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Structural Trends in Network Ensembles?

Ulrik Brandes, Jürgen Lerner, Uwe Nagel, and Bobo Nick

Department of Computer & Information Science, University of Konstanz

Summary. A collection of networks is considered a network ensemble if its mem-
bers originate from a common natural or technical process such as repeated mea-
surements, replication and mutation, or massive parallelism, possibly under varying
conditions. We propose a spectral approach to identify structural trends, i. e. preva-
lent patterns of connectivity, in an ensemble by delineating classes of networks with
similar role structure. Formal, experimental, and practical evidence of its potential
is given.

1.1 Introduction

Network-analytic studies most frequently are concerned with a small set of net-
works if not a singleton instance. Indicators employed in such analyses range
from properties of individual actors (e. g., centrality and role) and local pat-
terns (e. g., reciprocated ties, stars, and closed triangles) over to global network
characteristics (e. g., density, modularity, and degree distributions) [17, 4].
Given the ever increasing availability of data, there is a growing tendency to
compare families of networks that, e.g., may be defined on different sets of
actors or encode different relations (see, e. g., [10, 7, 9]). Application scenarios
for network comparison include examination whether different teams of em-
ployees exhibit structural differences [8, p. 81], comparison of networks among
different species [9], detection of user-roles in Usenet newsgroups by patterns
in egocentric reply-networks [18], and comparison of social integration in per-
sonal networks of immigrants [6]. To emphasize the (assumed) existence of an
inherent relation in a collection of networks, we will refer to it as a network
ensemble.

Clearly, the elements of a network ensemble can be compared and cate-
gorized based on any global structural property or extrinsic attributes (i. e.,
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“who is in the network”). In this paper we treat networks as similar, if they
exhibit the same role structure, i. e., if they show the same pattern of con-
nectivity among classes of actors. Actors are said to play the same role, or
occupy the same position, in a network if they are similarly connected to
other actors that themselves play the same role [3, 17, 13]. For instance, by
this definition university professors would occupy the same structural position
if they have identical patterns of ties to students, secretaries, industry con-
tacts, other professors and so on. Such a role assignment on a given network
yields a smaller graph, called the role graph (compare [14]), whose vertices
are the actor classes and whose (weighted) edges encode how actors in one
class are on average connected to actors in the other class. In this paper we
compare networks by the role graphs they give rise to. Returning to the above
example, the networks of two universities might differ in the fact that in one
university the professors are differently (stronger or weaker) connected to the
students than in the other university.

However, since already the decision problem whether a given graph admits
a role structure of a specific type is NP-complete [11], our strategy for network
comparison seems to run into serious computational problems. Indeed we do
not attempt to design an algorithm that is able to compare any (worst-case)
instance of a network ensemble; rather, we propose an efficient heuristic algo-
rithm that provably performs well on networks ensembles arising from certain
random graph models. More specifically, if a network ensemble contains sub-
sets of networks that indeed differ sufficiently in their role structure, then our
algorithm will correctly distinguish those networks with high probability, i. e.,
it will detect a good clustering of the network ensemble.

In Sect. 1.2 we define a stochastic model for network ensembles with latent
role structures and define the associated clustering problem. We propose an al-
gorithm for clustering network ensembles in Sect. 1.3 and show in Sect. 1.4 that
it recovers class-memberships with high probability—given that the stochastic
model satisfies certain preconditions. Experimental results on artificially gen-
erated networks in Sect. 1.5 and a small case study on Wikipedia edit-networks
in Sect. 1.6 provide further evidence of the usefulness of our approach.

1.2 A Network Ensemble Model with Latent Roles

We start by recalling a model for random graphs that exhibit a hidden (latent)
class structure; such a model is defined, e. g., in [15] and [12].

Definition 1. A planted partition model G(n, k, ψ, P ) is given by a number of
vertices n, a number of classes k, a partition ψ : {1, . . . , n} → {1, . . . , k} of the
n vertices into k classes and a symmetric k× k matrix P of edge probabilities
Pij ∈ [0, 1] between classes. The probability of a given graph G = (V,E) with
n vertices given the model G(n, k, ψ, P ) is
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P
(
G
∣∣G(n, k, ψ, P )

)
=

∏
{u,v}∈E

Pψ(u)ψ(v)

∏
{u,v}6∈E

1− Pψ(u)ψ(v)

Alternatively, an instance G of G(n, k, ψ, P ) is drawn by including each edge
{u, v} into G independently with probability Pψ(u)ψ(v). Thus, the probabil-
ity of an edge between vertices u and v is only dependent on their class-
membership.

A planted partition model G = G(n, k, ψ, P ) is completely defined by its
expected adjacency matrix which is the n×n matrix M = M(G) whose entries
are defined by M ij = Pψ(i)ψ(j). Note that M is indeed the expectation of the
adjacency matrices of graphs drawn from G(n, k, ψ, P ).

In this paper we consider random network ensembles that are mixtures of
such planted partition models.

Definition 2. A (planted partition) network ensemble E(N,K, Ψ,G1, . . . ,GK)
is given by a number of graphs N , a number of graph models K, an assignment
Ψ : {1, . . . , N} → {1, . . . ,K} of the N graphs to the K models and a family of
K planted partition models G1, . . . ,GK , where Gi = G(ni, ki, ψi, P(i)).

Thus, a planted partition network ensemble is a set of random graphs drawn
from planted partition models. To obtain an instance of E(N,K, Ψ,G1, . . . ,GK),
the N graphs Gi, i = 1, . . . , N , are independently drawn from the planted
partition model GΨ(j). For sake of simplicity we will often write in this paper
network ensemble instead of planted partition network ensemble. In the major
part of this paper we consider network ensembles with the same number of
vertices; only in Sect. 1.6, where we analyze real-world networks, do we apply
our algorithms to networks of different size.

The algorithmic problem associated with a planted partition network en-
semble E = E(N,K, Ψ,G1, . . . ,GK) is the following.

Given an instance (G1, . . . , GN ) of E , classify the N graphs such that
two graphs are in the same class if and only if they are drawn from
the same underlying planted partition model.

Obviously, without any further preconditions this problem is not solvable.
(For instance, if two of the underlying planted partition models are identi-
cal, the graphs generated from these are not distinguishable.) However, in
this paper we propose an efficient algorithm such that, given certain precon-
ditions, we can decide for each given pair of graphs with high probability
whether they are drawn from the same underlying model or not. (The term
with high probability means “with probability that tends to one as the size
of the graphs tends to infinity”; this notion is often employed to assess the
quality of heuristic algorithms, compare [15].)
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1.3 Classification Method

1.3.1 Intuition

Let (G1, . . . , GN ) be an instance drawn from a planted partition network en-
semble E(N,K, Ψ,G1, . . . ,GK). In the following we sketch how we will proceed
to determine for any two graphs whether they are drawn from the same un-
derlying planted partition model or not.

A very simple observation is that if we were not given the adjacency
matrices M1, . . . ,MN of G1, . . . , GN but rather their expectation values
M1, . . . ,MN , then the problem would be fairly trivial: under the minimal
assumption that the planted partition models G1, . . . ,GK are pairwise differ-
ent, it follows that their expected adjacency matrices are pairwise different as
well. Hence, two graphs Gi, Gj out of G1, . . . , GN are drawn from the same
model if and only if their expected adjacency matrices Mi, Mj are equal.

However, our algorithm does not have access to the expected adjacency
matrices. Indeed, the adjacency matrix Mi of an instance graph is rather
very far from its expectation value Mi. (Note that Mi is a zero/one-matrix,
while the entries of Mi are from the real interval [0, 1]; thus the expectation
is typically not attainable.)

What helps us out of this dilemma is a well-known combination of re-
sults from matrix perturbation theory [16] with probabilistic bounds on the
eigenvalues of random matrices [1] (also compare [15]). Basically, these re-
sults enable us to show that, even if the adjacency matrix M of an instance
graph differs entrywise very much from its expectation M , the spectrum of
M is with high probability close to the spectrum of M . It follows that the
adjacency matrices of two graphs drawn from the same model have (with high
probability) similar spectra and, under the assumption that the spectra of the
expected adjacency matrices differ in at least one value, graphs from different
models have a larger difference in their spectra.

1.3.2 Method

The ordered spectrum of a symmetric n×n matrix is denoted by λ1 ≤ . . . ≤ λn
and the vector λ(M) = (λ1, . . . , λn)T is referred to as the spectrum vector of
matrix M . An instance of our classification problem is created by randomized
drawing N adjacency matrices Mi according to some underlying role graphs.
Each adjacency matrix Mi provides us with a corresponding graph Gi, which
gives us a network ensemble E = {G1, . . . , GN}.

We do neither know how many role graphs there are nor which graphs
belong to the same role graph. What we do know is that graphs being drawn
from the same role graph should have a spectrum much more similar to each
other than graphs drawn from different role graphs. As we show in Sec. 1.4 it
is suggestive to measure the similarity between two graphs in this context by
the supremum norm of their spectrum vectors. So under certain assumptions
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‖λ(M1) − λ(M2)‖∞ should be much greater if the graphs corresponding to
M1 and M2 are created from different role graphs than if they were from the
same role graph.

This makes our classification problem to a classical clustering problem.
Given objects and distances between them, dense clusters of objects are
searched. Standard clustering algorithms can be applied as long as they can
be parameterized with a distance measure. An example would be a version
of k-means, which does not need the number of clusters as an input. We
performed some promising experiments with an iterated k-means using the
silhouette coefficient to decide for the optimal clustering.

The pseudocode in Alg. 1 summarizes our method for detecting structural
trends in network ensembles.

Algorithm 1: Structural Trends in Network Ensembles
Input: network ensemble E = {G1, . . . , GN}
Result: clustering {C1, . . . , Ck} with E =

U
i

Ci

for G ∈ E do
determine spectrum vector λ(G)

end
partition {λ(G) : G ∈ E} using supremum norm

In the ideal case this method extracts from an arbitrary ensemble a clas-
sification of the graphs into groups having the same role graph and thereby
solves the stated algorithmic problem. Taking our results one could also think
of classifications of ensembles consisting of differently sized graphs. It would
be necessary to restrict the spectrum vector to a size such that it can be de-
termined for all graphs of the ensemble. One would also have to take care of
the growth of the eigenvalues which is linear in the number of vertices of the
graph. A possible approach is to take the n eigenvalues with maximum abso-
lute value of each graph where n is the size of the smallest graph in the given
instance and divide them by the size of the graph. A more efficient method
could be inferred by knowledge of the sizes of the underlying role graphs. If
the assumptions of the next section are met, the number of eigenvalues used
can be limited by the maximum number of vertices of the role graphs without
changing the defined distances.

1.3.3 Generalization to Weighted Networks

We restricted the method sketched above to binary (unweighted) graphs only
for notational simplification. A model for ensembles of weighted networks (i. e.,
graphs with real edge-weights) could be defined in almost the same way as
in Sect. 1.2. A weighted planted partition model is defined as in Def. 1 with
the difference that when drawing an instance graph one does not include
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(unweighted) edges with a given probability but rather the weight of an edge
{u, v} is drawn from a distribution dependent on the classes of u and v.
Examples of such distributions would include the normal distribution where
the mean value depends on the vertex classes.

The adjacency matrix of a weighted graph is a real matrix whose entries
encode the edge weights. Note that the abovementioned method for network
classification via the eigenvalues of graphs can be applied to these weighted
matrices without any change. Furthermore, the theorems that will be pre-
sented in Sect. 1.4 hold also for the case of weighted matrices. The applica-
tion to real world data sketched in Sect. 1.6 indeed analyzes an ensemble of
weighted networks.

1.4 Evidence from Matrix Perturbation Theory

Let (G1, . . . , GN ) be an instance drawn from a planted partition network en-
semble E(N,K, Ψ,G1, . . . ,GK) whose underlying graph models have a common
number of vertices n. Building on results from matrix perturbation theory, we
show in this section that for sufficiently large n (and ignoring a small number
of outliers) the spectra of graphs drawn from the same model have smaller
distance than the spectra of graphs drawn from different models.

We start by associating a planted partition model G with a matrix A(G)
that encodes the relative class-sizes as well as the edge-probabilities between
classes of G. It turns out that the eigenvalues of A(G) correspond—up to a
multiplicative constant that is related to the size of the classes—to the non-
zero eigenvalues of the expected adjacency matrix M(G).

Definition 3. Let G = G(n, k, ψ, P ) be a planted partition model and denote
the proportion of vertices in class i = 1, . . . , k with

qi = |{v ; 1 ≤ v ≤ n and ψ(v) = i}| /n

The structure matrix associated to G is the k × k matrix A = A(G) whose
entries are defined by Aij = √qiqj · Pij.

To make the notion with high probability precise, we define a process by
which we can increase the number of vertices in a planted partition model
without changing its structure (more precisely: without changing the relative
class-sizes nor the edge-probabilities between classes). Let G1 = G(n1, k, ψ1, P )
be a fixed planted partition model and t ∈ N≥1 an integer. A planted partition
model Gt that has nt = t ·n1 vertices and the same structure matrix as G1 can
be defined by Gt = G(nt, k, ψt, P ), where ψt : {1, . . . , nt} → {1, . . . , k} with
ψt(v) = ψ1(dv/te). Note that it holds A(Gt) = A(G1).

The next theorem shows that the eigenvalues of a planted partition model
with fixed structure matrix grow linearly in the number of vertices.
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Theorem 1. Let G1 = G(n1, k, ψ1, P ) be a planted partition model, t ∈ N≥1

an integer, and set nt = t·n1. Each eigenvalue λ of A(G1) yields an eigenvalue
nt ·λ of M(Gt). The remaining nt− k eigenvalues of M(Gt) are equal to zero.

Proof. Note first that the expected matrix M = M(Gt) is (after reordering
the vertices such that vertices in the same class are consecutive) an nt × nt
block matrix

M =

B11 . . . B1k

...
...

Bk1 . . . Bkk

 with blocks Bij =

Pij . . . Pij...
...

Pij . . . Pij


of dimension (qi · nt)× (qj · nt). (Note that qi · nt is indeed an integer which
follows from the definitions of qi and nt.)

Let x = (x1, . . . , xk)T be any eigenvector of A(G1) associated to eigenvalue
λ ∈ R. Spelling out the equation A(G1) · x = λ · x yields for i = 1, . . . , k

λ · xi =
k∑
j=1

√
qiqjPijxj =

√
qi

k∑
j=1

√
qjPijxj . (1.1)

We claim that the nt-dimensional vector y defined by

y = (x1/
√
q1, . . . , x1/

√
q1︸ ︷︷ ︸

nt·q1 times

, . . . , xk/
√
qk, . . . , xk/

√
qk︸ ︷︷ ︸

nt·qk times

)T ,

satisfies M(Gt) · y = ntλy which shows that ntλ is an eigenvalue of M(Gt)
and, thus, yields the assertion of the theorem.

To see that this is true let v be any integer satisfying 1 ≤ v ≤ nt and let
i = ψt(v) (i. e., i is the index of the class of vertex v.) We get

(M(Gt) · y)v =
k∑
j=1

ntqjPijxj/
√
qj = nt

k∑
j=1

√
qjPijxj = ntλxi/

√
qi = ntλyv

where the third equation follows from Eq. (1.1). ut

Corollary 1. Let G1 and H1 be two planted partition models with the same
number of vertices n. Let t ∈ N≥1 and set nt = t·n. Under the assumption that
the eigenvalues of A(G1) and A(H1) differ in at least one value, the distance
between the spectrum vectors of the expected adjacency matrices of Gt and Ht
grows linearly in the number of vertices nt. More precisely

‖λ(M(Gt))− λ(M(Ht))‖∞ = nt · ‖λ(A(G1))− λ(A(H1))||∞ ∈ Θ(nt) .

All that remains us to do is to bound the difference between the eigenvalues
of the adjacency matrix M of an instance graph and its expectation M . For
this purpose define the perturbation matrix E = M −M as the difference
between the observed adjacency matrix and its expectation. We recall a result
from matrix perturbation theory.



8 U. Brandes, J. Lerner, U. Nagel, B. Nick

Theorem 2 ([16]). Let M = M + E be a symmetric perturbation of a sym-
metric matrix M . Then we have

‖λ(M)− λ(M)‖∞ ≤ ‖E‖2 ,

where ‖E‖2 denotes the maximal absolute value of an eigenvalue of E.

The second result we need is a probabilistic bound on the maximal eigen-
value of the difference between the observed adjacency matrix and its expec-
tation.

Theorem 3 ([15]). Let M , M and E be defined as above and let n denote
their dimension. Let σ2 be the largest variance of an entry in M . (Note that
if the i, j’th entry of M equals p, then its variance is p − p2; the variance is
non-zero if p is in the open interval from zero to one.) If σ2 � log6 n/n, then
‖E‖2 ≤ 4σ

√
n with probability at least 1− 2e−σ

2n/8.

The assumption σ2 � log6 n/n is satisfied for sufficiently large n if at least
one entry of M is different from zero and one. For the remainder of this
paper we will take this assumption for granted; note that this excludes only
uninteresting cases.

The next corollary follows from Theorems 2 and 3.

Corollary 2. Let M and M be defined as above and let n denote their dimen-
sion. It is ‖λ(M)− λ(M)‖∞ ∈ O(

√
n) with probability in 1− o(1) (i. e., with

probability tending to one as n tends to infinity).

Combining these results enables us to show the following result which indi-
cates that any reasonable clustering on the spectrumvectors will—apart from
a small proportion of outliers— correctly assign the networks into clusters
according to the underlying graph models.

Theorem 4. Let E = E(N,K, Ψ,G1, . . . ,GK) be a network ensemble in which
the underlying graph models have a common number of vertices nt. For each
ε > 0 there exists n0 ∈ N such that for nt ≥ n0 we have for any instance of E

‖λ(G)− λ(G′)‖∞ < ε · ‖λ(H)− λ(H ′)‖∞

for any graphs G and G′ drawn from the same model and any graphs H and
H ′ drawn from different models, with probability in 1− o(1).

Proof. The following assertions hold with high probability. By Corollary 2
it is ‖λ(G) − λ(G′)‖∞ ∈ O(

√
nt). Let M be the expected adjacency matrix

of H and M ′ be the expected adjacency matrix of H ′. By Corollary 1 it
is ‖λ(M) − λ(M ′)‖∞ ∈ Θ(nt) and, again by Corollary 2 we have ‖λ(H) −
λ(M)‖∞ ∈ O(

√
nt) and ‖λ(H ′) − λ(M ′)‖∞ ∈ O(

√
nt). Together if follows

‖λ(H) − λ(H ′)‖∞ ∈ Θ(nt) which implies that for sufficiently large nt the
inequality of the theorem is satisfied. ut
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Note that Theorem 4 makes only assertions for specific numbers of vertices
of the form n = t ·n1. However, this restriction is only necessary for notational
simplification. In the next section we provide evidence by simulation that the
spectra of the different graph clusters are well separated for all sufficiently
large values of n. Furthermore this simulation indicates which values of n are
sufficiently large for the theorems to hold.

1.5 Experimental Evidence

To estimate the tightness and expandability of our results we conducted ex-
periments on artificially generated ensembles. Experiments on these examples
split up in two major categories. The first is the case where we specify some
simple role graphs on two nodes and try to determine the size needed to dis-
tinguish graphs drawn from these models by their spectra. For the second part
of the study, role graphs were generated from random edge distributions and
random group sizes. In all experiments graphs of different sizes were generated
from each model and compared pairwise in terms of the ‖ ‖∞ norm on their
spectrum vectors. In the choice of graph sizes we did not restrict ourself to
cases that make an exact matching of the group sizes possible but we also
integrated graphs where group sizes can only be approximately established.

Although our analytical results apply only to exact matches of the group
sizes, our experiments suggest that our method can be used, e.g., in a setting
in which the group membership of each node is determined randomly from
a distribution where the probability for membership in a class equals the
relative class size in the model. This method was used in the experiment
on prespecified models and in the second part of the experiment on random
models. Here additionally the case of group sizes matched as exact as possible
is examined.

The outcome of our experiments is a diagram showing distances between
graphs of these examples. Here we distinguish the distances between graphs
drawn from different models (points in grey) and those from the same model
(in black). What we expect is that distances between graphs from different
models grow faster than distances between graphs from identical models with
growing graph sizes. The diagrams show the development of distances between
graphs in ensembles for growing graph sizes. The size of the graphs is shown
on the horizontal axis and the distance between the graphs appears on the
vertical axis.

1.5.1 Prespecified Role Graphs

For illustrative purposes we start with some archetypical partition models
that have been selected for their simplicity and good separation. Two edge
probabilities p = 0.2 and q = 10−3 are used and every possible symmetric
edge distribution for a two-node graph on these values is generated. Excluding
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Fig. 1.1. Pairwise distances in ensembles generated for six prespecified role graphs
with two nodes each. For ensembles with graphs of 300 vertices, a simple distance
threshold separates classes well.

isomorphic role graphs this yields six edge distributions for us to cluster. For
this experiment we chose a uniform class distribution and while generating
instances from our models we do not try to match class sizes as exact as
possible but rather assign vertices to classes uniformly at random. Ensembles
consisting of graphs with size 10i where examined for i = 2, . . . , 100. The
main result can be seen in Fig. 1.1, which suggests that a clear separation by
spectrum vectors should be possible for graphs having about 300 vertices. For
random 200-node graphs we give three samples for each of the six models in
Fig. 1.2; structural trends are clearly recognizable.

1.5.2 Random Role Graphs

For the next experiments we generated five role graphs with seven nodes
each. For each partition model the desired class sizes and the edge distribution
were drawn randomly and independent from a uniform distribution over [0, 1].
Basically each role graph consists of two random matrices, a n× 1 matrix for
node distribution to classes and a n×n matrix for the edge distribution. The
graphs drawn from the different models are distinguished by their spectrum
vectors and those again derive from the corresponding model.

As can be seen from the comparison in Fig. 1.3, the corresponding mod-
els do not differ much. A table with pairwise distances in supremum norm
and an overview of these distances in a two dimensional layout obtained via
multidimensional scaling quantify their relative shapelessness.
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Fig. 1.2. Sample graphs with 200 vertices each from six prespecified two-node role
graphs.
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Fig. 1.3. Spectra and pairwise distances of five randomly selected role graphs.

Since there are no pointed differences in these spectra, the sampled models
can be considered quite typical. In particular, they form a classification in-
stance much harder than the prespecified models used in the previous section.
This is supported by additional experiments on different role graphs created
in the same way and giving similar results, but not reported here.

For i = 2, . . . , 200 ensembles were created consisting of five graphs with
10i vertices for each model, which gives us a sample ensemble with 25 graphs
for every i. The difference in the two experiments lies in the assignment of
vertices to classes. While in the first part it was tried to match partition sizes
as exact as possible, in the second part the approach described above was
used where desired partition sizes are used as a distribution.
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Fig. 1.4. Distance development with class sizes matched as accurate as possible.

Figure 1.4 shows how the distances between graphs drawn from different
role graphs diverge from each other such that 10 different rays of dots can



1 Structural Trends in Network Ensembles 13

 0

 50

 100

 150

 200

 250

 300

 350

 0  500  1000  1500  2000

d
is

ta
n

ce

graph size

graphs from different models
graphs from the same model

Fig. 1.5. Distance development with class sizes as distribution.

be seen, which is expected when the distances between the role graphs differ
pairwise. Consider a graph with a node for each role graph and edge weights
defined by the distance between adjacent role graphs measured as described
above. The edge weights of this graph growing linearly in the number of
vertices of the graphs the ensemble contains plus some random noise are the
rays that can be seen in the diagram. The bottom line in black consists of
distances between graphs drawn from the same role graph.

As an unexpected result the distances between graphs corresponding to
the same role graph seem to be constant which could be a hint that the
established borders are not tight.

The diagram in Fig. 1.5 shows how the divergence is weakened by inexact
partition sizes. Compared to Fig. 1.4 a clear distinction between graphs drawn
from different and those drawn from equal role graphs is achieved only with
graphs having significantly more vertices, even though a trend towards clear
separation can be observed.

1.6 Practical Evidence

In this section we want to demonstrate the performance of our graph dis-
tance in an application on real world data. We analyzed the edit networks of
Wikipedia articles (see [5] for the definition of edit networks) and retrieved
the expected result that average distances between networks with a supposed
common structure are smaller than those with an expected difference in struc-



14 U. Brandes, J. Lerner, U. Nagel, B. Nick

ture. For the analysis we randomly chose 60 articles with at least 1000 edits
and 60 networks that were labeled ‘featured’ by the Wikipedia community.

From the edit logs of these articles a complete graph with a node for each
author was created. Each edge was weighted by sums of negative edits between
the adjacent authors. A negative edit occurs if either one author deletes words
written by the other or if he restores words that were deleted by the other
and is valued by the logarithm of the number of words deleted/restored. Since
the edit graphs have in general different sizes we had to restrict the compar-
ison to graphs having at least 500 vertices and vectors consisting of the 500
eigenvalues with biggest absolute value divided by the number of vertices.
The number 500 was chosen since the differences are not expressed that clear
with smaller values. For greater values the number of graphs being left is not
meaningful for class comparison since noise and outliers could dominate the
results.

The distance between classes was computed as the average of the pairwise
distances between all graphs of the corresponding classes, while the distances
between two graphs was measured as the above described distance on the
spectrumvector of their weighted adjacency matrices.

The computations yield average distances of 21.7·10−3 within the arbitrary
chosen articles, 15.7 · 10−3 in the class of featured articles and an average
distance of 20.9 · 10−3 between the two classes. As expected the featured
articles tend toward a structure in their edit graphs that is common among
this class and distinguishable from those of arbitrary articles. The fact that
the inner class difference of arbitrary articles is higher than the distance to
the featured articles can be easily explained by the fact that featured articles
are a subclass.

This example represents an even more general case than the one where
class memberships are a distribution. Here we have differently sized graphs
and a statement on class sizes is impossible. Additionally we are not dealing
with unweighted graphs anymore but with graphs having weighted edges.
We tried to drop the weights by applying a threshold. Unfortunately in this
scenario too much of the original information is lost and no separation between
the classes can be seen at all. This drove us to use our method beyond proved
effectiveness, on adjacency matrices of weighted graphs of different sizes. The
obtained results support our decisions and encourage further examination of
possible applications in this direction.

1.7 Conclusion

We introduced a spectral approach to identify groups of networks with sim-
ilar role structure, i. e., networks that show the same pattern of connectiv-
ity among actor-classes, in network ensembles. We provided evidence for the
usefulness of this method by probabilistic arguments (Sect. 1.4), by simula-
tion results (Sect. 1.5), and by analyzing an ensemble of empirical networks
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generated from the edit-history of sampled Wikipedia articles (Sect. 1.6). In
previous work, network ensembles have often been described by other indica-
tors such as density, degree sequences, or nearest neighbor connectivity (see
e. g., [2]). Note that such approaches are not in competition, but orthogo-
nal to our method, since they are based on different assumptions about the
underlying ordering principle.
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