
Group-Level Analysis and Visualization

of Social Networks

Michael Baur1, Ulrik Brandes2, Jürgen Lerner2, and Dorothea Wagner1

1 Faculty of Informatics, Universität Karlsruhe (TH), KIT
2 Department of Computer & Information Science, University of Konstanz

Abstract. Social network analysis investigates the structure of relations
amongst social actors. A general approach to detect patterns of interac-
tion and to filter out irregularities is to classify actors into groups and to
analyze the relational structure between and within the various classes.
The first part of this paper presents methods to define and compute
structural network positions, i. e., classes of actors dependent on the net-
work structure. In the second part we present techniques to visualize a
network together with a given assignment of actors into groups, where
specific emphasis is given to the simultaneous visualization of micro and
macro structure.

1 Network Analysis

Social network analysis (SNA) [54] is an established, active, and popular research
area with applications in sociology, anthropology, organizational studies, and
political science, to name a few. In a nutshell, SNA analyzes the structure of
relations among (social, political, organizational) actors. While the type and
interpretation of actors and relations—as well as the theoretical background of
network analysis—varies from application to application, many network analysis
methods are nevertheless applicable in rather general settings.

In order to abstract from the particular application context, we assume that
networks are represented by graphs G = (V,E), where V is a set of vertices,
encoding the actors, and E is a set of edges (also called ties or links), encoding
the relation among actors. Edges may be directed, undirected, or of mixed type.
Furthermore, vertices and edges may have various attributes encoding, e. g., the
type of actors or relations as well as the strength of relations.

Network analysis methods can be classified with respect to the level of gran-
ularity of the analyzed objects (compare [11]):

– Element-level methods analyze properties of individual vertices and edges,
such as importance (centrality).

– Group-level analysis determines specific subsets of vertices. These methods
include the computation of densely connected groups (clustering) and the
computation of structural roles and positions (blockmodeling or role assign-
ment, see Sect. 2).

J. Lerner, D. Wagner, and K.A. Zweig (Eds.): Algorithmics, LNCS 5515, pp. 330–358, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Group-Level Analysis and Visualization of Social Networks 331

– Network-level analysis is interested in global properties of the network,
such as density, degree-distributions, transitivity, or reciprocity; as well as
in the development of random graph models that are plausible for empirical
networks.

In this chapter we focus on group-level network analysis. For surveys encom-
passing all levels of network analysis, see, for instance, [54] and [11]. In the
remainder of this section, we briefly introduce a software to analyze and visual-
ize social networks and state common notation. Thereafter, in Sect. 2, we give
an overview of state-of-the-art methods for role assignment and present our own
contribution to this field. Section 3 details a visualization technique for networks
on which a partition of the vertices is already given (e. g., from clustering, role
assignments, or extrinsic vertex-attributes) and where the analyst wants to see
the interplay between fine-grained (vertex-level) and coarse-grained (group-level)
structures.

1.1 visone – Software for the Analysis and Visualization of Social
Networks

Along with the increased relevance of network analysis and the growing size of
considered networks, adequate software for social network analysis is becoming
more and more important. As part of our project we provide the software tool
visone1, aiming to bring together efficient algorithms for methods of analysis and
suitable graph drawing techniques for the visualization of networks. Besides our
original work, we have included novel algorithms developed by other members
of our groups at the universities of Karlsruhe and Konstanz in order to cover
fields like centrality indices [10], clusterings [27], and spectral layouts [24]. The
functionality is completed by well-known commonly-used methods.

visone is not only intended as a testbed for the work of our groups but also
as an everyday tool for students and researchers in network analysis. There-
fore, we adapt all algorithms to a consistent and comprehensive graph model
and put in great efforts to provide a simple but flexible user interface hiding
unnecessary complexity. In contrast to common tools which present to the user
only a matrix representation of the data, we build on the expressive and ex-
planatory power of graph layouts and provide a complete graphical view of the
network (see Fig. 1(b)). Observations indicate that users enjoy the playful nature
of our approach.

Visualizing social networks is more than simply creating intriguing pictures, it
is about generating learning situations: “Images of social networks have provided
investigators with new insights about network structure and have helped them
communicate those insights to others” [25]. Additionally, inappropriate draw-
ings of networks are misleading or at least confusing. Therefore, we pay special
attention to the visualization of the networks. Selected general graph layout
algorithms provide an uncluttered view on the network and reveal its overall
1 visone is available free of charge for academic and non-commercial purpose from the

homepage http://visone.info

http://visone.info

332 M. Baur et al.

(a) multi-circular visualization (b) main window of visone

Fig. 1. (a) Multi-circular visualization of a network consisting of six groups. The group
structure is clearly visible. Additionally, the height and width of the vertices reflects
the number of connections within and between groups. (b) The most notable features
of the main window of visone are the large and detailed view of the graph, the small
overview, and the control pane on the left hand.

(a) radial visualization

0.0060

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.073

(b) status visualization

Fig. 2. Examples of the radial and the status visualization. The positions of the vertices
depict centrality measures. Additional information is reflected by the color, shape, size,
and width of the vertices and edges.

structure, but the unique feature of visone are the analytic visualizations which
exactly depict analysis results, like centrality scores and clusterings, by means
of tailored and suggestive graph layouts (see Figs. 1(a) and 2). Combinatorial
models of these visualizations allow for the optimization of esthetic properties
to improve the expressiveness and exploratory power without changing their
analytic signification.

Group-Level Analysis and Visualization of Social Networks 333

1.2 Basic Notation

Let G = (V,E) be a directed or undirected graph with n = |V | vertices and
m = |E| edges. A partition of G is a subdivision of the vertex set V into pair-
wise disjoint, non-empty subsets V = V1∪̇ . . . ∪̇Vk. In addition to this explicit
definition, a partition can be given by an equivalence relation on V or by a sur-
jective mapping ρ : V → {1, . . . , k} of vertices to vertex-classes (called partition
assignment). These three definitions are mutually in a canonical one-to-one cor-
respondence up to permutation (re-labeling) of classes, see [39], and we typically
identify the class i with the set Vi.

A partition assignment ρ : V → {1, . . . , k} defines a smaller graph Q(G, ρ) =
(V , E), called the quotient graph, encoding which classes are connected, by setting

V = {1, . . . , k} and E = {(ρ(u), ρ(v)) ; (u, v) ∈ E} . (1)

2 Structural Positions in Networks

The notion of (structural) position is fundamental in social network analysis,
see for example [54,9]. Actors are said to occupy the same position if they have
identical patterns of ties to other actors and the task of determining such classes
of actors is referred to as blockmodeling or role assignment. For instance, by
this definition university professors would occupy the same structural position if
they have identical patterns of ties to students, secretaries, other professors and
so on. Note that this definition of position dependent on the network structure
contrasts to more traditional notions of social positions, such as defining the
position of professors dependent on the type of contract that they have with their
university. In this paper the term position always refers to structural position.
Various types of role assignment differ in how they operationalize the notion
of identical patterns of ties to other actors and how they account for deviation
from perfectly identical patterns. We continue by reviewing established previous
notions for role assignment and outline where the newly proposed structural
similarities fit in.

2.1 Previous Work on Role Assignments

Basic Notation. A role assignment r : V → {1, . . . , k} of a (directed or undi-
rected) graph G = (V,E) is given by a partition of its vertex set V . In context of
role assignments, vertex-classes are also referred to as positions and the quotient
graph is called role graph. A role assignment r defines k2 submatrices, called
blocks, of G’s adjacency matrix A. The block associated to class C and D, de-
noted by A[C,D], is the |C| × |D| submatrix of A whose rows correspond to the
vertices in C and whose columns correspond to the vertices in D.

If a role graph (i. e., a hypothesis for the role structure of a network) is given,
the problem of determining a role assignment that yields this role graph is called
a role assignment problem, or prespecified blockmodeling.

334 M. Baur et al.

Discrete Approaches. Specific types of role assignments are obtained by re-
quiring that vertex partitions must satisfy specific compatibility constraints with
respect to the graph structure. An important distinction between various con-
straints is whether they require equivalent vertices to be connected to the same
others —illustrated in Fig. 3 (left)—or just to equivalent (but not necessarily
the same) others—illustrated in Fig. 3 (right).

Fig. 3. Two graphs with vertex partitions indicated by the coloring. Left : Equivalent
vertices have identical neighborhoods. Right : Equivalent vertices have equivalent but
non-identical neighborhoods.

Neighborhood Identity. The most basic approach defines vertices as structurally
equivalent [41] if they have identical neighborhoods, i. e., if they are connected
to exactly the same others; compare Fig. 3 (left). An equivalence is structural
if and only if all induced blocks are either complete (consisting only of ones) or
zero.

Structural equivalence (SE), however, is too strict and does not well match
intuitive notions of network position. Coming back to the example from the
beginning of Sect. 2, SE would assign the same position to professors only if
they are connected to the same students, secretaries, and other professors. Work
discussing the insufficiency of SE includes [48], [9], and [42].

Neighborhood Equivalence. To capture more general situations, SE has been
relaxed by requiring that vertices occupying the same position must only be
connected to the same positions—independent on whether these positions are
occupied by the same vertices or different vertices. Thus, two professors would be
assigned to the same position if they both have the same patterns of relations to
some (but not necessarily the same) students, secretaries, and other professors;
compare Fig. 3 (right) where the black vertices are all connected to some (but
different) white vertices. Mathematical formalizations of this idea include regular
equivalence, automorphic equivalence, and exact regular equivalence.

A partition is called regular [55,22] if for every two of its classes C and D it
holds that, whenever one vertex in C has a neighbor in D, then every vertex
in C has a neighbor in D. Equivalently, a partition is regular if every induced
block is either empty or it has at least one non-zero entry in every row and in
every column. A partition is called exact regular [22] or equitable [31] if for every
two of its classes C and D, all vertices in C have the same number of neighbors

Group-Level Analysis and Visualization of Social Networks 335

in D. Equivalently, a partition is exact regular if for every block B, there are
two numbers rB and cB such that all rows of B sum up to rB and all columns
of B sum up to cB. Two vertices u and v are called automorphically equivalent
if there is a graph automorphism mapping u to v. The notion of automorphic
equivalence is quite established in algebraic graph theory (e. g., [31]); work using
this concept in social network analysis includes [9]. A structural partition is
automorphic, an automorphic partition is equitable, and an equitable partition
is regular.

Applicability for Social Network Analysis. The requirement for equitable par-
titions (and thus for automorphic and structural equivalence) is too strong for
social networks (and other irregular, empirical data); due to deviations from
ideal structural models, the resulting partitions will have singletons or very small
classes. On the other hand, the maximal regular equivalence is often trivial as
well; on undirected graphs it corresponds to the division into isolates and non-
isolates. Determining non-trivial regular equivalences with a prespecified num-
ber of equivalence classes is NP-hard [23]. Regular, equitable, and automorphic
equivalence is not robust against the addition or deletion of single edges (e. g.,
caused by noise or measurement errors); destroying the equivalence of one pair
of vertices by adding/deleting an edge can have a cascading effect destroying
equivalence of some of their neighbors, second-order neighbors, and so on. In
conclusion, structural, automorphic, equitable, and regular partitions have lim-
ited applicability for the analysis of empirical data.

Real-valued Degrees of Similarity. To overcome (some of) the abovemen-
tioned problems, a formalization of role assignment should not only define ideal
types of equivalence (such as regular, automorphic, or structural) but also clarify
how to measure deviation from ideality (cf. [54]). Seen from a different angle, a
formalization of role assignment should not only provide the decision between
equivalent and non-equivalent but rather it should yield a degree of similarity of
vertices.

Relaxing Structural Equivalence to Neighborhood Overlap. Defining degrees of
structural equivalence is straightforward, although various different possibilities
to do so exist. In most cases similarity is defined by measuring the overlap of the
neighborhoods of two vertices and normalizing this measure in an appropriate
way. Examples include taking the number of vertices in the intersection of neigh-
borhoods divided by the number of vertices in the union of neighborhoods, the
cosine of the angle between the two neighborhood vectors, and the correlation
between two neighborhood vectors; see [54] for a more detailed discussion.

The so-defined measures of vertex similarity yield stable and efficient methods
for the analysis of social networks. However, they do not overcome the inherent
insufficiency of structural equivalence discussed earlier and mentioned in [48],
[9], and [42]. In our running example, two professors would only be recognized
as similar if they are both in relation to many common others (students, sec-
retaries, and other professors); in contrast, two professors that mostly interact

336 M. Baur et al.

with disjoint alters would not be assigned similar network positions—even if
their patterns of relations are similar.

Relaxing Neighborhood Equivalence. To combine the generality of notions of
neighborhood equivalence (e. g., regular, equitable or automorphic partitions)
with the robustness and empirical applicability of similarity measures (as op-
posed to equivalence), there is a need for relaxing neighborhood equivalence.
However, previously proposals to do so are unsatisfactory for different reasons.
In the following we briefly sketch one proposal for relaxing regular equivalence
before we turn to an extended discussion of the newly proposed structural
similarities.

Batagelj et al. [7] proposed an optimization algorithm to determine, for a fixed
number k, a k-partition that has the least number of deviations from regularity;
their method belongs to the framework of generalized blockmodeling [19]. Recall
that a partition is regular if and only if every induced block is either zero or
has at least one non-zero entry in each row and in each column. Measuring
deviation from regularity of a specific partition is done by counting for each
induced block the number of ones on one hand and the number of all-zero rows
plus the number of all-zero columns on the other hand. The smaller of these
two numbers is considered as the deviation from regularity of this particular
block and by summing over all blocks one obtains the deviation from regularity
of the partition. The associated optimization problem consists in finding the k-
partition with the least deviation from regularity for a given graph. Since it is
NP-complete to decide whether a graph admits a regular equivalence relation
with exactly k classes [23], the abovementioned optimization problem is NP-hard
as well; [7] proposed a local optimization algorithm to compute heuristically
a k-partition with a small error. However, this approach is unsatisfactory for
its computational inefficiency and lack of understanding of when the algorithm
converges to a global optimum. In Sect. 2.2 we propose an alternative relaxation
of neighborhood equivalence that enjoys more desirable properties.

2.2 Structural Similarity

The blockmodeling approach from [7] relaxed the constraint on partitions from
being regular to having the least deviations from regularity. Structural similar-
ities, in contrast, are obtained from equitable partitions (exact regular equiva-
lence) by relaxing the partitions and keeping the constraint.

Basic Definitions. A discrete partition of n vertices in k can be represented
by its characteristic matrix P ∈ R

k×n, where the entry Piv = 1 if vertex v is
in class i and zero else. Thus the degree of membership of a specific vertex to
a specific class is either zero or one. Relaxations of partitions are obtained by
allowing real-valued degrees of membership.

Definition 1 ([13]). Given a graph on n vertices, a matrix P ∈ R
k×n is called a

projection (of dimension k) if PPT = id k. The entry Piv = 1 is called the degree
of membership of vertex v in class i; a row of P is considered as a real-valued

Group-Level Analysis and Visualization of Social Networks 337

class of vertices in which all n vertices have varying degrees of membership. The
real n× n matrix S = PTP is called the associated similarity. The entry Suv is
called the similarity of vertices u and v.

The uv’th entry of S = PTP is the inner-product of the two k-dimensional
membership vectors of u and v, respectively. This value is large if u and v are
to a high degree in the same classes. The constraint PPT = id k on projections
ensures that classes are orthogonal (independent) and normalized. Projections
and similarities are in a canonical one-to-one correspondence, up to orthogonal
transformations of the rows of the projection [13].

Just as a vertex partition defines a smaller graph encoding the adjacency
of vertex classes—compare Eq. (1)—a similarity on a graph induces a quotient
encoding the (weighted) adjacency of (real-valued) classes.

Definition 2 ([13]). Let G be a graph with adjacency matrix A ∈ R
n×n and

P ∈ R
k×n a projection. Then, G and P induce a k × k matrix B by setting

B = PAPT. The (weighted) graph G/P on k vertices that is determined by its
adjacency matrix B is called the quotient of G modulo P .

Just as equitable partitions are partitions satisfying a certain compatibility con-
straint with the network structure, structural similarities are similarities satis-
fying a structural constraint.

Definition 3 ([13]). A similarity S and its associated projection are called
structural for a given graph with adjacency matrix A if SA = AS.

The compatibility constraint SA = AS can be used as an alternative definition
of equitable partitions, see [40]. Indeed, if a similarity S is induced by a discrete
partition P , then S is structural if and only if P is equitable [13]. Thus structural
similarities do neither relax nor modify the constraint of equitable partitions;
they rather generalize discrete partitions to the larger class of similarities.

Characterization and Computation. The key to derive several desirable
properties of structural similarities is the following characterization theorem that
links structural similarities of a graph G to spectral properties of G’s adjacency
matrix. General references introducing the use of linear algebra methods in graph
theory include [18,31].

Theorem 1 ([13]). A similarity S is structural for an undirected graph with
adjacency matrix A if and only if the image (i. e., the column-space) of S is
spanned by eigenvectors of A.

For directed graphs one has to distinguish between similarities that are structural
with respect to outgoing edges, incoming edges, or both. Theorem 1 then holds
if “spanned by eigenvectors” is replaced by “invariant subspace” and, depending
on the type of structurality, “column-space” by “row-space” or “column-space
and row-space;” see [40] for details.

Theorem 1 reduces the problem of computing structural similarities to that
of computing eigenvectors (or invariant subspaces in the directed case). Many
efficient numerical algorithms exist for these problems [32].

338 M. Baur et al.

2.3 Structural Similarities Compared to Traditional Spectral
Techniques

Orthogonal projections to low-dimensional subspaces that are spanned by eigen-
vectors are a frequent tool in many data analysis and graph partitioning applica-
tions. Concrete examples include latent semantic indexing [46], Web search [1],
collaborative filtering [4], learning mixtures of distributions [52], analysis of the
autonomous systems graph [30], graph clustering [35], random graph coloring [2],
spectral graph partitioning [45], and graph bisection [16].

Typically, these methods project onto the eigenvectors corresponding to the
(few) eigenvalues with the largest absolute values. (We will refer to these meth-
ods as traditional spectral methods in the following.) Thus, by Theorem 1, these
methods compute special cases of structural similarities; the latter are not re-
stricted to projecting to the largest eigenvalues but can choose all subsets.

We argue below that the difference between these two approaches is concep-
tually the same as between the requirements of identical vs. equivalent neigh-
borhoods for equivalent vertices (compare Sect. 2.1). Thus, traditional spectral
methods can be seen as relaxations of neighborhood identity, whereas structural
similarities have been characterized as relaxations of equitable partition (exact
regular equivalence) and, hence, of neighborhood equivalence.

An Illustrating Example. For instance, the (structural) partition shown in
Fig. 3 (left) can be computed by projecting to the two eigenvalues ±4.47, which
have the maximal absolute values (the others are a seven-fold eigenvalue at 0).
In contrast, the (equitable) partition shown in Fig. 3 (right) can be computed
by projecting to the two eigenvalues 2.41 and −0.41, out of the set of eigenvalues

2.41, 0.62, 0.62,−0.41,−1.62,−1.62 .

Thus, restricting spectral algorithms to projections to the maximal eigenval-
ues yields methods that can not even identify some—intuitively outstanding—
automorphic equivalences.

The General Case. Let A be the adjacency matrix of an undirected graph,
S the matrix of a structural similarity for this graph, and u and v two vertices.
The value ‖A(u − v)‖ = ‖A(u) − A(v)‖ is a measure for the difference of the
neighborhoods of u and v. Thus, u and v have almost identical neighborhoods if
‖A(u−v)‖ is small. Similarly, u and v are considered as almost equivalent by S if
‖S(u− v)‖ is small. We clarify below that traditional spectral methods optimize
the property “‖S(u− v)‖ is small if and only if ‖A(u− v)‖ is small”, i. e.,

u and v are considered as almost equivalent by S if and only if u and v
have almost identical neighborhoods.

To make this precise, let x1, . . . , xn be orthonormalized eigenvectors of A with
associated eigenvalues λ1, . . . , λn which are ordered such that S projects to the
first k eigenvectors. (Thus, if S is determined by traditional spectral methods

Group-Level Analysis and Visualization of Social Networks 339

the first k eigenvalues are those with maximal absolute values.) Further, let c1
and c2 be defined by

c1 = max
i=1,...,k

1/|λi| and c2 = max
i=k+1,...,n

|λi| .

(Note that c1 is defined only if S does not project to an eigenvalue λi = 0,
which can be safely assumed for traditional spectral methods.) If k is given,
then traditional spectral methods chose the structural projection of dimension
k that minimizes c1 and c2 over all structural projections of dimension k. Let y
be any vector of norm less than or equal to

√
2 and y =

∑n
i=1 aixi for uniquely

determined real values ai. It is

‖S(y)‖2 =
k∑

i=1

a2
i ≤ c21

k∑

i=1

(aiλi)2 ≤ c21‖A(y)‖2 and (2)

‖A(y)‖2 =
k∑

i=1

(aiλi)2 +
n∑

i=k+1

(aiλi)2 ≤ ‖A‖2
2‖S(y)‖2 + 2c22 . (3)

By taking y = u− v for the two vertices u and v, we obtain from (2) and (3) the
following two properties for a structural similarity S.

1. Assume that S does not project to an eigenvalue λi = 0. If ‖A(u) − A(v)‖
is small, then ‖S(u) − S(v)‖ is small, i. e., vertices with almost identical
neighborhoods are considered as almost equivalent by S. Furthermore, the
ratio ‖S(u−v)‖/‖A(u−v)‖ is bounded from above by c1 which is minimized
by traditional spectral methods.

2. Conversely, if ‖S(u)−S(v)‖ is small then ‖A(u)−A(v)‖ is bounded by
√

2c2
plus a small ε > 0, i. e., if vertices are seen as almost equivalent by S, then
their neighborhoods can differ by no more than

√
2c2. Traditional spectral

methods minimize c2, i. e., those methods recognize only vertices with almost
identical neighborhoods as almost equivalent.

It is important to note that these two properties can cause traditional spectral
methods to miss some structure of the graph. Vertices may have a high structural
similarity (e. g., they may be even automorphically equivalent) without having
almost identical neighborhoods; compare Fig. 3.

2.4 The Role-Assignment Problem

For a given graph there is a huge set of structural similarities. Selecting the most
appropriate one (or at least narrowing the choice) can be done by specifying
how vertex classes (corresponding to structural positions in the network) are
connected. Section 2.6 illustrates how the following theorem can be applied in
the analysis of empirical data.

Theorem 2 ([13]). Let G be an undirected graph with adjacency matrix A ∈
R

n×n and R be a graph with adjacency matrix B ∈ R
k×k. Then, there is a struc-

tural projection P ∈ R
k×n such that B = PAPT if and only if B is symmetric

340 M. Baur et al.

and the characteristic polynomial of B divides the characteristic polynomial of
A. In this case, the image of the similarity associated to P is generated by eigen-
vectors of A associated to the eigenvalues of B.

In addition to its practical value, Theorem 2 also shows that the role assignment
problem, which is computationally intractable for discrete notions of network
position [23], is efficiently solvable for structural similarities.

2.5 Stability and Non-arbitrariness

A structural similarity S is associated to a set of eigenvalues of the graphs adja-
cency matrix A, namely the eigenvalues of B = PAPT. If all of these eigenvalues
have the same multiplicity in B as they have in A, we call S a simple structural
similarity. We show in this section that simple structural similarities enjoy two
properties—that of being invariant under automorphisms and that of depending
continuously from the adjacency matrix.

Non-arbitrariness. We say that a similarity (and hence more specifically a
partition) is non-arbitrary if it is only derived from the graph’s structure and
not from a particular labeling of vertices. This, in turn, is formalized by being
invariant under graph automorphisms, where invariant under an automorphism
ϕ means that the similarity of every pair of vertices u and v is the same as the
similarity of their images ϕ(u) and ϕ(v) (this is made precise in Def. 4). Figure 4
shows a small network together with an automorphism invariant partition (left)
and a partition that is not automorphism invariant (right).

Definition 4. Let G = (V,E) be a graph. A similarity S is called automorphism
invariant (for G) if for every two vertices u, v ∈ V and every graph automorphism
ϕ : V → V of G it is Suv = Sϕ(u)ϕ(v).

Theorem 3 ([40]). A simple structural similarity is automorphism invariant.

Fig. 4. Two different colorings on a graph with spectrum {2, 0, 0,−2}. Left : The col-
oring corresponds to the structural projection onto {2,−2} and is automorphism in-
variant. This coloring reflects the unique bipartition of the graph and is therefore well
justified by the graph structure. Right : The coloring corresponds to a structural projec-
tion onto {2, 0} (only one eigenvector with eigenvalue 0 is taken). This coloring is not
automorphism invariant (e. g., transposing 2 and 3 changes the partition). Intuitively,
it seems to be arbitrary and not justifiable by the graph structure that Vertex 1 should
be more similar to 3 than to 2, as suggested by the partition on the right.

Group-Level Analysis and Visualization of Social Networks 341

The converse of Theorem 3 would hold if we took a weaker definition for auto-
morphisms, see [40]. Theorem 3 also gives a criteria when equitable partitions are
automorphism invariant since these are special cases of structural similarities.

Stability. A further desirable property of structural similarities is that their
robustness to changes in the input data (e. g., caused by errors or dynamics) can
be well-characterized. The following definition corresponds to the definition of
the separator, known in matrix perturbation theory [51].

Definition 5. Let S be a simple structural similarity for an undirected graph
with adjacency matrix A. Let B be the induced quotient, ΛB the spectrum of B,
and ΛA the spectrum of A. The positive real number

σ(S) = min{|λ1 − λ2| ; λ1 ∈ ΛB, λ2 ∈ ΛA \ ΛB}

is called the stability of S.

For a more general definition including the case of directed graphs see [51]. A
large value σ(S) guarantees resistance to perturbations of the input matrix A.
Many error bounds can be given differing in the matrix norms that are used to
measure the deviation and in the assumptions on the form of the error. See [51,
Chapts. IV and V] for a representative set of error bounds. Examples of concrete
error bounds for structural similarities under different assumptions are given
in [12] and [14].

2.6 Applications of Structural Similarity

A structural similarity yields a low-dimensional embedding for the vertices of
a graph. There are several ways for post-processing this embedding to obtain
insights into the data. The first way is to apply a distance-based clustering pro-
cedure to the vertices in the low-dimensional embedding to obtain a discrete
vertex partition. We followed this approach in [14], where it has been shown
that the framework of structural similarities yields more general algorithms for
random graph coloring. While traditional approaches can only deal with ran-
dom graph models where edge probabilities are uniform, the newly proposed
algorithm can handle models with non-uniform probabilities, provided that each
vertex has the same expected number of neighbors from each class of differently
colored vertices. This generalizations is conceptually the same as the relaxation
from neighborhood identity to neighborhood equivalence; compare Sect. 2.1 and
Sect. 2.3.

A second way to deal with the low-dimensional embedding is not to round
it to a discrete partition but rather to apply multidimensional scaling (MDS)
techniques to visualize the result in two or three dimensional space. Vertices that
occupy (almost) the same positions will then be drawn close together and vertices
that occupy very different positions will be far apart. The advantage of such a
continuous representation of vertex positions is that we can accommodate with
vertices that stand between two or more positions (that play more than one role).

342 M. Baur et al.

We argue that such situations arise often in real-world data and forcing vertices
to be members of one and only one class would then produce sub-optimal results.
We will follow this approach to develop analysis and visualization methods for
conflict networks.

Analysis and Visualization of Conflict Networks. The framework of struc-
tural similarities is especially convenient to develop methods for the analysis of
large, noisy, empirical data sets. In [12] we presented a method to visualize dy-
namic networks of conflict between political actors. We review its essentials here,
since this method is a good way to illustrate the use of Theorem 2.

Conflict networks are networks where the edges have a negative or hostile in-
terpretation, such as criticism, accusations, or military engagements. Weighted
edges arise from time-stamped events between the actors involved. Given a con-
flict network we generate a dynamic visualization that shows which group of
actors is in opposition to which other group, which actors are most involved in
conflict, and how do conflicts emerge, change their structure, and fade out over
time. The example data set is from the Kansas Event Data System (KEDS) [49]
and consists of approximately 78,000 dyadic events between political actors in
the Balkans region.

We make the assumption that actors are loosely grouped together such that
conflicts occur mostly between members of different groups. Thus, an actor is a
member of one out of k classes to the extent that it has conflicts with members
of the other classes.

We describe our method for the situation when there are only two groups that
are mutually in conflict. To obtain a real-valued assignment of actors to the two
groups we consider the quotient Rcw shown in Fig. 5 (left). The eigenvalues of
Rcw are

λ = c+ w and μ = c− w .

From a different perspective the edge-weights of the quotient Rcw are determined
by its two eigenvalues λ and μ as

Fig. 5. Left: Quotient of a 2-dimensional conflict space. Right: Conflictive groups in
the Balkans for the period from 1989 until 2003. Actors are mapped into the left(right)
dimension to the extent that they are members of one of the two groups. The distance
from the origin is a measure of how involved actors are in conflict.

Group-Level Analysis and Visualization of Social Networks 343

c =
λ+ μ

2
and w =

λ− μ

2
.

Theorem 2 implies that a similarity S is structural with G/S = Rcw, if and only
if S is the projection onto the eigenvalues λ and μ of Rcw. Since our goal is to
maximize the edge weight between the clusters, i. e., to maximize w, the optimal
choice are the largest and the smallest eigenvalue of the adjacency matrix.

To obtain the actual degrees of membership to the two groups, the appropri-
ate basis for the two-dimensional image space has to be identified. In short, the
matrix P whose rows are the two eigenvectors has to be rotated by the inverse
eigenvector-basis of Rcw (details can be found in [12]). An example for a pro-
jection to conflict space can be seen in Fig. 5 (right). As it can be seen, actors
have largely differing degrees of membership and can also stand between groups.
It has been shown in [15] how this method can be extended to more than two
groups.

To show the development over time, we defined in [12] time-dependent conflict
networks that take into account only the events within a certain time-frame. By
letting this time-frame move forward, we obtain a smoothly animated visualiza-
tion showing the development of conflicts over time.

3 Multi-circular Visualization

An important aspect in the visualization of many types of networks is the inter-
play between fine- and coarse-grained structures. While the micro-level graph is
given, a macro-level graph is induced by a partitioning of the micro-level ver-
tices. For example it may originate from a group-level network analysis such as
a clustering or may just be given in advance.

We propose a tailored visualization for networks with such a micro/macro
structure based on a novel multi-circular drawing convention. Given a layout of
the macro-level graph with large nodes and thick edges, each vertex of the micro-
level graph is drawn in the area defined by the macro-vertex it belongs to, and
each micro-edge is routed through its corresponding macro-edge. In more detail,
each micro-vertex is placed on a circle inside of the area of its corresponding mac-
ro-vertex and micro-edges whose end vertices belong to the same macro-vertex
are drawn inside of these circles. All other micro-edges are then drawn inside
of their corresponding macro-edges and at constant but different distances from
the border of the macro-edge, i. e., in straight-line macro-edges they are drawn
as parallel lines. These edges must also be routed inside the area of macro-
vertices to connect to their endpoints, but are not allowed to cross the circles.
Figure 6 shows a concrete example of this model. Micro-edges connecting vertices
in the same macro-vertex are drawn as straight lines. Inside of macro-vertices,
the other edges spiral around the circle of micro-vertices until they reach the
area of the macro-edge. We give a combinatorial description of the above model
and then focus on the algorithmically most challenging aspect of these layouts,
namely crossing reduction by cyclic ordering of micro-vertices and choosing edge
winding within macro-vertices.

344 M. Baur et al.

(a) geometric grouping
and straight-line edges

(b) multi-circular layout (c) corresponding macro
graph

Fig. 6. (a) Example organizational network with geometric grouping and straight-line
edges (redrawn from [37]). In our multi-circular layout (b), all details are still present
and the macro-structure induced by the grouping becomes clearly visible. Additionally,
the height and width of the vertices reflects the number of connections within and
between groups.

We do not impose restrictions on the macro-level layout other than sufficient
thickness of edges and vertices, so that the micro-level graph can be placed on
top of the macro-level graph, and provide layout algorithms and tailored means
of interaction to support the generation of appropriate macro-layouts.

While the drawing convention consists of proven components—geometric
grouping is used, e. g., in [37,50], and edge routing to indicate coarse-grained
structure is proposed in, e. g., [6,34]—our approach is novel in the way micro-
vertices are organized to let the macro-structure dominate the visual impression
without cluttering the micro-level details too much. Note also that the setting is
very different from layout algorithms operating on structure-induced clusterings
(e. g., [3,36]), since no assumptions on the structure of clusters are made (they
may even consist of isolates). Therefore, we neither want to utilize the clustering
for a better layout, nor do we want to display the segregation into dense subre-
gions or small cuts. Our aim is to represent the interplay between a (micro-level)
graph and a (most likely extrinsic) grouping of its vertices.

After defining some basic terminology in Sect. 3.1, we state required properties
for macro-graph layout in Sect. 3.2 and recapitulate related micro-layout models
in Sect. 3.3. Multi-circular micro-graph layout is discussed in more detail in
Sect. 3.4 and crossing reduction algorithms for it are given in Sect. 3.5.

3.1 Preliminaries

Throughout this section, we restrict ourselves to simple undirected graphs. In
the following, let E(v) = {{u, v} ∈ E ; u ∈ V } denote the incident edges of a
vertex v ∈ V , let N(v) = {u ∈ V ; {u, v} ∈ E} denote its neighbors, and let
sgn : R → {−1, 0, 1} be the signum function.

Since each micro-vertex is required to belong to exactly one macro-vertex,
the macro-structure defines a partition assignment ρ : V → {1, . . . , k} and a

Group-Level Analysis and Visualization of Social Networks 345

prototypical macro-graph is the corresponding quotient graph Q(G, ρ). An edge
{u, v} ∈ E is called an intra-partition edge if and only if ρ(u) = ρ(v), and inter-
partition edge otherwise. The set of intra-partition edges of a partition Vi is
denoted by Ei, the set of inter-partition edges of two partitions Vi, Vj by Ei,j .
We use G = (V,E, ρ) to denote a graph G = (V,E) and a related partition
assignment ρ.

A circular order π = {π1, . . . , πk} defines for each partition Vi a vertex order πi

as a bijective function πi : Vi → {1, . . . , |Vi|} with u ≺ v ⇔ πi(u) < πi(v) for
any two vertices u, v ∈ Vi. An order πi can be interpreted as a counter-clockwise
sequence of distinct positions on the circumference of a circle.

3.2 Macro Layout

No specific layout strategy for the macro-graph is required as long as its elements
are rendered with sufficient thickness to draw the underlying micro-graph on
top of them. In order to achieve this, post-processing can be applied to any
given layout [29] or methods which consider vertex size (e. g., [33,53]) and edge
thickness (e. g., [20]) have to be used.

From a macro-layout we get partition orders Πi : NQ(Vi) → {1, .., deg(Vi)} for
each partition Vi, defined by the sequence of its incident edges in Q(G, ρ), and
a partition order Π = {Π1, . . . , Πk} for G. For each macro-vertex this can be
seen as a counter-clockwise sequence of distinct docking positions for its incident
macro-edges on its border.

3.3 Related (Micro) Layout

Before we discuss the multi-circular layout model for the micro-graph, let us
recall the related concepts of (single) circular and radial embeddings. In (single)
circular layouts all vertices are placed on a single circle and edges are drawn as
straight lines. Therefore, a (single) circular embedding ε of a graph G = (V,E)
is fully defined by a vertex order π, i. e., ε = π [8]. Two edges e1, e2 ∈ E cross in
ε if and only if the endvertices of e1, e2 are encountered alternately in a cyclic
traversal.

In radial level layouts the partitions are placed on nested concentric circles
(levels) and edges are drawn as curves between consecutive partitions. Therefore,
only graphs G = (V,E) with a proper partition assignment ρ : V → {1, . . . , k}
are allowed, i. e., |ρ(u) − ρ(v)| = 1 for all edges {u, v} ∈ E. Note that this
prohibits intra-partition edges and edges connecting non-consecutive partitions.
For technical reasons, edges are considered to be directed from lower to higher
levels.

Recently, Bachmaier [5] investigated such layouts. They introduced a ray from
the center to infinity to mark the start and end of the circular vertex orders.
Using this ray, it is also possible to count how often and in which direction an
edge is wound around the common center of the circles. We call this the winding
ψ : E → Z of an edge (Bachmaier called this offset). |ψ(e)| counts the number of
crossings of the edge with the ray and the sign reflects the mathematical direction

346 M. Baur et al.

(a) some incident
edges

(b) node 4 is at po-
sition 0

(c) node 4 rotated
to position 2

(d) without part-
ing

Fig. 7. Examples of Radial layouts. Edges are labeled with their winding value.

of rotation. See Fig. 7 for some illustrations. Finally, a radial embedding ε of a
graph G = (V,E, ρ) is defined to consist of a vertex order π and an edge winding
ψ, i. e., ε = (π, ψ).

There is additional freedom in radial drawings without changing the crossing
number: the rotation of a partition Vi. A rotation moves a vertex v with extremal
position in πi over the ray. The layout in Fig. 7(c) is a clockwise rotation of the
layout in Fig. 7(b). Rotations do not modify the cyclic order, i. e., the neighbor-
hood of each vertex on its radial level is preserved. However, the winding of the
edges incident to v and all positions of πi must be updated.

Crossings between edges in radial embeddings depend on their winding and
on the order of the endvertices. There can be more than one crossing between
two edges if they have very different windings. The number of crossings between
two edges e1, e2 ∈ E in an radial embedding ε is denoted by χε(e1, e2). The
(radial) crossing number of an embedding ε and a level graph G = (V,E, ρ) is
then naturally defined as

χ(ε) =
∑

{e1,e2}∈E,e1 �=e2

χε(e1, e2)

and χ(G) = min{χ(ε) : ε is a radial embedding of G} is called the radial cross-
ing number of G.

Theorem 4 ([5]). Let ε = (π, ψ) be a radial embedding of a two-level graph
G = (V1∪̇V2, E, ρ). The number of crossings χε(e1, e2) between two edges e1 =
(u1, v1) ∈ E and e2 = (u2, v2) ∈ E is

χε(e1, e2) = max
{
0,

∣
∣
∣ψ(e2) − ψ(e1) +

b− a

2

∣
∣
∣ +

|a| + |b|
2

− 1
}

,

where a = sgn(π1(u2) − π1(u1)) and b = sgn(π2(v2) − π2(v1)).

Bachmaier also states that in crossing minimal radial embeddings every pair of
edges crosses at most once and adjacent edges do not cross at all. As a conse-
quence, only embeddings need to be considered where there is a clear parting
between all edges incident to the same vertex u. The parting is the position of

Group-Level Analysis and Visualization of Social Networks 347

the edge list of u that separates the two subsequences with different winding
values. See again Fig. 7 for layouts with and without proper parting. Further-
more, only embeddings with small winding are considered because large winding
values correspond to very long edges which are difficult to follow and generally
result in more crossings.

3.4 Multi-circular Layout

Unless otherwise noted, vertices and edges belong to the micro-level in the fol-
lowing. In the micro-layout model each vertex is placed on a circle inside of its
corresponding macro-vertex. Intra-partition edges are drawn within these cir-
cles as straight lines. Inter-partition edges are drawn inside their corresponding
macro-edges and at constant but different distances from the border of the mac-
ro-edge. To connect to their incident vertices, these edges must also be routed
inside of macro-vertices. Since they are not allowed to cross the circles, they are
drawn as curves around them. Such a drawing is called a (multi-)circular layout.
Since intra- and inter-partition edges cannot cross, all crossings of intra-partition
edges are completely defined by the vertex order πi of each partition Vi. Intu-
itively speaking, a vertex order defines a circular layout for the intra-partition
edges. In the following we thus concentrate on inter-partition edges.

The layout inside each macro-vertex Vi can be seen as a two-level radial layout.
The orders can be derived from the vertex order πi and the partition order Πi.
Similar to radial layouts a ray for each partition is introduced and the beginning
of the orders and the edge winding is defined according to these rays. Note that
for each edge e = {u, v} ∈ E, u ∈ Vi, v ∈ Vj , two winding values are needed, one
for the winding around partition Vi denoted by ψi(e) = ψu(e), and one for the
winding around partition Vj denoted by ψj(e) = ψv(e). If the context implies
an implicit direction of the edges, windings are called either source or target
windings, respectively. Since radial layouts can be rotated without changing
the embedding, rays of different partitions are independent and can be directed
arbitrarily. Finally, a multi-circular embedding ε is defined by a vertex order π,
a partition order Π , and the winding of the edges ψ, i. e., ε = (π,Π, ψ).

Observation 5. For each partition Vi in a multi-circular embedding ε=(π,Π,ψ)
a two-level radial embedding εi = ((πi, π

′), ψi) is defined by the vertex order πi,
the partition order Πi, and the edge winding ψi, where π′(v) = Πi(ρ(v)), v ∈
V \ Vi.

There is another connection between radial and multi-circular layouts. A two-
level radial layout can easily be transformed into a two-partition circular layout
and vice versa. Given a graph G = (V1∪̇V2, E, ρ) and a radial embedding ε =
(π, ψ) of G, the two-partition circular embedding ε∗ = (π∗, Π∗, ψ∗) defined by
π∗

1 = π1, π∗
2 = −π2, Π∗

1 = 0, Π∗
2 = 0, and ψ∗

1(e) = ψ(e), ψ∗
2(e) = 0 realizes

exactly the same crossings (see Fig. 8 for an example). Intuitively speaking,
the topology of the given radial embedding is not changed if the two circles are
dragged apart and one of the vertex orders is reversed. If a two-partition circular

348 M. Baur et al.

embedding ε∗ = (π∗, Π∗, ψ∗) is given, a related radial embedding ε = (π, ψ) is
defined by π1 = π∗

1 , π2 = −π∗
2 , and ψ(e) = ψ1(e) − ψ2(e).

Observation 6. There is a one-to-one correspondence between a two-level ra-
dial embedding and a two-circular embedding.

Crossings in the micro-layout are due to either the circular embedding or crossing
macro-edges. Since crossings of the second type cannot be avoided by changing
the micro-layout, they are not considered in the micro-layout model. Obviously,
pairs of edges which are not incident to a common macro-vertex can only cause
crossings of this type. For pairs of edges which are incident to at least one
common macro-vertex corresponding two-level radial layouts are defined using
Observations 5 and 6 and the number of crossings are computed by modifications
of Theorem 4.

Fig. 8. A two-level radial layout and its corresponding two-circular layout

Theorem 7. Let ε = (π,Π, ψ) be a multi-circular embedding of a graph G =
(V,E, ρ) and let e1 = {u1, v1}, e2 = {u2, v2} ∈ E be two inter-partition edges. If
e1 and e2 share exactly one common incident macro-vertex, e. g., Vi = ρ(u1) =
ρ(u2), ρ(v1)
= ρ(v2), then the number of crossings of e1 and e2 is

χε(e1, e2) =max
{

0,
∣
∣
∣ψi(e2) − ψi(e1) +

b− a

2

∣
∣
∣ +

|a| + |b|
2

− 1
}

,

where a = sgn(πi(u2) − πi(u1)) and b = sgn(Π(ρ(v2)) −Π(ρ(v1))).

Proof. Let e1 = {u1, v1}, e2 = {u2, v2} ∈ E be two edges with exactly one
common end partition, e. g., Vi = ρ(u1) = ρ(u2), ρ(v1)
= ρ(v2). All crossings
between e1 and e2 not caused by the macro layout occur in the macro-vertex Vi.
According to Observation 5, the fraction of the layout in Vi can be regarded as
a two-level radial layout defined by ε′ = (πi, Πi ◦ ρ). Applying Theorem 4 to the
embedding ε′, the theorem follows. �

Theorem 8. Let ε = (π,Π, ψ) be a multi-circular embedding of a graph G =
(V,E, ρ) and let e1 = {u1, v1}, e2 = {u2, v2} ∈ E be two inter-partition edges. If
e1 and e2 belong to the same macro-edge, e. g., Vi = ρ(u1) = ρ(u2), Vj = ρ(v1) =
ρ(v2), then the number of crossings between e1 and e2 is

Group-Level Analysis and Visualization of Social Networks 349

χε(e1, e2) =max
{
0,

∣
∣
∣ψ′(e2) − ψ′(e1) +

b− a

2

∣
∣
∣ +

|a| + |b|
2

− 1
}

,

where a = sgn(πi(u2) − πi(u1)), b = sgn(πj(v1) − πj(v2)) and ψ′(e) = ψi(e) +
ψj(e).

Proof. Let e1, e2 ∈ E be two inter-partition edges which belong to the same
macro-edge. Since only two partitions are involved, a two-level radial embedding
ε′ for e1 and e2 can be defined according to Observation 6. In ε′ the two edges e1
and e2 cause the same crossings than in ε. Applying Theorem 4 to the embedding
ε′, the theorem follows. �

Similar to radial layouts, in a crossing minimal multi-circular embedding incident
edges do not cross and there is at most one crossing between every pair of edges.
Therefore, only embeddings need to be considered where there is a clear parting
between all edges incident to the same vertex u ∈ Vi. Since in multi-circular
layouts winding in different macro-vertices can be defined independently, the
edge list E(u) of u is split by target partitions resulting in edge lists E(u)j =
{{u, v} ∈ E(u) : v ∈ Vj}. For each list E(u)j , a position �j separates the two
subsequences with different values of winding ψj and defines the parting for
this partition. Furthermore, there is also a parting for Vi defined on the edge
list E(u). The order of E(u) for this parting depends on the partings �j in
the target partitions Vj . Edges are sorted by the partition order and for edges
to the same partition Vj , ties are broken by the reverse vertex order started
not at the ray but at the parting position �j . Then, the parting for Vi is the
position �i which separates different values of winding ψi in the so ordered list.
See Fig. 9 for a layout with parting and a layout where the edge {u, v} violates
the parting.

(a) parting (b) edge {u, v} violates parting

Fig. 9. Not all winding combinations for the incident edges of u result in a good layout

Corollary 1. Multi-circular crossing minimization is NP-hard.

Proof. Single circular and radial crossing minimization [5,43] are NP-hard. As
we have already seen, these two crossing minimization problems are subproblems
of the multi-circular crossing minimization problem, proving the corollary.

As a consequence, we do not present exact algorithms for crossing minimization
in multi-circular layouts. Instead, we propose extensions of some well-known
crossing reduction heuristics for horizontal and radial crossing reduction.

350 M. Baur et al.

3.5 Layout Algorithms

Since the drawing of inter-partition edges inside a macro-vertex can be seen as a
radial drawing, a multi-circular layout can be composed of separate radial layouts
for each macro-vertex (for instance using the techniques of [5,28,50]). However,
such a decomposition approach is inappropriate since intra-partition edges are
not considered at all and inter-partition edges are not handled adequately due
to the lack of information about the layout at the adjacent macro-vertices. For
example, choosing a path with more crossings in one macro-vertex can allow a
routing with much less crossings on the other side.

Nevertheless, we initially present in this section adaptations of radial layout
techniques because they are quite intuitive, fast, and simple, and can be used
for the evaluation of more advanced algorithms.

Barycenter and Median Layouts. The basic idea of both the barycenter
and the median layout heuristicis the following: each vertex is placed in a central
location computed from the positions of its neighbors - in either the barycenter or
the median position - to reduce edge lengths and hence the number of crossings.
For a two-level radial layout, the Cartesian Barycenter heuristic gets the two
levels and a fixed order for one of them. All vertices of the fixed level are set
to equidistant positions on a circle and the component-wise barycenter for all
vertices of the second level is computed. The cyclic order around the center
defines the order of the vertices and the edges are routed along the geometrically
shortest-path. The Cartesian Median heuristic is defined similar. Running time
for both heuristics is in O(|E| + |V | log |V |).

Both heuristics are easily extended for multi-circular layouts. The layout in
each macro-vertex Vi is regarded as a separate two-level radial layout as described
in Observation 6 and the partition orders Πi are used to define the orders of the
fixed levels. Because of the shortest-path routing, no two edges cross more than
once and incident edges do not cross at all in the final layout. On the other hand,
the used placement and winding strategies are based on edge length reduction
and avoid crossings only indirectly.

Multi-circular Sifting. In order to overcome the drawbacks of the radial layout
algorithms described before, we propose an extension of the sifting heuristic
which computes a complete multi-circular layout and considers edge crossings
for optimizing both vertex order and edge winding, and thus is expected to
generate better layouts.

Sifting was originally introduced as a heuristic for vertex minimization in or-
dered binary decision diagrams [47] and later adapted for the layered one-sided,
the circular, and the radial crossing minimization problems [5,8,44]. The idea
is to keep track of the objective function while moving a vertex along a fixed
order of all other vertices. The vertex is then placed in its (locally) optimal
position. The method is thus an extension of the greedy-switch heuristic [21].
For crossing reduction the objective function is the number of crossings be-
tween the edges incident to the vertex under consideration and all other edges.
In multi-circular layouts this function depends on both the vertex order and

Group-Level Analysis and Visualization of Social Networks 351

the edge winding. Therefore, for each position of a vertex, the winding values
for its incident edges which result in the minimal crossing number have to be
identified.

The efficient computation of crossing numbers in sifting for layered and single
circular layouts is based on the locality of crossing changes, i. e., swapping con-
secutive vertices u � v only affects crossings between edges incident to u with
edges incident to v. In multi-circular layouts this property clearly holds for intra-
partition edges since they form (single-)circular layouts. For inter-partition edges
the best routing path may require an update of the windings. Such a change can
affect crossings with all edges incident to the involved partitions.

Since swapping the positions of two consecutive vertices (and keeping the
winding values) only affects incident edges, the resulting change in the number
of crossings can be computed efficiently. Therefore, an efficient strategy for up-
dating edge windings while u ∈ Vi moves along the circle is needed. Instead of
probing each possible combination of windings for each position of u the parting
of the edge lists is considered. Note that the parting for the source partition
and all the partings for the target partitions have to be simultaneously altered
because for an edge, a changed winding in the source partition may allow a
better routing with changed winding in the target partition. Intuitively speak-
ing, the parting in the source partition should move around the circle in the
same direction as u but on the opposite side of the circle, while the parting
in the target partitions should move in the opposite direction. Otherwise, edge
lengths increase and with them the likelihood of crossings. Thus, starting with
winding values ψu(e) = 1 and ψv(e) = 1 for all e = {u, v} ∈ E(v), parting
counters are iteratively moved around the circles and mostly decreased in the
following way:

1. First try to improve the parting at Vi, i. e., iteratively, the value of ψu for the
current parting edge is decreased and the parting moves counter-clockwise
to the next edge until this parting can no longer be improved.

2. For edges whose source winding are changed in step one, there may be better
target windings which cannot be found in step three because the value of ψj

has to be increased, i. e., for each affected edge, the value of ψj for the edge
is increased until no improvement is made any more.

3. Finally try to improve the parting for each target partition Vj separately,
i. e., for each Vj , the value of ψj for the current parting edge is decreased
and the parting moves clockwise to the next edge until this parting can not
be improved any further.

After each update, it is ensured that all counters are valid and that winding
values are never increased above 1 and below −1.

Based on the above, the locally optimal position of a single vertex can be
found by iteratively swapping the vertex with its neighbor and updating the
edge winding while keeping track of the change in crossing number. After the
vertex has passed each position, it is placed where the intermediary crossing
counts reached their minimum. Repositioning each vertex once in this way is
called a round of sifting.

352 M. Baur et al.

Theorem 9. The running time of multi-circular sifting is in O(|V ||E|2).
Proof. Computing the difference in cross-count after swapping two vertices re-
quires O(|E|2) running time for one round of sifting. For each edge, the winding
changes only a constant number of times because values are bounded, source
winding and target winding are decreased in steps one and three, respectively,
and the target winding is only increased for edges whose source winding de-
creased before. Counting the crossings of an edge after changing its winding
takes time O(|E|) in the worst-case. Actually, only edges incident to the at most
two involved macro-vertices have to be considered. For each vertex u ∈ V , the
windings are updated O(|V | · deg(u)) times, once per position and once per
shifted parting. For one round, this results in O(|V ||E|) winding changes. To-
gether, the running time is in O(|V ||E|2). �

3.6 Example: Email Communication Network

The strength of a multi-circular layoutis the coherent drawing of vertices and edges
at two levels of detail. It reveals structural properties of the macro-graph and al-
lows identification of micro-level connections at the same time. The showcase for
the benefits of our micro/macro layout is an email communication network of a
department of the Universität Karlsruhe (TH). The micro-graph consists of 442
anonymized department members and 2 201 edges representing at least one email
communication in the considered time frame of five weeks. At the macro-level, a
grouping into 16 institutes is given, resulting in 66 macro-edges. In the following
drawings, members of the same institute are colored identically.

We start by inspecting drawings generated by a general force-directed ap-
proach similar to the method of Fruchterman and Reingold [26] and by multidi-
mensional scaling (MDS) [17], see Fig. 10. Both methods tend to place adjacent
vertices near each other but ignore the additional grouping information. There-
fore, it is not surprising that the drawings do not show a geometric clustering
and the macro-structure cannot be identified. Moreover, it is difficult or even
impossible to follow edges since they massively overlap each other.

More tailored for the drawing of graphs with additional vertex grouping are
the layout used by Krebs [37], and the force-directed attempts to assign vertex
positions by Six and Tollis [50] and Krempel [38]. All three methods place the
vertices of each group on circles inside of separated geometric areas. While some
efforts are made to find good vertex positions on the circles, edges are simply
drawn as straight lines. Figure 6(a) gives a prototypical example of this layout
style. Although these methods feature a substantial progress compared to general
layouts and macro-vertices are clearly visible, there is no representation of mac-
ro-edges and so the overall macro-structure is still not identifiable.

Finally, we investigate multi-circular visualizations of the email network. Its
combinatorial descriptions allows for enrichments with analytical visualizations
of the vertices. In Fig. 11 the angular width of the circular arc a vertex covers
is proportional to its share of the total inter-partition edges of this group. The
height from its chord to the center of the circle reflects the fraction of present
to possible intra-edges.

Group-Level Analysis and Visualization of Social Networks 353

Fig. 10. Drawings of the email network generated by a force-directed method (left)
and by multidimensional scaling (MDS, right). The colors of the vertices depict the
affiliation to institutes.

In order to investigate the effect of improved vertex orders and appropri-
ate edge windings, we compare three variations of drawing heuristics for multi-
circular layouts: shortest-path edge winding combined with random vertex place-
ment and with barycenter vertex placement, and our multi-circular sifting (see
Fig. 11). Through the grouping of micro-edges the macro-structure of the graph
is apparent at first sight. A closer look reveals the drawback of random place-
ment: edges between different groups have to cover a long distance around the
vertex circles and are hard to follow. Also a lot of edge crossings are generated
both inside of the groups and in the area around the vertex placement circles. As-
signing vertex positions according to the barycenter heuristic results in a clearly
visible improvement and allows the differentiation of some of the micro-edges.
Using sifting improves the layout even further, resulting from a decrease of the
number of crossings from more than 75 000 to 57 400 in the considered email
network. The time for computing the layout of this quiet large graph is below
10 seconds.

3.7 Final Remarks

From the micro-layout algorithm we get a combinatorial description of the lay-
out, i. e., circular vertex orders for each partition and edge windings, which allows

354 M. Baur et al.

(a) barycenter (68 300 crossings)

(b) sifting (57 400 crossings)

Fig. 11. Multi-circular layouts of the email network

Group-Level Analysis and Visualization of Social Networks 355

arbitrarily rotating each circular order without introducing new crossings (see
Section 3.4). Therefore, for each partition, a rotation is chosen which minimizes
the total angular span of the inter-partition edges, reserve space for the drawing
of these edges, and place the vertices accordingly at a uniform distance from the
border of the macro-vertex.

A major benefit of the multi-circular layout is its combinatorial description
since it allows the combination with other visualization techniques to highlight
some graph properties or to further improve the visual appearance.

4 Conclusion

In this paper we presented methods to analyze and visualize group-structure
in social networks. The first part is focused on the definition and computation
of structural network positions. We started by reviewing previous approaches
for this task and distinguished them by two different criteria: first, whether the
method establishes equivalence of actors or similarity of actors (discrete vs. real
valued approaches) and, second, whether similarity is based on neighborhood
identity or neighborhood equivalence. We then presented a novel framework
for defining and computing network positions that is general and enjoys sev-
eral methodological advantages over previous approaches. The second part of
this paper introduced a visualization technique that shows the interplay be-
tween fine-grained (individual level) and coarse-grained (group level) network
structure. Special emphasis has been given to the algorithmic optimization of
esthetic criteria such as reducing the number of edge crossings.

References

1. Achlioptas, D., Fiat, A., Karlin, A., McSherry, F.: Web Search Via Hub Synthesis.
In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2001), pp. 500–509 (2001)

2. Alon, N., Kahale, N.: A Spectral Technique for Coloring Random 3-Colorable
Graphs. SIAM Journal on Computation 26, 1733–1748 (1997)

3. Archambault, D., Munzner, T., Auber, D.: TopoLayout: Multi-Level Graph Lay-
out by Topological Features. IEEE Transactions on Visualization and Computer
Graphics 13(2), 305–317 (2007)

4. Azar, Y., Fiat, A., Karlin, A., McSherry, F., Saia, J.: Spectral Analysis of Data.
In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), pp. 619–626 (2001)

5. Bachmaier, C.: A Radial Adaptation of the Sugiyama Framework for Visualiz-
ing Hierarchical Information. IEEE Transactions on Visualization and Computer
Graphics 13(3), 585–594 (2007)

6. Balzer, M., Deussen, O.: Level-of-Detail Visualization of Clustered Graph Layouts.
In: Asia-Pacific Symposium on Visualisation 2007, APVIS 2007 (2007)

7. Batagelj, V., Doreian, P., Ferligoj, A.: An Optimizational Approach to Regular
Equivalence. Social Networks 14, 121–135 (1992)

356 M. Baur et al.

8. Baur, M., Brandes, U.: Crossing Reduction in Circular Layouts. In: Hromkovič, J.,
Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer,
Heidelberg (2004)

9. Borgatti, S.P., Everett, M.G.: Notions of Position in Social Network Analysis. So-
ciological Methodology 22, 1–35 (1992)

10. Brandes, U.: On Variants of Shortest-Path Betweenness Centrality and their
Generic Computation. Social Networks 30(2), 136–145 (2008)

11. Brandes, U., Erlebach, T. (eds.): Network Analysis: Methodological Foundations.
Springer, Heidelberg (2005)

12. Brandes, U., Fleischer, D., Lerner, J.: Summarizing Dynamic Bipolar Conflict
Structures. IEEE Transactions on Visualization and Computer Graphics, special
issue on Visual Analytics 12(6), 1486–1499 (2006)

13. Brandes, U., Lerner, J.: Structural Similarity in Graphs. In: Fleischer, R., Trippen,
G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 184–195. Springer, Heidelberg (2004)

14. Brandes, U., Lerner, J.: Coloring Random 3-Colorable Graphs with Non-uniform
Edge Probabilities. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 202–213. Springer, Heidelberg (2006)

15. Brandes, U., Lerner, J.: Visualization of Conflict Networks. In: Kauffmann, M. (ed.)
Building and Using Datasets on Armed Conflicts. NATO Science for Peace and
Security Series E: Human and Societal Dynamics, vol. 36. IOS Press, Amsterdam
(2008)

16. Coja-Oghlan, A.: A Spectral Heuristic for Bisecting Random Graphs. In: Pro-
ceeding of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 850–859
(2005)

17. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Monographs on Statis-
tics and Applied Probability. Chapman & Hall/CRC, Boca Raton (2001)

18. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs. Johann Ambrosius Barth
Verlag (1995)

19. Doreian, P., Batagelj, V., Ferligoj, A.: Generalized Blockmodeling. Structural Anal-
ysis in the Social Sciences, vol. 25. Cambridge University Press, Cambridge (2005)

20. Duncan, C.A., Efrat, A., Kobourov, S.G., Wenk, C.: Drawing with Fat Edges. In:
Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 162–177.
Springer, Heidelberg (2002)

21. Eades, P., Kelly, D.: Heuristics for Reducing Crossings in 2-Layered Networks. Ars
Combinatoria 21(A), 89–98 (1986)

22. Everett, M.G., Borgatti, S.P.: Regular Equivalence: General Theory. Journal of
Mathematical Sociology 18(1), 29–52 (1994)

23. Fiala, J., Paulusma, D.: The Computational Complexity of the Role Assignment
Problem. In: Proceedings of the 29th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2003), pp. 817–828. Springer, Heidelberg (2003)

24. Fleischer, D.: Theory and Applications of the Laplacian. Ph.D thesis (2007)
25. Freeman, L.C.: Visualizing Social Networks. Journal of Social Structure 1(1) (2000)
26. Fruchterman, T.M.J., Reingold, E.M.: Graph Drawing by Force-Directed Place-

ment. Software - Practice and Experience 21(11), 1129–1164 (1991)
27. Gaertler, M.: Algorithmic Aspects of Clustering – Theory, Experimental Evaluation

and Applications in Network Analysis and Visualization. Ph.D thesis, Universität
Karlsruhe (TH), Fakultät für Informatik (2007)

28. Gansner, E.R., Koren, Y.: Improved Circular Layouts. In: Kaufmann, M., Wagner,
D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007)

29. Gansner, E.R., North, S.C.: Improved Force-Directed Layouts. In: Whitesides, S.H.
(ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1999)

Group-Level Analysis and Visualization of Social Networks 357

30. Gkantsidis, C., Mihail, M., Zegura, E.W.: Spectral Analysis of Internet Topologies.
In: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (Infocom), vol. 1, pp. 364–374. IEEE Computer Society
Press, Los Alamitos (2003)

31. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics.
Springer, Heidelberg (2001)

32. Golub, G.H., van Loan, C.F.: Matrix Computations. John Hopkins University
Press, Baltimore (1996)

33. Harel, D., Koren, Y.: Drawing Graphs with Non-Uniform Vertices. In: Proceedings
of the 6th Working Conference on Advanced Visual Interfaces (AVI 2002), pp.
157–166. ACM Press, New York (2002)

34. Holten, D.: Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data. IEEE Transactions on Visualization and Computer Graph-
ics 12(5), 741–748 (2006)

35. Kannan, R., Vempala, S., Vetta, A.: On clusterings: Good, Bad and Spectral.
Journal of the ACM 51(3), 497–515 (2004)

36. Kaufmann, M., Wiese, R.: Maintaining the Mental Map for Circular Drawings.
In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 12–22.
Springer, Heidelberg (2002)

37. Krebs, V.E.: Visualizing Human Networks. Release 1.0, pp. 1–25 (1996)
38. Krempel, L.: Visualisierung komplexer Strukturen. Grundlagen der Darstellung

mehrdimensionaler Netzwerke. Campus (2005)
39. Lerner, J.: Role Assignments. In: Brandes, U., Erlebach, T. (eds.) Network Anal-

ysis. LNCS, vol. 3418, pp. 216–252. Springer, Heidelberg (2005)
40. Lerner, J.: Structural Similarity of Vertices in Networks. Ph.D thesis (2007)
41. Lorrain, F., White, H.C.: Structural Equivalence of Individuals in Social Networks.

Journal of Mathematical Sociology 1, 49–80 (1971)
42. Luczkovich, J.J., Borgatti, S.P., Johnson, J.C., Everett, M.G.: Defining and Mea-

suring Trophic Role Similarity in Food Webs Using Regular Equivalence. Journal
of Theoretical Biology 220(3), 303–321 (2003)

43. Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the NP-
Completeness of a Computer Network Layout Problem. In: Proceedings of the
20th IEEE International Symposium on Circuits and Systems 1987, pp. 292–295.
IEEE Computer Society, Los Alamitos (1987)

44. Matuszewski, C., Schönfeld, R., Molitor, P.: Using Sifting for k-Layer Straightline
Crossing Minimization. In: Kratochv́ıl, J. (ed.) GD 1999. LNCS, vol. 1731, pp.
217–224. Springer, Heidelberg (1999)

45. McSherry, F.: Spectral Partitioning of Random Graphs. In: Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2001), pp.
529–537 (2001)

46. Papadimitriou, C., Raghavan, P., Tamaki, H., Vempala, S.: Latent Semantic In-
dexing: A Probabilistic Analysis. Journal of Computer and System Sciences 61(2),
217–235 (2000)

47. Rudell, R.: Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In:
Proceedings of the 1993 IEEE/ACM International Conference on Computer-Aided
Design, pp. 42–47. IEEE Computer Society Press, Los Alamitos (1993)

48. Sailer, L.D.: Structural Equivalence: Meaning and Definition, Computation and
Application. Social Networks 1, 73–90 (1978)

49. Schrodt, P.A., Davis, S.G., Weddle, J.L.: Political Science: KEDS - A Program
for the Machine Coding of Event Data. Social Science Computer Review 12(3),
561–588 (1994)

358 M. Baur et al.

50. Six, J.M., Tollis, I.G.: A Framework for User-Grouped Circular Drawings. In: Li-
otta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 135–146. Springer, Heidelberg (2004)

51. Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic Press, London
(1990)

52. Vempala, S., Wang, G.: A Spectral Algorithm for Learning Mixtures of Distribu-
tions. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2002 (2002)

53. Wang, X., Miyamoto, I.: Generating Customized Layouts. In: Brandenburg, F.J.
(ed.) GD 1995. LNCS, vol. 1027, pp. 504–515. Springer, Heidelberg (1996)

54. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

55. White, D.R., Reitz, K.P.: Graph and Semigroup Homomorphisms on Networks of
Relations. Social Networks 5, 193–234 (1983)

	Group-Level Analysis and Visualization of Social Networks
	Network Analysis
	visone Software
	Basic Notation

	Structural Positions in Networks
	Previous Work on Role Assignments
	Structural Similarity
	Structural Similarities Compared to Traditional Spectral Techniques
	The Role-Assignment Problem
	Stability and Non-arbitrariness
	Applications of Structural Similarity

	Multi-circular Visualization
	Preliminaries
	Macro Layout
	Related (Micro) Layout
	Multi-circular Layout
	Layout Algorithms
	Example: Email Communication Network
	Final Remarks

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

