawn into connected regions
called faces F . For a face F = v1 → . . .→ vk → v1 we define the degree of F by
deg(F ) = k. Observe that

∑
F∈G deg(F ) = 2m, since every edge is contained in

exactly two faces. A maximal planar or triangulated graph is one to which no
edge can be added without loosing planarity, hence every face of such a graph
is a triangle.

A very important observation regarding planar graphs is given by the well-
known Euler-formula, which is relating the numbers of vertices, edges and faces
of a connected planar graph.

Theorem 3 (Euler 1750, cf. [24]). Let G be a simple connected planar graph,
and let n, m, and f denote respectively the numbers of vertices, edges and faces
of G. Then

n−m+ f = 2

Corollary 4 (cf. [24]). If G is a planar graph with n ≥ 3 vertices and m edges,
then m ≤ 3n− 6. Moreover for triangulated graphs m = 3n− 6.

Another interesting property of graphs is the arboricity of a graph, especially
in connection with planar graphs, as shown in Lemma 6.

Definition 5 (Arboricity). Let G be a graph. We say that G has arboricity
a(G) = k if k is the minimum number of edge-disjoint forests F1, F2, . . . , Fk on
the vertices of G such that E(G) ⊆ E(F1) ∪ E(F2) ∪ · · · ∪ E(Fk).
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(a) Sample graph. (b) Possible triangulation.

Fig. 2.2: A planar graph G with arboricity 2 and a possible triangulation.

Lemma 6 (cf. [8]).

1. For any graph G, ∑
(u,w)∈E

min{deg(v), deg(w)} ≤ a(G) · 2m

where deg(v) denotes the degree of vertex v.

2. Every planar graph G has arboricity a(G) ≤ 3.

The concepts given in this section are illustrated in Figure 2.2. Figure 2.2a
shows a sample plane graph G with 6 vertices, 8 edges, 4 faces and arboricity 2.
The corresponding forests are marked blue and green, respectively. Figure 2.2b
displays a possible triangulation of G, where added edges are marked red.



3. FINDING TRICONNECTED COMPONENTS

Decomposing a graph into triconnected components is an important topic in
the field of graph algorithms, especially in graph drawing. Many linear-time
algorithms that work only for triconnected graphs can be extended to work
for biconnected graphs, if its decomposition into triconnected components is
known, e.g. [18]. Triconnected components also play a crucial role in planar
graph drawing. Since triconnected planar graphs have only one planar embed-
ding, it is possible to represent the set of all planar embeddings of a planar
graph, if its triconnected components are known. This is often used to optimize
specific criteria over all combinatorial embeddings of a planar graph, e.g. [9, 22]
For a more complete overview of applications of the presented decomposition
algorithm please refer to [21].

In this chapter, the original algorithm for finding triconnected components
is presented, which was published for the first time by Hopcroft and Tarjan
[17]. Though the algorithm is optimally efficient, and the idea very elegant, the
algorithm is very complex and hard to understand. Gutwenger and Mutzel [13]
later corrected some faulty parts in the original algorithm, but did not provide
a more comprehensible description. Here we try to ease the understanding by
stating and proving crucial propositions in a different way, which is closer to the
actual proceeding of the algorithm, by explaining the algorithm in detail, and
by providing illustrations for clarification.

The chapter is organized as follows. Section 3.1 presents a naive solution
to the problem, which is refined in sections 3.2, 3.3, and 3.4. The algorithm
and its proceeding are displayed and analyzed in section 3.5. Section 3.6 shows
experimental results. Proofs omitted for the sake of brevity can be found in [17]
and [13].
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3.1 Finding triconnected components: Big picture

The main problem for finding triconnected components is finding the separation
pairs (and split components) of a biconnected graph. This is best achieved
by recursive cycle decomposition. The idea was first stated in the context of
planarity testing by Auslander and Parter [2] and corrected by Goldstein [12].
Hopcroft and Tarjan [17] applied the idea to the problem of finding triconnected
components. The crucial observation to achieve an efficient solution is as follows:
Removing a cycle c from a biconnected graph G creates (possibly) multiple
connected components, called segments Si, i = 1, . . . , k.

Lemma 7 ([17]).

• Let a and b be two vertices of G, where (a, b) is not a multiple edge. If
{a, b} is to be a separation pair, then either both a and b lie on c, or both
are contained in a single segment Si.

• Let a and b lie both on c, and p and q be the distinct paths between a and
b of which c is composed. Then {a, b} is a separation pair if and only if:

1. Some segment Si has only vertices a and b
in common with c, and there is at least one
vertex not contained in Si. (We call {a, b}
a type-1 separation pair)

2. There is no segment which contains a vertex
v 6= a, b in p and a vertex w 6= a, b in q at the
same time. Also, p, q each contain a vertex
besides a and b. (We call {a, b} a type-2
separation pair)

In other words, two vertices a and b on a cycle c = apbqa are a type-1
separation pair if there is at least one segment which connects to c only through
vertices a and b; or a type-2 separation pair if each segment connects to c only
through either vertices of p or vertices of q, together with a and b.
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Lemma 7 gives rise to a naive recursive algorithm for finding the separation
pairs of a graph: Find a cycle c and determine the segments Si. Apply the
algorithm recursively in subgraphs of G composed of the single segments Si

and the appropriate pieces of c. When backing up from recursion, check c for
separation pairs using the criteria given above.

The remainder of this chapter deals with the questions, how to find cycles
and how to identify separation pairs, that is, how to check the conditions given
above, efficiently.

3.2 Finding cycles with depth-first-search

Depth-first-search (DFS) is a way to systematically explore a multi-graph G. DFS
starts examining an initial root vertex s and traverses an edge leading from s

to some vertex x, which must exist if G is connected. The edge is marked as
visited, and DFS traverses again a not yet visited edge leading from x, and so
on. If a found vertex w has not been explored before, it is marked as visited,
and the edge (v, w) leading to it is marked as a tree edge. If on the other hand
an edge (v, w) is traversed where w is already marked as visited, then (v, w) is
marked as a back edge, and DFS continues traversing unexplored edges starting
at v. When every edge of a vertex w has been marked, DFS backtracks to the
vertex v, from which w has initially been found, and continues exploring not
yet visited edges of v, and so on.

Definition 8 (Palm tree). A palm tree P is a directed multi-graph consisting
of two sets of edges, {v → w}, the tree edges, and {v ↪→ w}, the back edges,
satisfying the following properties:

1. The subgraph T containing all tree edges is a spanning tree of P

2. If v ↪→ w, then w ∗→ v.

Lemma 9 ([17]). Let P be the directed multi-graph generated by a DFS of a
connected undirected multi-graph G. Then P is a palm tree.

When DFS is executed on a graph G this yields a palm tree, and thus, DFS
partitions the edges of G in tree edges and back edges. Every time a back edge
is traversed a new path in G is found which is disjoint to all previously found
paths, similar to ear decomposition. This path can be extended to form a cycle
by adding appropriate tree edges from previously found paths, because if there
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(a) c1: initial cycle (b) c2: one new tree edge (c) c3: no new tree edges

Fig. 3.1: Finding cycles with DFS.

is a back edge v ↪→ w, then there is a tree path w
∗→ v by Definition 8. As

shown in Figure 3.1 the cycle found first, that is, the initial cycle, naturally
contains only new tree edges and one back edge. The cycles found later always
consist of zero or more new tree edges, one back edge, and some tree edges from
previously found paths.

We have seen how to find cycles with DFS in linear time, but to simulate the
recursive nature of the general idea for finding separation pairs, the pathfinding
search has to be ordered such that the path found first forms a cycle itself and the
paths found consecutively form the segments. The way in which DFS discovers
the paths is clearly dependent on the order of neighbors in the adjacency lists
of each vertex. Therefore, to order the pathfinding search, the adjacency list
have to be reordered.

To achieve a correct order, in which cycles are found, a first DFS is carried out
yielding a palm tree P of G and the following properties for each vertex v ∈ P :
Definition 10 (Number of descendants, Low-points).

• |D(v)|, the number of descendants of v in P where v is considered to be a
descendant of itself.

• lowpt1(v), the lowest vertex reachable by traversing zero or more tree edges
followed by one back edge in P (or v itself if no such vertex exists), that
is,

lowpt1(v) = min
(
{v} ∪ {w|v ∗→↪→ w}

)
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• lowpt2(v), the second lowest vertex reachable by traversing zero or more
tree edges followed by one back edge in P (or v itself if no such vertex
exists), that is,

lowpt2(v) = min
(
{v} ∪

(
{w|v ∗→↪→ w} \ {lowpt1(v)}

))
Here we assume that DFS numbers the vertices from 1, . . . , n, such that v < w

iff v
∗→ w. A numbering which satisfies this condition is, for example, the so-

called dfs-number, that is, vertices are numbered increasingly in the order they
are first reached during the execution of DFS. Therefore, the root of the palm
tree always is assigned the number 1. Then the following lemma holds:

Lemma 11 ([17]). If G is biconnected and v → w, lowpt1(w) < v unless v = 1
in which case lowpt1(w) = v = 1. Also, lowpt1(1) = 1.

When the low-point information has been calculated, the adjacency lists can
be reordered. The ordered adjacency lists, denoted by Adj(v), are built in the
following way. To each edge e = (v, w) a potential φ(e) is assigned:

φ(e) =


3lowpt1(w) if e = v → w and lowpt2(w) < v

3w + 1 if e = v ↪→ w

3lowpt1(w) + 2 if e = v → w and lowpt2(w) ≥ v

Then edges are sorted by φ in ascending order using bucket-sort, and the adja-
cency lists rebuild in the corresponding sequence. Since 3 ≤ φ(e) ≤ 3n+2, e ∈ E,
this can be done in linear time. Sorting by the potential φ basically yields that
edges in each adjacency list are in ascending order of the lowpt1-values of their
heads, and the number of their heads if the edge is a back edge, respectively.

Additionally, edges with the same lowpt1-value of their heads are arranged
in two sets according to their lowpt2-values. Let w1 . . . wk be the children of v
with lowpt1(wi) = u. Then there is an index i0 such that lowpt2(wi) < v for
1 ≤ i ≤ i0 and lowpt2(wi) ≥ v for i0 < i ≤ k. In Adj(v) first come the tree
edges v → wi with i ≤ i0, followed by back edges v ↪→ u, and then tree edges
v → wi with i > i0 as illustrated in figure 3.2. This ordering is necessary to
correctly identify split components later on, which consist of multiple edges.1

1 The pairs {u, wi}, i > i0 will later be identified as type-1 separation pairs, see below. By
the time they are processed all edges v → wi, i ≤ i0 will already have been processed by DFS.
Since all v → wi, i > i0 appear consecutively after back edges v ↪→ u in Adj(v), no possible
multiple edge is missed by the algorithm described below.
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Fig. 3.2: Ordering of edges of a vertex v with the same lowpt1-value u of their
heads wi. The indicated back edges are the ones according to lowpt2(wi).

A second execution of DFS will now find paths in the desired way:

• The first path starts at vertex 1, and a path ends, when the first back
edge on the path is reached.

• The first path also ends at vertex 1, thus forming the initial cycle.

• Each path generated afterwards ends at the lowest possible vertex, and
each path has only its initial and terminal vertex in common with previ-
ously generated paths.

Since we only look at biconnected graphs, and thus Lemma 11 holds, from each
found path p : v ∗→↪→ w a cycle can be obtained by adding the tree path
w
∗→ v to p. Therefore, the paths found now by DFS, correctly correspond to

the segments, and segments are processed in a recursive manner, that is, before
DFS finishes processing of the initial cycle c1, all segments leading from c1 are
processed, and before these segments are processed, segments leading from these
are finished, and so on.

3.3 Numbering and high-points

In the next section we will state the conditions to identify separation pairs during
yet another execution of DFS. But before we can do this, a different numbering
of the vertices is needed. Also, another property of the vertices, the so-called
high-point, has to be calculated.
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(a) Lemma 12 (b) Lemma 13

Fig. 3.3: Properties of the inverse post-order numbering. Tree edges are ordered
from left to right according to the ordered adjacency lists.

3.3.1 Numbering

During a second execution of DFS, the vertices of P are numbered from |V | to
1 in order they are last examined, that is, they are numbered according to the
inverse post-order numbering. Then, the following properties are satisfied:

• The root of P is 1.

• If v ∈ V and w1, . . . , wk are the children of v in P according to the ordering
in Adj(v), then wi = v + |D(wi+1) ∪ · · · ∪D(wk)|+ 1.

In other words, when vertices are numbered like this, vertices in subtrees of
a vertex u explored first by DFS have a higher number then vertices in subtrees
of u, which are explored later on. Also, this numbering makes it easy to identify
descendants of a vertex by their number, cf. Figure 3.3.

Lemma 12 (cf. [17]). Let Adj(u) be the adjacency list of vertex u, and let
u → v and u → w be tree edges with v occurring before w in Adj(u). Then
u < {x|x ∈ D(w)} < v.

Lemma 13 (cf. [17]). If v ∈ V then D(v) = {x|v ≤ x < v + |D(v)|}. If
v
∗→ w, v, w ∈ V , and every vertex along v ∗→ w is the first one in the adjacency

list of its parent, then D(v)−D(w) = {x|v ≤ x < w}.

Observe, that the low-point information calculated before is still valid. As
shown in [17], the low-point information is independent of the exact numbering,
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as long as v < w implies v ∗→ w for any two vertices v, w ∈ V . This holds for
the inverse post-order numbering numbering.

3.3.2 High-points

To correctly identify separation pairs later on, one also needs to know the high-
point high(v) of a vertex v.

Definition 14 (High-point). The high-point high(v) of a vertex v ∈ V is the
source vertex of the first visited back edge leading to v:

high(v) =

{
0 if F (v) = ∅

source vertex of first visited edge in F (v) otherwise

where F (v) = {u|u ↪→ v ∈ E}.

The high-point information is also calculated during the second execution
of DFS. The construction of F (v) can be done by simply generating an empty
list of high-points for each vertex before the execution of DFS, and appending
vertex w to the list of vertex v, when DFS encounters the back edge w ↪→ v.

3.4 Finding separation pairs

Let us now consider the general separation pair conditions with respect to DFS.
Let G be a biconnected graph, ordered and numbered as described above, and
P be the respective palm tree. From Lemma 7 we know that a separation
pair cannot have one vertex on the cycle and one in a segment. Thus, it is
sufficient to check for separation pairs on each generated path seperately. In
the following let a and b be two vertices lying on the same generated path, and
let w.l.o.g. a < b, that is, b is a descendant of a in the palm tree P of G. Regard
x
∗→ a

∗→ b
∗→ y ↪→ x as the currently examined cycle c.

3.4.1 Multiple edge case

Lemma 15. {a, b} is separation pair if (a, b) is a multiple edge of G, and G
contains at least four edges.

Proof. Immediate from the definition of separation pairs.
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Fig. 3.4: Conditions for type-1 separation pairs with respect to DFS.

3.4.2 Type-1 pair

Lemma 16. {a, b} is a type-1 separation pair if and only if there exists a child
r of b with lowpt1(r) = a and lowpt2(r) ≥ b, and a vertex s 6= a, b that is not a
descendant of r.

Proof. There must be a non-empty subtree Pb of P with root b which only
connects to a and b, that is, from which one or more back edges lead to a, whereas
all other back edges only lead into the subtree itself or to b. This is exactly the
case if there exists a child r of b with lowpt1(r) = a and lowpt2(r) ≥ b, cf.
Figure 3.4. Additionally there must exist a vertex different from a and b which
is not contained in this subtree.

3.4.3 Type-2 pair

Lemma 17. Let u1, . . . , uk be the children of b and u = ui0 be a child of b in
Adj(b) with lowpt1(u) ≥ a. Let h = u + |D(u)| − 1, if such a child exists, or
h = b otherwise. Let the tree path a → r

∗→ b be p, and b ∗→ y ↪→ x
∗→ a be q.

Then {a, b} is a type-2 separation pair if and only if

1. r 6= a, b and q contains at least two edges.

2. All vertices {v|v is a child of any vertex on p\{a, b} and v 6= b} have
lowpt1(v) ≥ a.
(“No edges from S below a”, cf. Figure 3.5)

3. All vertices v ∈ p\{a, b} have high(v) ≤ h.
(“No edges from S′ to p\{a, b}”, cf. Figure 3.5)
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Fig. 3.5: Conditions for type-2 separation pairs with respect to DFS.

Proof. Clearly, r 6= a, b, since otherwise p would not contain a vertex besides a
and b, and thus, {a, b} could not be a type-2 separation pair. If q only consists of
a single edge, {a, b} cannot be a type-2 separation pair, too, since then there is
no vertex besides a and b on q. Observe that this condition is always satisfied if
a 6= 1. Have a look at Figure 3.5. Let S = {v|a < v ≤ h}\{b}. That is, S consists
of all the subtrees Pp of P rooted at any vertex v ∈ p\{a, b}, without D(b). If u
exists, S additionally consists of v ∈ {D(ui0)∪ . . .∪D(uk)}. It is easy to observe
in Figure 3.5, that {a, b} is a separation pair, iff no edges like the indicated red
ones exist, that is, all vertices in S only connect to p, whereas all vertices in
S′ = {D(u1)∪. . .∪D(ui0−1)} only connect to q = b→ w1

∗→ y ↪→ x
∗→ a = q′′q′.

Let us consider the red edge leading from S to q′: All vertices in the subtrees
Pp must only connect back to p, that is, all back edges of that subtrees are
leading to the subtrees themselves or to a vertex on p. This is exactly the
case, if part 2 holds. Note that v ∈ {D(ui0) ∪ · · · ∪ D(uk)} also do not lead
to any vertex on q′, because lowpt1(u) ≥ a by definition and a ≤ lowpt1(u) ≤
lowpt1(ui0+1) ≤ . . . ≤ lowpt1(uk) by the ordering of Adj(b). Thus all vertices
in S only connect to p.
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Let us now consider the red edge leading from S′ to p\{a, b}: Because of the
numbering of vertices, all vertices in S′ have a higher number than h. If part 3
holds, then all back edges, that have their heads in p\{a, b}, have their tails in
S. Therefore, no vertex in S′ connects to p\{a, b}, and thus all vertices in S′

only connect to q.

3.5 Algorithm

In this section the actual algorithm for finding separation pairs and split com-
ponents is presented and given in pseudo code in Algorithm 1 and following.
Assume that the input graph G is a biconnected, simple graph, with an order-
ing of the adjacency lists and a numbering of vertices as given above. In case
the input graph is not simple, but a multigraph without self-loops, then one can
split off the multiple edges beforehand and store them as split components, cf.
Lemma 15.

3.5.1 Data structures and update methods

The algorithm for finding split components as shown in Algorithm 1 and fol-
lowing, make use of this data structures and update methods:

• C := newComponent(e1, . . . , el): a new component C = {e1, . . . , el} is
created, and e1, . . . , el are removed from GC .

• C := C ∪ {e1, . . . , el}: the edges e1, . . . , el are added to C and removed
from GC .

• e′ := newVirtualEdge(v, w,C): a new virtual edge e′ = (v, w) is created
and added to component C and GC .

• makeTreeEdge(e, v → w): make edge e = (v, w) a new tree edge in PC .

• deg(v): the degree of v in GC .

• parent(V ): the parent of v in PC .

• |D(v)|: the number of descendants of v in PC .

• firstChild(v): the first child of v in PC according to Adj(v).

• high(v): the high-point of v still residing in in GC .
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• stacks ESTACK and TSTACK with the usual functions push(), pop() and
top().

3.5.2 General idea

Lemmata 15, 16 and 17 offer the possibility to detect separation pairs in a third
execution of DFS. Because of the ordering of paths imposed by the ordering of
the adjacency lists, DFS traverses edges up to the ‘outermost’ segments, and
proceeds to the ‘inner’ ones, finishing in the end with the initial cycle. Thus, it
is clear that the occurrence of a separation pair needs to be checked, whenever
DFS is backtracking over some tree edge of a path, in which case all segments
of that path are already processed. Let GC = (VC , EC) be the current graph
and PC be the corresponding current palm tree of GC during the execution of
the algorithm. If a separation pair is found, the edges of the corresponding
split component are split off, a new virtual edge is introduced, and GC and
PC are updated accordingly. A Stack ESTACK is used to store already visited
edges that are not yet assigned to a split component. Every time DFS backs
up over an edge, it is placed on top of ESTACK, before the algorithm checks
for separation pairs associated with this edge, as explained beolw. The edges
of subtrees are consecutive on ESTACK, where the edges of the current subtree
are on top. With the given numbering it is easy to identify the vertices and
edges within any subtree of PC , cf. Lemma 13. Edges which correspond to split
components are always consecutive on top of ESTACK by the ordering of paths,
as the split components correspond to the segments processed latest, and these
segments in turn correspond to the subtrees processed latest by DFS.

During the algorithm there has to be taken care of the occurrence of multiple
edges. Though the input graph for finding the split components contains no
multiple edges, the replacement of split components with virtual edges may
introduce new ones. Thus, whenever a component is split off from the graph, a
second component has to be created, if the split yielded a multiple edge. This
case will always be detected by the algorithm because of the ordering according
to lowpt2-values in the ordered adjacency lists. The ordering guarantees that,
if there arises a multiple edge by introducing a virtual edge, the other edge will
be on top of ESTACK.

The algortihm starts by calling the recursive procedure PathSearch, which is
basically another DFS, as shown in Algorithm 1. When returning from PathSearch,
all split components will have been split off except for the last one. Therefore
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the edges left on ESTACK are put into a new split component. If all edges of
the input graph are contained in this component, the input graph was already
completely triconnected.

Algorithm 1: Find split components
Input: Simple graph G = (V,E).
Data: Stacks TSTACK, ESTACK.
Result: the split components Ci of G.

begin
TSTACK.push (EOS)
PathSearch(1)
Let e1, . . . , el be the edges on ESTACK
C ← newComponent(e1, . . . , el)

end

PathSearch(v) begin
forall e ∈ Adj(v) do

if e starts a path then updateTSTACK(e)

if e = v → w then
// v → w is tree edge

PathSearch(w)

ESTACK.push(v → w)

check for type-2 pairs

check for type-1 pairs

if e starts a path then
remove all triples on TSTACK down to and including EOS

end
checkHighpoint(v)

else
// v ↪→ w is back edge

if w = parent(v) then // check for possible multiple edge
C ← newComponent(e, w → v)

e′ ← newVirtualEdge(w, v, C)

makeTreeEdge(e′, w → v)
else

ESTACK.push(e)
end

end

end

end
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3.5.3 How to check for type-1 pairs

Type-1 separation pairs are quite easy to recognize: Every time the DFS backs
up over a tree edge v → w, the conditions for type-1 case are checked with
a = lowpt1(w), b = v, and r = w, cf. the indicated blue edge in Figure 3.4.
To verify the existence of a vertex s according to the type-1 case it is sufficient
to check whether the parent node of v is not the root of PC , or there is a
child of v different from w. The resulting split component are all edges in the
subtree of w, that is, all consecutive edges on top of ESTACK with endpoints in
{x|w ≤ x < w + |D(w)|}, plus a new virtual edge (v, lowpt1(w)). Algorithm 2
shows how to check for type-1 pairs in pseudo code.

Algorithm 2: check for type-1 pairs
if lowpt2(w) ≥ v and lowpt1(w) < v and
(parent(v) 6= 1 or v is adjacent to a not yet visited tree edge) then

C ← newComponent()

while (x, y) on ESTACK has w ≤ x < w + |D(w)| or w ≤ y < w + |D(w)|
do

C ← C ∪ {ESTACK.pop()}
end
e′ ← newVirtualEdge(v, lowpt1(w), C)

// handle multiple edge

if ESTACK.top() = (v, lowpt1(w)) then
C ← newComponent(ESTACK.pop(), e′)
e′ ← newVirtualEdge(v, lowpt1(w), C)

end
if lowpt1(w) 6= parent(v) then

ESTACK.push(e′)
else

// handle yet another multiple edge

C ← newComponent(e′, lowpt1(w)→ v)

e′ ← newVirtualEdge(lowpt1(w), v, C)
end
makeTreeEdge(e′, lowpt1(w)→ v)

end
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3.5.4 How to check for type-2 pairs

Type-2 separation pairs are harder to recognize: Every time DFS backs up over
a tree edge v → w, the conditions have to be checked for type-2 case with a = v,
r = w, and some vertex b on the currently examined path, cf. the indicated blue
edge in Figure 3.5. The simple case is v → w → child(w) and w has degree
two, that is, {v, child(w)} just splits off the single vertex w. The main idea to
correctly identify the more complex cases of type-2 pairs is to keep track of pos-
sible type-2 pairs found during the traversal of a generated path, and to remove
the incorrect ones, whenever a violation of the conditions of Lemma 17 occurs.
To accomplish that, another Stack TSTACK is used to store possible type-2 sep-
aration pairs found so far. The entries on TSTACK consist of triples (h, a, b),
where {a, b} is a possible type-2 pair and h is the highest-numbered vertex in the
corresponding split component. TSTACK can also contain a special end-of-stack
marker EOS, which is used to simulate the recursive cycle decomposition during
DFS: Suppose the algorithm is currently examining a cycle c. If DFS traverses
the first tree edge v → w starting a new path, {lowpt1(w), v} forms a new
possible type-2 pair on c (compare to edge b → u in Figure 3.5). Therefore, a
new entry (h, lowpt1(w), v) with some value h is placed on TSTACK. Since DFS
proceeds examining the new path/circle starting at v → w, and, because of the
previous ordering of DFS-paths, recursively processes a new segment of c, there
also is placed an EOS on TSTACK. Later, when DFS backs up over v → w, and
supposedly all split components within the segment are found, all remaining
entries on TSTACK down to the EOS marker are deleted, such that DFS now
continues examining separation pairs on the cycle c.
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Algorithm 3: check for type-2 pairs
while v 6= 1 and
(((h, a, b) on TSTACK has a = v) or (deg(w) = 2 and firstChild(w) > w))

do
if a = v and parent(b) = a then

// (a, b) is no type-2 pair since no inner vertices exist

TSTACK.pop()
else

eab ← nil
C ← newComponent()

if deg(w) = 2 and firstChild(w) > w then
// simple case

b← child(w)

remove top edges (v, w) and (w, b) from ESTACK and add to C
e′ ← newVirtualEdge(v, b, C)

if ESTACK.top() = (v, b) then eab ← ESTACK.pop()
else

// (h, a, b) is a type-2 pair

(h, a, b)← TSTACK.pop()
while (x, y) on ESTACK has (a ≤ x ≤ h) and (a ≤ y ≤ h) do

if (x, y) = (a, b) then eab ← ESTACK.pop()
else C ← C ∪ {ESTACK.pop()}

end
e′ ← newVirtualEdge(a, b, C)

end
// handle possible multiple edges

if eab 6= nil then
C ← newComponent(eab, e

′)

e′ ← newVirtualEdge(v, b, C)
end
ESTACK.push(e′)
makeTreeEdge(e′, v → b)

w ← b
end

end

Assume now that DFS is backing up over the tree edge v → w, and that all
triples on TSTACK down to the latest EOS, which violated any of the conditions
for type-2 pairs, have been previously removed. Suppose further that v → w
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does not satisfy the simple case. If the top triple (h, a, b) on TSTACK has a = v

and v 6= 1 (cf. the indicated blue edge in Figure 3.5), then {a, b} is actually a
type-2 pair, since (h, a, b) was not removed previously and thus, the conditions
of Lemma 17 are satisfied. Observe that, if v 6= 1, then q consists of at least
two edges. Yet, if {a, b} was a type-2 separation pair with a = 1, this pair will
not be lost by the algorithm, because at the time when a = 1 is being finished,
all split components except for the one including the tree path a ∗→ b will have
been split off beforehand and have been replaced by a single virtual edge (a, b).
Therefore, the edges remaining on ESTACK just are the edges of the last split
component. If again the top triple (h, a, b) on TSTACK has a = v and v 6= 1,
and thus {a, b} is actually a type-2 pair, the corresponding split component,
which is S in Figure 3.5, consists of all consecutive edges on top of ESTACK
with endpoints in {x|a ≤ x ≤ h}, plus a new virtual edge (a, b). Algorithm 3
shows pseudo code for checking type-2 pairs.

3.5.5 Updating data structures for type-2 pairs

It remains to show how the algorithm correctly removes triples from TSTACK,
which violate the conditions of Lemma 17, adds new possible separation pairs
and determines the highest numbered vertices of split components. Assume DFS
is currently examining the cycle c and processing vertex v. As the pathfinding
process is ordered such that paths visited first end at the lowest possible vertex,
the elements on TSTACK are in nested order. That is, if (h1, a1, b1), (h2, a2, b2),
. . . , (hk, ak, bk) are the triples on TSTACK above the latest EOS with (h1, a1, b1)
being the top triple, then ak ≤ ak−1 ≤ · · · ≤ a1 ≤ v ≤ b1 ≤ · · · ≤ bk−1 ≤ bk.
Also ai, v, and bi all lie on the currently examined cycle c.
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Algorithm 4: updateTSTACK
if e = v → w then

// v → w is tree edge

pop all triples (h, a, b) with a > lowpt1(w) from TSTACK
if no triples deleted then

TSTACK.push(w + |D(w)| − 1, lowpt1(w), v)

else
y ← max{h|(h, a, b) deleted from TSTACK}
let (h, a, b) be the last triple deleted
TSTACK.push((max(y, w + |D(w)| − 1), lowpt1(w), b))

end
TSTACK.push(EOS)

else
// v ↪→ w is back edge

pop all triples (h, a, b) with a > w from TSTACK
if no triples deleted then

TSTACK.push(v, w, v)
else

y ← max{h|(h, a, b) deleted from TSTACK}
let (h, a, b) be the last triple deleted
TSTACK.push(y, w, b))

end

end

• Whenever an edge e = v → w or e = v ↪→ w is traversed, which starts
a new path, this path can possibly violate the “No edges from S below
a”-condition for some triples on top of TSTACK. Since a new segment
starting with e is found, there is also found a new possible separation
pair. Algortihm 4 displays pseudo code for this case. Tree edges and back
edges have to be handled differently:

1. e = v → w: The segment starting with e consists of e, the subtree
of w, and all back edges leading from this subtree. Thus, the top
triple (h, a, b) on TSTACK still represents a possible separation pair,
if lowpt1(w) ≥ a. Therefore pop all (h, a, b) with a > lowpt1(w).
Now, if no triple was deleted, (lowpt1(w), v) is a new possible type-
2 pair, possibly separating from G the subtree of w. The highest
numbered vertex in the subtree of w has the number hw = w +
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(h1, a1, b1)

(h2, a2, b2)

EOS
. . .

ESTACK

(a) (b)

(max(h1, hw), l1(w), b1)

(h1, a1, b1)

(h2, a2, b2)

EOS
. . .

ESTACK

(c)

Fig. 3.6: Example – Updating TSTACK when traversing edge v → w. (a) ES-
TACK before traversing v → w. (b) Violation of type-2 pair condition for triple
(h1, a1, b1). (c) ESTACK after updateTSTACK.

|D(w)| − 1. Thus, (hw, lowpt1(w), v) has to be placed on top of
TSTACK. If otherwise some triples were removed, let (h, a, b) be the
last triple deleted. Then, (lowpt1(w), b) is a new possible type-2
pair. Let hd = max{h|(h, a, b) deleted from TSTACK}. In this case,
(max(hd, hw), lowpt1(w), b) have to be placed on TSTACK. Figure 3.6
illustrates the case that the top triple (h1, a1, b1) has to be removed.

Since DFS will next proceed to examine cycles in the segment starting
with e, there also has to be placed an EOS on TSTACK.

2. e = v ↪→ w: The segment starting with e consists just of the single
back edge e. Thus the top triple (h, a, b) on TSTACK is still a possible
separation pair if w has a number greater or equal than a. Therefore
pop all (h, a, b) with a > w.
If no triple was deleted, (w, v) is a new possible type-2 pair and
(v, w, v) is placed on TSTACK, as v is the last vertex processed in the
corresponding split component, and therefore is its highest-numbered
vertex. Otherwise let (h, a, b) be the last triple deleted. Then, (w, b)
is a new possible type-2 pair. Let hd = max{h|(h, a, b) deleted from
TSTACK }. Thus, (hd, w, b) has to be placed on TSTACK (observe
that hd > v).
Since e is the only edge in the segment, this segment is already pro-
cessed and no EOS is placed on TSTACK. DFS continues processing
the cycle c.
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(h1, a1, b1)

(h2, a2, b2)

EOS
. . .

ESTACK

(a) (b)

(h1, a1, b1)

(h2, a2, b2)

EOS
. . .

ESTACK

(c)

Fig. 3.7: Example – Updating TSTACK when backtracking over edge v ↪→
w. (a) ESTACK before backtracking over v ↪→ w. (b) Violation of type-2
pair condition for triple (h1, a1, b1). (c) ESTACK after checkHighpoint.

• At the point when backtracking over a tree edge v → w the condition
“No edges from S′ to p\{a, b}” could be violated for some triples on top
of TSTACK, if v is on p\{a, b} for those triples. The top triple (h, a, b)
is still a possible type-2 separation pair if a = v or b = v, or a 6= v and
b 6= v (and thus a < v < b) and high(v) ≤ h. Otherwise triples are deleted
until the top triple remains a possible type-2 pair based on the high-point
condition, as shown in Algorithm 5. Figure 3.7 shows an example.

Algorithm 5: checkHighpoint(v)
while (h, a, b) on TSTACK has a 6= v and b 6= v and high(v) > h do

TSTACK.pop()
end

When DFS is backtracking over a tree edge v → w and v = a for the top
triple (h, a, b) on TSTACK, v → w is an edge like the indicated blue one in
Figure 3.5. Then (h, a, b) with a 6= parent(b) resembles a real type-2 pair,
because all subtrees leading from p\{a, b} have already been examined. If there
had been a back edge reaching lower than a, (h, a, b) would have been previously
deleted. The vertices on p\{a, b} are already processed at this point, too. Thus,
if any high-point of those vertices had violated the high-point condition, (h, a, b)
also would have been removed before.
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3.5.6 Analysis

Theorem 18 (cf. [17]). Algorithm 1 correctly divides a biconnected simple graph
G into split components.

Proof. As shown above, the algorithm correctly splits the graph if it has a
separation pair. If there exists no separation pair in G, clearly the graph will
not be split. The theorem follows by induction over the number of edges m in
G = (V,E). Biconnected simple graphs with less than three edges are trivially
triconnected. Let G be a biconnected simple graph with four edges, that is
m = 4. Then, G must be a cycle of length four, having two separation pairs.
Clearly, the algorithm will find one of them, and splitG accordingly. Afterwards,
no more split operations are possible. Hence, the algorithm correctly splits a
graph with m = 4. Suppose the theorem is true for graphs with less than m

edges. If the graph is triconnected, it will not be split. If on the other hand G is
not triconnected, and thus has at least one separation pair, G will be split into
graphs G1 and G2, each having less than m edges. Therefore, G1 and G2 are
split correctly by the induction hypothesis. Hence, G will be correctly split.

Theorem 19 (cf. [17]). Algorithm 1 computes divides a graph G = (V,E) into
split components in O(|V |+ |E|) time.

Proof. The DFS itself and all tests done require O(|V | + |E|) time. Each edge
is placed on and deleted from ESTACK only once. Since by Lemma 1 the total
number of edges in all split components is bounded by 3|E| − 6, maintainig
ESTACK and removing the split components takes O(|E|) time. Triples repre-
senting type-2 pairs are placed and removed from TSTACK exactly once, too.
Since only one triple is placed on TSTACK, whenever an edge starting a path
is found during DFS, the overall number of triples on TSTACK is in O(|E|).
Therefore, maintaining TSTACK also requires O(|E|) time. Hence, the overall
time-complexity is O(|V |+ |E|).

When the split components of the input graph are correctly found, it is an
easy matter to form the triconnected components from those, as shown in [13].
One just has to merge triple bonds sharing the same virtual edge, and triangles
sharing the same virtual edge, respectively. It is not shown here how to construct
the so-called SPQR-tree [6, 7], a data structure to maintain the triconnected
components of a graph, but again, this is not complicated once the triconnected
components have been identified [13].
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Fig. 3.8: Average running time of the algorithm.

3.6 Experimental results

The algorithm presented here has been implemented in JAVA for the yFiles
graph library [27]. Implementation details can be found in Appendix A. The
average running time was analyzed by generating random graphs according to
the well-known Gilbert model G(n, p) as presented in [4]. The algorithm was
executed on graphs with n = 50, 100, . . . , 2000, each with p set to log n/n. In this
setting, almost all random graphs generated are connected. After generation,
self-loops in the random graphs were removed, and the graphs made biconnected
by already existing methods present in the yFiles library. For each size, 500
trials were performed to get the average running time. The experiments were
executed on a standard PC with AMD Athlon64 processor, 1.81 GHz, 1 GB
RAM, operated with Microsoft Windows XP Professional. Figure 3.8 clearly
demonstrates the linear time-complexity of the algorithm.
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Many algorithms in the field of planar graph drawing only work for triconnected
graphs, or, as the drawing algorithm presented in the next chapter, for an
even more specific class of graphs: triangulated graphs. Triangulated graphs
are graphs where all faces of their planar embedding, including the outer face,
are triangles. In this chapter, a simple linear-time algorithm is presented to
make a biconnected planar graph triangulated [8]. The algorithm will yield a
triangulated graph by adding edges, while maintaining simplicity and planarity.
Often, graph drawing algorithms which only work for triangulated graphs are
applied to a triconnected graph G by triangulating G yielding a graph G′, then
applying the drawing algorithm to G′, and finally removing the edges added in
the triangulation step from the resulting drawing.

4.1 Algorithm

It is shown in [8] how to augment a simple connected plane graph G = (V,E)
to form a simple biconnected plane graph by adding a set of O(n) edges. It is
also shown that in a biconnected planar graph every face is a simple cycle, that
is, no vertex appears on a face more than once.

The triangulation algorithm for triangulting biconnected graphs presented
here is based on the single operation of adding edges to the graph which has
to be triangulated. The main idea is simple: For each face of a biconnected
graph G = (V,E) that is not a triangle, we add edges into the face such that
the resulting faces are all triangles. In the remainder, it will be shown that this
can be done in linear time by adding O(n) edges.

First we show how to triangulate a single face. Let F = v1 → . . .→ vk → v1

be a face of G with deg(F ) ≥ 4, as illustrated in Figure 4.1a. One could just
triangulate the face by simply adding the edges (v1, v3), (v1, v4), . . . , (v1, vk−1)
to the graph. But if there had existed an edge (v1, vj) for 3 ≤ j ≤ k − 1 before
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(a) Face F (b) Simple triangulation (c) Triangulation avoiding
multiple edge

Fig. 4.1: Triangulating a single face F .

the triangulation step, this method would result in a multiple edge, as shown in
Figure 4.1b. Note that the edge (v1, vj) must lie outside the face F , otherwise
F is not a face of G.

Assume now there is an edge (v1, vj) with 3 ≤ j ≤ k−1 in the graph. Hence
face F has to be triangulated in a different way. Observe that, if edge (v1, vj) ex-
ists, there cannot be an edge (v2, vk), for it would either violate the planarity or
destroy the face F . Similarly, none of the edges (v2, vk−1), (v2, vk−2), . . . , (v2, vj+1)
and (vj+1, vj−1), (vj+1, vj−2), . . . , (vj+1, v3) can exist in this case. Thus, face F
may be triangulated by adding all these edges inside F , as displayed in Fig-
ure 4.1c.

These observations immediately impliy an algorithm to make a biconnected
graph triangulated, see Algorithm 6. There is one subtle extension to the pro-
cedure explained above, that is, instead of choosing an arbitrary vertex of face
F as v1, we choose a vertex with minimum degree on F . This is required to
achieve linear time-complexity for the algorithm.

4.2 Analysis

Theorem 20. Let G = (V,E) be a simple biconnected plane graph with n ≥ 3.
Then a set of O(n) edges E′ can be found such that G′ = (V,E∪E′) is a simple,
triangulated and planar graph.

Proof. We give a constructive proof. Take a face F of G with deg(F ) ≥ 4, and
triangulate F as described above. Afterwards, F is divided into triangles, and
G has one less face F with deg(F ) ≥ 4. Take the next face which is not yet
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Algorithm 6: Triangulate a simple biconnected planar graph
Input: Simple biconnected plane graph G = (V,E) with planar embedding π.
Result: Triangulated planar graph G′ = (V,E ∪ E′).
begin

forall faces F in π do
if deg(f) ≥ 4 then

Let v1 be a vertex of minimum degree in F
Let v2, v3, . . . , vk be the remaining vertices of F in clockwise order
Mark all neighbors of v1 in the graph
if none of v3, . . . , vk−1 is marked then

Add edges (v1, v3), (v1, v4), . . . , (v1, vk−1)
else

Let vj be one of the marked neighbors of v1
Add edges (v2, vk−1), (v2, vk−2), . . . , (v2, vj+1)
Add edges (vj+1, vj−1), (vj+1, vj−2), . . . , (vj+1, v3)

end
Unmark all neighbors of v1

end
end

end

a triangle and follow the same procedure, and so on. By induction the whole
graph becomes triangulated in the end, yielding the graph G′, where all added
edges form E′. This is exactly how Algorithm 6 proceeds.

It remains to show that the total number of added edges is in O(n). Observe
that for a single face F = v1 → . . . → vk → v1 with deg(F ) = k ≥ 4, there are
exactly k − 3 edges added to the graph, whether there exists an edge (v1, vj)
beforehand or not. Therefore,

|E′| ≤
∑
F∈G

deg(F ) = 2m ≤
Corollary 4

2(3n− 6) ∈ O(n)

Theorem 21. A simple biconnected plane graph can be triangulated with Algo-
rithm 6 in O(n) time.

Proof. The corectness of Algorithm 6 is proved in Theorem 20. It remains to
prove the time-complexity. When using proper data structures representing
the graph, all faces can be found in O(n) time. For each face F , identifying
a vertex v1 with minimum degree takes O(deg(F )) time, and to mark and
unmark all neighbors of v1 costs O(deg(v1)) = O(minv∈F {deg(v)}) time. All
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other operations, that is, checking whether no neighbor of v1 is marked or not,
and adding the proper edges for face F also take O(deg(F )) time. Hence, the
total running time is proportional to

∑
F∈G

(
deg(F ) + min

v∈F
{deg(v)}

)

The first term satisfies
∑

F deg(F ) = 2m which is in O(n) for planar graphs
by Corollary 4. But since deg(v) ∈ Θ(n), the second term, and thus the total
running time, is potentially quadratic. We will show that, for planar graphs,
the second term is also bounded by n. Observe that

min
v∈F
{deg(v)} = min

(v,w)∈F
{deg(v), deg(w)} ≤

∑
(v,w)∈F

min{deg(v), deg(w)},

and since every edge belongs to exactly two faces

∑
F∈G

min
v∈F
{deg(v)} ≤

∑
F∈G

∑
(v,w)∈F

min{deg(v), deg(w)}

= 2
∑

(v,w)∈E

min{deg(v), deg(w)}

From Lemma 6 we know that
∑

(v,w)∈E min{deg(v), deg(w)} ≤ a(G) · 2m
and a(G) ≤ 3 for planar graphs. Thus,∑

F∈G

min
v∈F
{deg(v)} ≤ 2

∑
(v,w)∈E

min{deg(v), deg(w)}

≤ 2 · a(G) · 2m ∈ O(m) = O(n),

as m ≤ 3n− 6 by Corollary 4.

Note that there is a major drawback to the algorithm presented here: Poten-
tially, it increases the maximum degree of a graph G = (V,E) by O(n), n = |V |,
even when the maximum degree before triangulation is bounded by a constant.
This is, for example, the case, when the biconnected input graph is just a cycle
v1, . . . , vn, where additionally v1 is adjacent to its opposite vertex, cf. Figure4.1c
when taken as the whole input graph. Please refer to [19] for a more detailed
view on this problem.
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In the field of analyzing large and complex networks much effort has been put
into devising ways to visualize those networks properly. One approach to deal
with the scalability problem is clustering. The visual complexity can be re-
duced by using well-known, efficient clustering algorithms, and many real-world
networks have an inherent underlying clustered graph topology.

Recently Ho and Hong presented a framework for drawing clustered graph in
three dimensions [16], given the connectivity between the single clusters forms a
tree structure. In this chapter a 2.5D visualization based on the same framework
is presented, where the abstract graph of clusters – the super-graph – forms a
triangulated planar graph. To achieve this, a vertex weighted version of an
existing 2D-drawing algorithm for planar graphs, that allows for thick vertex
representations and ensures mutual visibility of connected vertices, is provided.

Section 5.1 displays the general framework adjusted to triangulated pla-
nar super-graphs, followed by important previous work regarding the proposed
method in section 5.2. Section 5.3 provide definitions for the algorithm presented
in section 5.4. In section 5.5, area bounds and time-complexity of the algorithm
are analyzed. Section 5.6 discusses some experimental results obtained with an
implementation of the algorithm in the visual analysis tool GEOMI [1].

5.1 General framework

The general framework for drawing a clustered graph with planar cluster struc-
ture in 2.5D is similar to [16]. We consider a set of given clusters G1, G2, . . . , Gn

with Gi = (Vi, Ei) and define a weighted super-graph G = (V,E), where each
graph Gi is represented as a vertex in G. There is an edge in E if there is at least
one edge between two clusters Gi and Gj . The vertex weights of G are defined
according to the number of vertices in the cluster or the size of a 2D-drawing of
the cluster.
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The framework consists of the following steps:

1. Drawing each cluster in 2D.

2. Drawing the weighted planar super-graph.

(a) Finding a “best” planar embedding (if not given).

(b) 2D-drawing of weighted planar super-graph.

3. Merging the drawings of step 1 and 2b, yielding a 2.5D-drawing of the
whole graph.

Within each of the above steps several criteria are to be considered. Since
any 2D-drawing algorithm can be used in the first step, one has to take into
account different optimization constraints like number of edge crossings, area,
edge length, angular resolution or symmetry, cf. [5]. In step 2a one could try
to optimize certain measures like depth, radius or size of the external face,
optionally w.r.t. the given vertex/edge weights, to improve the final aesthetic
appearance of the drawing [9, 14]. Here, one could also assign edge weights to
the edges of the super-graph according to, for example, the number of real edges
between to clusters. Clearly, step 2a is dependent on the drawing algorithm used
in step 2b. Since in this step space is assigned for the later insertion of the single
clusters, the main focus here is to ensure that no crossing between inter-cluster
edges and the clusters can occur in the final drawing. We will later define this
criterion as visibility. Other criteria are drawing area, edge length and angular
resolution. In the last step the main effort will be to minimize crossings and
occlusion of inter-cluster edges.

The main concern in this chapter is to present an drawing algorithm for
step 2b of the general framework, obtaining a 2D straight-line drawing of the
planar super-graph with small area while maintaining the visibility constraint.

5.2 Previous work

In the field of planar graph drawing there are basically two different approaches
to obtain a standard straight-line representation of planar graphs [5, 20, 24]:

• Convex representations (Tutte [26], Convex drawing [23]), and

• Methods based on a canonical ordering (Shift method [11, 18], Barycenter
method [25]).
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Here, a weighted version of the shift method of deFraysseix, Pach, Pollack [11]
is presented. Given a maximally planar graph, this algorithm calculates coor-
dinates for each vertex on an 2D integer grid such that the final drawing has a
quadratic area bound. Chrobak and Payne presented a linear time variant [10],
which uses only basic data structures and is easy to implement. Harel and
Sardas provide a version for biconnected graphs [15].

The approach presented in the following sections is closely related to another
weighted version of this algorithm by Barequet, Goodrich, Riley [3], who allow
for thick vertices and edges in order to visualize traffic volumes on edges in a
network. Though the main idea is similar, there are differences in the condi-
tions, as in our case we have independent vertex and edge weights, and, more
important, the criterion of visibility between adjacent vertices.

5.3 Definitions

Let G = (V,E) be a triangulated planar graph with n = |V | and m = |E|.
Let πG = (v1, v2, . . . , vn) be an ordering of all vertices of G. Let Gk be the
graph induced by vertices v1, v2, . . . , vk according to π, particularly Gn = G.
We denote by C0(Gk) the boundary or the outer face of Gk. C0(Gk) is called
the outer cycle. The algorithm will later draw the vertices of the input graph
one by one, in order of the so-called canonical ordering:

Definition 22 (Canonical ordering, cf. [11, 24]). An ordering πG = (v1, v2, . . . , vn)
of all vertices of a triangulated plane graph G is called a canonical ordering if
for each index k, 3 ≤ k ≤ n, the following conditions hold:

1. Gk is biconnected and internally triangulated, that is, all faces except for
the outer cycle are triangles.

2. (v1, v2) is an outer edge of Gk, that is, it is part of the outer cycle.

3. if k + 1 ≤ n, then vertex vk+1 is located in the outer face of Gk, and all
neighbors of vk+1 in Gk appear on C0(Gk) consecutively.

Lemma 23 (cf. [11, 24]).

• Every triangulated plane graph G has a canonical ordering.

• The canonical ordering of a triangulated plane graph G = (V,E) can be
computed in O(n) time, where n = |V |.
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Lemma 23 is not proven here for the sake of brevity. For a detailed descrip-
tion please refer to [24]. The following definitions concern the vertex-weighted
variant of the shift-method.

Let weight(v) be positive integer vertex weights for the vertices v ∈ V . We
write |v| = weight(v) for a shorter notation. Vertices are represented by solid
diamonds with diagonal length |v|. P (v) = (x(v), y(v)) is defined as the center
of each vertex v’s representation. Accordingly, let

• Pl(v) = (xl(v), y(v)), where xl(v) = x(v)− |v|2 ,

• Pr(v) = (xr(v), y(v)), where xr(v) = x(v) + |v|
2 ,

• Pb(v) = (x(v), yb(v)), where yb(v) = y(v)− |v|2 , and

• Pt(v) = (x(v), yt(v)), where yt(v) = y(v) + |v|
2

be the left, right, bottom and top corners of v’s representation.

Definition 24 (Visibility). We say a vertex v is visible to another vertex w,
if any line segment connecting a point within the representation of v to a point
within the representation of w does not cross the representation of any other
vertex u 6= v, w.

Let P1 = (x1, y1) and P2 = (x2, y2) be two grid points on a integer grid and
let µ(P1, P2) be the intersection point of the straight line segment with slope +1
through P1 and the straight line segment with slope −1 through P2. Clearly,

µ(P1, P2) =
(

1
2

(x1 − y1 + x2 + y2) ,
1
2

(−x1 + y1 + x2 + y2)
)
.

Let L(v) be a set of dependent vertices of v. Later, this will resemble the set
of vertices, which have to be rigidly moved with v when moving v itself.

5.4 Algorithm

As in the original shift method, the algorithm starts drawing G3 by placing v1,
v2, and v3, but since the vertex representations are two-dimensional, they are
placed as

P (v1) := ( |v1|
2 , 0)

P (v2) := (|v1|+ 2 · |v3|+ max{|v1|, |v2|}+ |v2|
2 , 0)

Pt(v3) := µ (Pr (v1) , Pl (v2))
= (|v1|+ |v3|+ max{|v1|,|v2|}

2 , |v3|+ max{|v1|,|v2|}
2 )
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v3

v1 v2

|v3| max{|v1|,|v2|}
2|v3|max{|v1|,|v2|}

2

Pt(v3)

Fig. 5.1: Initial placement of vertices v1, v2 and v3.

as illustrated in figure 5.1. The sets of dependent vertices are initialized with
L(vi) := {vi} for i = 1, 2, 3.

Again, as done in the original algorithm, we proceed by placing the next
vertex vk in the canonical ordering into Gk−1, one by one, starting with v4.
Assume that following conditions hold for Gk−1, k ≥ 4 :

(c1) xl (w1) < xr (w1) < xl (w2) < xr (w2) < . . . < xl (wt) < xr (wt), where
C0 (Gk−1) = w1, . . . , wt, w1 = v1 and wt = v2.

(c2) each straight line segment (Pr (wi) , Pl (wi+1)), 1 ≤ i ≤ t− 1, has either
slope +1 or −1.

(c3) every vertex in Gk−1 is visible to its adjacent vertices in Gk−1.

It is easy to see that these conditions hold for the initial Graph G3. When
inserting vk, let wp, wp+1, . . . , wq be the neighbors of vk on C0(Gk−1). As the
vertex vk is the next vertex in the canonical ordering, these neighbors are con-
secutive on C0(Gk−1). Similar to [10], install vertex vk as follows:

1. for all v ∈ ⋃q−1
i=p+1 L(wi) do x(v) = x(v) + |vk|

2. for all v ∈ ⋃t
i=q L(wi) do x(v) = x(v) + 2 · |vk|

3. Pt(vk) = µ (Pr (wp) , Pl (wq))

4. L(vk) = {vk ∪
(⋃q−1

i=p+1 L(wi)
)

Figure 5.2 illustrates the installing of vertex vk. Note that steps 1 and 2
are equivalent to shifting all vertices w1, . . . , wp to the left by |vk| and vertices
wq, . . . , wt to the right by the same amount, respectively. Placing vk as in step 3
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wq

wp+1

wp

wq−1

vk

(a) Gk−1, vk and neighbors wp, . . . , wq of vk.

wq

wp+1

wp

wq−1

vk

|vk| |vk|

(b) Gk.

Fig. 5.2: Installing vertex vk
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Gk−1

Gk

wp

wq

wp

vk

wq

Fig. 5.3: Violation of visibility constraint in case {wp+1, . . . , wq−1} = ∅.

ensures that all connecting line segments between vertices wp+1, . . . , wq−1 and
vk have a slope s with |s| ≥ 1, whereas all line segments within the vertices
wp+1, . . . , wq−1 have slope s′ with −1 ≤ s′ ≤ +1 by (c2) and the rigid move-
ment of these vertices in step 1. Hence, any of these vertices are visible to vk,
that is, no edge between them can cross another vertices’ representation. As
illustrated in figure 5.2, wp and wq are also visible from vk, and the slopes be-
tween the vertices of the new outer face w1, . . . , wp, vk, wq, . . . , wt satisfy (c2)
for Gk. Clearly, (c1) is satisfied for Gk as well. Step 4 ensures that all vertices
‘below’ the outer face are moved such that they remain visible to their neighbors
in Gl, l ≥ k.

It remains to show that (c3) holds after inserting vk. As shown above, the
new vertex vk is visible to all its neighbors in Gk. Since vertices wp+1, . . . , wq−1

are moved rigidly and were visible to their neighbors in Gk−1, this still holds
for Gk by induction. However, if there are no inner vertices between wp and wq

on the outer face of Gk−1, condition (c3) is violated by placing vk as in steps
1 to 4, as wq is not visible to wp anymore after insertion. Figure 5.3 illustrates
this case.

Since {wp+1, . . . , wq−1} = ∅, and thus step 1 will be omitted, this problem
can only be adressed by introducing an extra shift in step 2, and thus, placing
vk high enough in step 3 such that it cannot violate the visibility of wp and wq.
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wp

wq

vk

(a) yt(wp) > yt(wq)

wp

wq

vk

(b) yt(wp) ≤ yt(wq) and |wp| > |wq |

wp

wq

vk

P

(c) yt(wp) ≤ yt(wq) and |wp| ≤ |wq |

wp

wq

y

|wp|
2

a b′

bz

α

(d) Sketch of geometry of figure 5.4c.

Fig. 5.4: Possible constellations for inserting vk if slope of line segment
[Pr(wp), Pl(wq)] is +1 in Gk−1.

Lemma 25. Let {wp+1, . . . , wq−1} = ∅. Let the line segment [Pr(wp), Pl(wq)]
have slope +1 in Gk−1. Then wp will be visible to wq in Gk, if an extra shift
amount e is added in step 2 with

e =

{
max{|wp|, |wq|} if yt(wp) > yt(wq)
min{|wp|, |wq|} if yt(wp) ≤ yt(wq)

Proof. Refer to figure 5.4. The solid diamonds indicate the possible constel-
lations in Gk−1, whereas the dashed-line diamonds indicate the location of vk

without extra shifting.
Figure 5.4a illustrates the case yt(wp) > yt(wq). Clearly, |wp| > |wq|. Shift-

ing apart wp and wq by an extra amount of |wp| = max{|wp|, |wq|} lifts Pb(vk)
above the horizontal line through Pt(wp). Thus, wp is guaranteed to be visible
to wq.

Consider now the case yt(wp) ≤ yt(wq). If |wp| > |wq|, as illustrated in
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figure 5.4b, then additional shifting by |wq| = min{|wp|, |wq|}, lifts Pb(vk) above
the horizontal line through Pt(wq). Therefore wp is visible to wq.

If on the other hand |wp| ≤ |wq|, as shown in figure 5.4c, we have to make
sure that Pb(vk) is lifted at least by the length of [P, Pl(wq)], where P is the
intersection point between the vertical line through Pl(wq) and the line segment
[Pt(wp), Pt(wq)]. Consider an assignment of variables as in figure 5.4d. Then, y
is the length of [P, Pl(wq)]. Since b′ ≥ b, the maximum value of y is obtained, if
b′ = b. By simple geometry, y = z

√
2 and

a
2b = z

b−z

⇔ z = ab
2b+a

Thus,

y = z
√

2 =
√

2 · ab

2b+ a
<
√

2 · ab
2b

=
a√
2

=
|wp|

2

Consequently, an extra shift of |wp| = min{|wp|, |wq|} will lift Pb(vk) over P
and therefore ensures the visibility of wp and wq.

It is easy to see that the required extra shift is analogous, if the line segment
[Pr(wp), Pl(wq)] has slope −1 in Gk−1.

Algorithm 7 shows the weighted version of the original shift method in pseudo-
code. There are some remarks to be made about the algorithm. Firstly, if the
set of inner vertices between wp and wq contains exactly one vertex w, then vk

would be placed directly on top of this vertex, that is, Pt(w) = Pb(vk). This
can be avoided by increasing the extra shift by one. Secondly, if one wants to
maintain the grid-drawing property of the original algorithm, only even vertex
weights are allowed – otherwise two corner points of a vertex could only be
placed on non-grid points. Also note that µ(P1, P2) only is a grid point if the
Manhattan distance between P1 and P2 is even. This also can be guaranteed by
increasing the extra shift by one if necessary. Observe that introducing extra
shifts by constants asymptotically does not change the consumption of drawing
area.



5. Drawing planar clustered graphs 47

Algorithm 7: Draw weighted planar supergraph 2D
Input: Planar supergraph G = (V,E), canonical ordering πG = (v1, v2, . . . , vn),

positive integer vertex weights |vi|, i = 1, . . . , n.
Data: Vertex coordinates P (v), set of dependent vertices L(v), v ∈ V .
Result: 2D integer coordinates for vertex representation.

begin
// initialization

Pl(v1)← (0, 0)

Pr(v2)← (|v1|+ 2 · |v3|+ max{|v1|, |v2|}+ |v2|, 0)

Pt(v3)← µ (Pr (v1) , Pl (v2))

for i = 1, 2, 3 do L(vi) = {vi}

// placement

for k = 4 to n do
Let w1, w2, . . . , wt be the outer cycle C0(Gk−1) of Gk−1

Let wp, wp+1, . . . , wq be the neighbors of vk on C0(Gk−1)

// set extra shift amount e

e← 0

if {wp+1, . . . , wq−1} = ∅ then
if [Pr(wp), Pl(wq)] has slope +1 in Gk−1 then

if yt(wp) > yt(wq) then e← max{|wp|, |wq|}
else e← min{|wp|, |wq|}

else // [Pr(wp), Pl(wq)] has slope −1 in Gk−1

if yt(wp) < yt(wq) then e← max{|wp|, |wq|}
else e← min{|wp|, |wq|}

end

end

// shift vertices

for v ∈
⋃q−1

i=p+1 L(wi) do x(v) = x(v) + |vk|
for v ∈

⋃t
i=q L(wi) do x(v) = x(v) + 2 · |vk|+ e

// place new vertex vk

Pt(vk)← µ (Pr (wp) , Pl (wq))

// set dependent vertices of vk

L(vk) = {vk ∪
(⋃q−1

i=p+1 L(wi)
)
}

end

end
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5.5 Analysis

Theorem 26. The total grid area of a drawing of graph G = (V,E) with
given vertex weights |v|, v ∈ V produced by Algorithm 7 is O

(∑
v∈V |v|

) ×
O
(∑

v∈V |v|
)
.

Proof. The width of the initial layout of G3 is clearly bounded by 2 ·∑3
i=1 |vi|.

Whenever a vertex vk is added, the width increases by 2 · |vk| + ek, where
ek denotes the extra shift in step k. Thus, the total width is bounded by
2 ·∑n

i=1 |vi|+ ε, with ε =
∑n

i=4 |ei|.
Consider the part of ε which is contributed due to shifting with the maximum

weight of wp and wq in Lemma 25. This case can occur at most twice for each
vertex v, once on each side, since after insertion of the new vertex, v’s top corner
will be lower than the top corner of its adjacent vertex on this side (therefore
only leading to the case of minimum shift afterwards). Hence, this part of ε is
bounded by 2 ·∑n

i=1 |vi|.
To determine the part of ε which is contributed due to shifting with the

minimum weight, we use an amortized analysis. Let each vertex v have two
credits l(v) and r(v), to support one extra shift on its left side and one on
its right side. Set l(v) = r(v) = |v|. Let wp and wq be the neighbors of
vk on the outer face of Gk−1 at step k with {wp+1, . . . , wq−1} = ∅. Assume
yt(wp) ≤ yt(wq). Since in this case wq was inserted later than wp, it cannot
have spent its credit l(wq), because otherwise there would be an inner vertex
between wp and wq on the outer face. If min{|wp|, |wq|} = |wq|, then wq pays for
the extra shift with its credit l(wq). Suppose now that min{|wp|, |wq|} = |wp|:
If wp has not used its credit r(wp) so far, then it just pays for the shift. If on
the other hand r(wp) has already been spent (e.g. to insert wq), then wq uses
its credit l(wq) = |wq| ≥ |wp| to pay the extra shift. The payment is analogous
if yt(wp) > yt(wq). Thus, the total amount of extra shift is sufficiently paid by
the sum of all credits and this part of ε therefore also bounded by 2 ·∑n

i=1 |vi|.
Since C0(G) is a triangle and G = Gn satisfies condition (c2), the height of

the drawing is half its width plus the part of vertices v1 and v2 beneath the line
Pl(v1)Pr(v2), which is max{|v1|, |v2|}/2.
Thus, the overall drawing area is O

(∑
v∈V |v|

)×O (∑v∈V |v|
)
.

Theorem 27. Given a graph G = (V,E), n = |V |, Algorithm 7 can be imple-
mented with running time O(n).
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Proof. We refer to the linear time implementation of the original shift method
of de Fraysseix et al [11] by Chrobak and Payne [10]. The algorithm runs in two
phases, where in the first phase x-offsets between vertices are calculated and
stored in a left-son tree structure. In the second phase offsets are accumulated
and final coordinates are assigned. It can easily be extended to our problem.
Since the determination of the extra shift amount takes only constant time, the
overall asymptotic complexity is not changed.

5.6 Experimental results

The weighted version of the de Fraysseix, Pach, Pollack algorithm as presented
in the previous section has been implemented for the visual analysis tool GE-
OMI [1]. Implementation details can be found in Appendix B. Figure 5.5 shows
the drawing of a randomly generated clustered graph with a triangulated pla-
nar super-graph structure. The single clusters are drawn with a standard spring
force algorithm.

The advantage of the algorithm is that the connection between the clusters
is clearly visible, but at the same time it is quite hard to analyze the structure
within the clusters without losing the “big picture”. A possible way to overcome
this would be to apply some beautification technique to this initial layout, e.g.
by shifting clusters in the direction of the third dimension and compacting the
layout afterwards. One could also use the layout produced by the weighted shift
method as an initial setup for a spring-force algorithm. In this way, the main-
tenance of planarity could be guaranteed. Another possibility is to apply more
sophisticated interaction techniques like fisheye methods with smooth animated
graph morphing or drawing subgraphs in a separate window when hovering over
inter-cluster edges or single clusters.
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Fig. 5.5: Sample graph with 8 clusters.



6. CONCLUSION

This thesis covered three aspects in the field of graph drawing: Finding tricon-
nected components, triangulating biconnected graphs, and drawing clustered
graphs, where the super-graph forms a triangulated planar graph.

In chapter 3, the Hopcroft and Tarjan algorithm for finding the separation
pairs and corresponding split components of a biconnected multigraph without
self-loops was presented. It was shown how to use DFS to efficiently achieve
this goal, using the principle of recursive cycle decomposition. In contrast to
[17, 13], the crucial Lemma proposing the possibility to detect type-2 separation
pairs with respect to DFS (Lemma 17) was stated and proven in a way closer to
proceeding of the actual algorithm. The algorithm was presented in detail. Also,
illustrations were added to clarify the correctness of the stated Lemmata and to
explain particular parts more deeply. This hopefully eases the understanding of
this very complex algorithm.

The algorithm for finding split components was implemented in JAVA for
the yFiles graph drawing library [27]. Empirical analysis has shown that the
implementation satisfies the theoretically proven linear time-complexity.

In chapter 4, a simple algorithm was presented to triangulate a biconnected
plane graph by adding edges. It was shown that the total number of edges added
by the algorithm is linear in the number of vertices. Also, it has been proven
that the algorithm can be implemented to run in linear time.

In chapter 5, a method to obtain a 2.5D drawing of clustered graphs with pla-
nar super-graph structure was presented. To achieve this, a weighted version of
the well-known de Fraysseix, Pach, Pollack algorithm [11] was introduced, which
allows for thick vertex representations and satisfies the constraint of visibility,
that is, edges between vertices do not cross other vertices’ representations. It is
shown that this variant maintains the linear runtime and the quadratic drawing
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area with respect to the vertex weights.
The weighted vertex shift-method was implemented for the visual analysis

tool GEOMI [1]. Experimental results on randomly generated graphs suggest
that the method is useful for gaining insight to the connectivity between clusters,
though further improvement is needed to better show the detail within the
clusters at the same time. In summary open problems are:

• Finding a best embedding, and canonical ordering, respectively, for an
aesthetic drawing of the graph, especially for biconnected graphs using
SPQR-trees (step 2a of the general framework).

• Investigation into beautification methods, for example, by using the third
dimension and shifting clusters or “folding” the whole grid and compacting
the layout afterwards, or by using the layout as initial setup for spring-
force algorithms.

• Avoiding edge crossing and minimizing occlusion in the final 2.5D-drawing
(step 3 of general framework).

• Implementing appropriate interaction techniques, like fisheye or subgraph
drawing.

A general question remaining is whether the framework presented here may be
used to produce aesthetic drawings of clustered graphs having a planar super-
graph structure without requirements to the connectivity, or even clustered
graphs having arbitrary, that is, non-planar super-graphs.
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APPENDIX



A. TRICONNECTED COMPONENTS ALGORITHM -
IMPLEMENTATION DETAILS

The Hopcroft and Tarjan algorithm for finding triconnected components pre-
sented in chapter 3 is implemented for the yFiles graph library [27]. It was
developed as a new package for yFiles named y.algo.GraphTriconnectivity with
the open source Eclipse IDE. The implementation makes use of various classes
of the existing y.base package, mostly, the basic graph data structures and some
layout algorithms to visualize a sample graph in the correctness test. The ex-
isting DFS-algorithm in package y.algo.Dfs was not used, because there is no
possibility there to use a specifically ordered adjacency structure, as needed in
the algorithm for finding triconnected components. Yet, the DFS class presented
here (MyDFS ) follows the algorithm in y.algo.Dfs by using the same method
names.

The complete Eclipse-project may be found on the attached CD-ROM in
the folder “Implementation/TriconnectedComponents”. Observe that the yFiles
library class path will have to be updated. A demo version of the yFiles library
may be obtained on the homepage of yFiles [27]. The API generated with the
javadoc tool may be found in the folder “Implementation/TriconnectedCompo-
nents/doc”.

Figure A.1 shows the UML specification of the package. The various classes
have the following functions:

MyDFS A standard DFS implementation. It defines the same dummy-methods
as does the DFS of the y.algo.Dfs package. MyDFS calculates node and
edge status (processed / not processed, tree edge / back edge), DFS-
numbers and completion numbers.

ParentAndPathDFS extends MyDFS to store the paths generated by DFS, to-
gether with parent information of each vertex. Also stores for each edge,
whether it is a first edge on a generated path.
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MyDFS

+MyDFS(graph:Graph,adjMap:NodeMap)
+start(v:Node)
#preVisit(v:Node,dfsNum:int)
#preTraverse(e:Edge,w:Node,isTreeEdge:boolean)
#postTraverse(e:Edge,w:Node)
#postVisit(v:Node,dfsNum:int,completionNum:int)

ParentAndPathDFS

NumberDFS LowAndDescDFS

SplitCompDFS

Triconnectivity

+doOnlyOrderingNumbering(b:boolean)
+doShowDebugInformation(b:boolean)
+triconnectedComponents(g:Graph): EdgeList[]
#splitOffInitialMultipleEdges(...)
#findSplitComponents(...)
#orderAdjLists(): NodeMap

<<Enumeration>>
DP_NAMES

y.base.Graph
<<Interface>>

y.base.DataProvider

operates on

1

operates on

1

1 1 *

identifies

sets data providers during execution

1

1

1

executes

1

Fig. A.1: Package GraphTriconnectivity – UML representation.
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LowAndDescDFS extends ParentAndPathDFS to calculate the low-point val-
ues and number of descendants for each vertex. This correspondents to
the first execution of DFS in the algorithm.

NumberDFS extends ParentAndPathDFS to calculate the renumbering of ver-
tices and the high-point information for each vertex. This corresponds to
the second execution of DFS in the algorithm.

SplitCompDFS extends MyDFS to determine the split components of a graph
using recursive cycle decomposition. This corresponds to the third execu-
tion of DFS in the algorithm.

Triconnectivity The main class of the package. Splits off initial multiple edges
and delegates the various executions of DFS via the method tricon-

nectedComponents(GraphG).

DP_NAMES During the various executions of DFS, all important information,
like vertex number, low-point values, paths, etc. is stored in so called “data
providers” associated with the input graph, which is the standard concept
within yFiles to store data associated with graphs. DP_NAMES defines
the access keys to the various data providers.

Additionally, there are two test classes for testing correctness and running time
of the algorithm:

Test A testing class for testing the correctness of the algorithm. It uses the
sample graph presented in the original paper [17]. The test displays the
graphs and information associated with each stage of the algorithm.

TestRuntime A testing class for testing the empirical average running time of
this implementation. The class makes use of a random graph generator
class GNP in y.util.GraphGenerator. The graph generator was imple-
mented to generate graphs according to the well-known Gilbert-model
G(n, p).



B. WEIGHTED SHIFT METHOD - IMPLEMENTATION
DETAILS

The weighted version of the drawing algorithm of de Fraysseix, Pach and Pol-
lack presented in chapter 5 is implemented for the visual analysis tool GE-
OMI [1]. GEOMI is based on the WilmaScope graph drawing tool, written by
Tim Dwyer. Both are released under the LGPL licence. The core weighted shift
method is implemented in the package geomi.layoutplugins.planarlayout, the ap-
plication for clustered graphs in geomi.layoutplugins.clusteredgraphlayout, and
graph generators for both in geomi.generatorplugins.

The complete Eclipse-project may be found on the attached CD-ROM in
the folders “Implementation/Geomi”, “Implementation/Wilma” and “Implemen-
tation/AreaChart3D”. The latter is not used here, but needs to be included to
avoid compile-time errors for already existing plugins in GEOMI. Observe that
the WilmaScope makes use of the Java3D library, which therefore has to be in-
stalled to run GEOMI. The API generated with the javadoc tool may be found
in the folder “Implementation/Geomi/doc”. The easiest way to run GEOMI is
to start it from within Eclipse; a proper launch configuration is included in the
GEOMI package. Please observe that there exist some errors in the package
which do not concern the parts presented here. They can safely be ignored.

Figure B.1 shows the UML specification of the implemetation. The various
classes have the following functions:

• geomi.layoutplugins.planarlayout

PlanarGraph a graph data structure representing planar graphs.

PlanarNode a vertex data structure representing a vertex having a pla-
nar embedding. This class implements the interface PlanarEmbed-
dedNode. This provides, for example, access methods for accessing
the clockwise neighbor in the embedding, etc.
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org.wilmascope.graph

org.wilmascope.graph

geomi.layoutplugins.planarlayout

geomi.generatorplugins

org.wilmascope.graphgen.GraphGenerator
by Tim Dwyer

+generate(gc:GraphControl)

PlanarTriangulatedGenerator

#generateGraph(graph:PlanarGraph)

ClusteredGraphGenerator
by Joshua Ho

+generateGraph(s:SuperGraph)

ClusteredPlanarGraphGenerator

#generateGraph(s:SuperGraph,n:int)

LayoutEngine
by Tim Dwyer

+calculateLayout()
+applyLayout(): boolean

N:NodeLayout
E:EdgeLayout

SimpleThickFPPLayout<ThickFPPNode,ThickFPPEdge>

ThickFPPLayout<ThickFPPNode,ThickFPPEdge>

PlanarGraph

geomi.layoutplugins.clusteredgraphlayout

SuperGraph
by Joshua Ho

ClusteredGraphLayout
by Joshua Ho

SuperGraphEngine:LayoutEngine
PlaneEngine:LayoutEngine

ClusteredPlanarFPPLayout<ThickFPPLayout, PlanarClusterForceLayout>

org.wilmascope.graph.Node
by Tim Dwyer

org.wilmascope.graph.Cluster
by Tim Dwyer

+addNode(node:Node)
+addEdge(edge:Edge) 1

*

PlanarNode

geomi.layoutplugins.util

<<Interface>>
PlanarEmbeddedNode

T:Node

PlanarGraphAlgorithms

+getCanonicalOrder(graph:Cluster,v1:T,v2:T,
                   vn:T): NodeList<T:Node>

NodeLayout
by Tim Dwyer

ThickFPPNode

ThickFPPEdge EdgeLayout
by Tim Dwyer

Fig. B.1: Weighted shift method – UML representation.
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ThickFPPLayout the core class of the implementation. This class imple-
ments the weighted shift method, that is, calculates coordinates for
the weighted vertices as presented in chapter 5. The required canon-
ical ordering algorithm is implemented in PlanarGraphAlgorithms.

SimpleThickFPPLayout a layout-plugin for simple vertex-weighted trian-
gulated graphs generated with PlanarTriangulatedGenerator.

• geomi.layoutplugins.clusteredgraphlayout

ClusteredGraphLayout (by Joshua Ho) an abstract class defining a layout
engine for drawing the single clusters and a layout engine to draw the
super-graph. The class provides methods according to the general
framework presented in Section 5.1.

ClusterPlanarFPPLayout a layout-plugin to layout clustered graphs with
triangulated super-graph structure as generated with ClusteredPla-
narGraphGenerator. The single clusters are drawn using a standard
spring-force algorithm. The super-graph is drawn with ThickFP-
PLayout, where vertex weights are set according to the drawing area
of the single clusters.

• geomi.generatorplugins

PlanarTriangulatedGenerator generates a simple vertex-weighted trian-
gulated graph with vertex weights set according to a standard distri-
bution around a given average weight.

ClusteredPlanarGraphGenerator generates a clustered graph with trian-
gulated super-graph structure with given number of clusters, number
of vertices per cluster, number of edges within clusters and number
of edges between cluster. Edges are set randomly between the corre-
sponding vertices.

Figure B.2 shows a screenshot displaying the generation of a simple vertex-
weighted triconnected graph. This is done in GEOMI via the Generate tab,
selecting the option Planar Graph (Triangulated). A clustered graph may be
generated using the selection Clustered Planar (Triangulated). Figure B.3 shows
the graph after applying the weighted shift method algorithm, which is done
via the Layout tab, selecting Weighted FPP (simple planar graph). A layout for
clustered graphs may be obtained by selecting Clustered Planar FPP.
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Fig. B.2: GEOMI – Generation of a simple vertex-weighted triangulated graph.

Fig. B.3: GEOMI – Layout of a simple vertex-weighted triangulated graph.
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