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Abstract

Structural balance theory implies hypothetical network effects such as
“the enemy of an enemy is a friend” or “the friend of an enemy is an
enemy.” To statistically test such hypotheses researchers often estimate
whether, for instance, actors have an increased probability to collaborate
with the enemies of their enemies and/or a decreased probability to fight
the enemies of their enemies. Empirically it turns out that the support
for balance theory from these tests is mixed at best. We argue that
such results are not necessarily a contradiction to balance theory but that
they could also be explained by other network effects that influence the
probability to interact at all. We propose new and better interpretable
models to assess structural balance in signed networks and illustrate their
usefulness with networks of international alliances and conflicts. With
the new operationalization the support for balance theory in international
relations networks is much stronger than suggested by previous work.

Keywords: signed networks, structural balance theory, international re-
lations, conditional sign of interaction

1 Introduction

Generalizing Heider’s theory of cognitive balance (Heider 1946), Cartwright and
Harary (1956) called a signed network structurally balanced if every cycle has
an even number of negative ties. They proved that a network is balanced if and
only if its actors can be divided into two groups with only positive ties within
the groups and only negative ties between groups. The fundamental claim of
structural balance theory is that actors have a preference for balanced states
and if a network is unbalanced then actors have a tendency to increase balance
by adapting their ties.

Structural balance has been analyzed in different areas ranging from inter-
national relations (Crescenzi 2007; Maoz et al. 2007; Lerner et al. 2013; Doreian
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and Mrvar 2015), interpersonal affective networks (Yap and Harrigan 2015), po-
litical discourse (de Nooy and Kleinnijenhuis 2013; Kleinnijenhuis and de Nooy
2013) opinion networks (Altafini 2012), over to Web-based interaction (Leskovec
et al. 2010; Lerner et al. 2012).

Probabilistic rules derived from structural balance theory claim that the
probability of positive or negative interaction depends on the signs of indirect
ties via third actors. For instance, in the context of international relations, Maoz
et al. hypothesized that pairs of countries having a common enemy1 are more
likely to become allies and less likely to fight each other (Maoz et al. 2007).

The central claim of our paper is that empirically estimating the marginal
probability of positive or negative ties as a function of signed indirect ties has
unclear implications for the validity of balance theory. Instead we propose that
estimating the conditional probability of a tie having a particular sign, given
that there is a tie, is a more appropriate operationalization and has a clearer
interpretation. More generally, we argue that a separation of the probability of
signed ties into the probability to interact at all and the conditional probability
to interact negatively can be very insightful—also if the focus of the analysis is
on other network effects than structural balance.

Before elaborating our central claim in detail and providing empirical evi-
dence for it, we will sketch our reasoning in the following. For sake of clarity
we focus at the moment on a single hypothesis namely that “actors that share
a common enemy have a lower probability to be enemies themselves, compared
to a random dyad.” Note that this is one of the hypotheses formulated by Maoz
et al. (2007, p.102). At first sight this hypothesis seems to follow quite natu-
rally from structural balance theory. Indeed, if actors A and B have a common
enemy C and if a negative tie between A and B was created, then the triad
A-B-C would become unbalanced which—according to balance theory—actors
try to avoid. Thus, seemingly, the probability of a negative tie among enemies of
enemies should be lower than the baseline probability of negative ties among all
dyads. However, the latter conclusion ignores that other network effects could
influence A and B to interact more with each other; after all, (A,B) is not a ran-
dom dyad but one characterized by having a common enemy. By chance alone,
a higher interaction probability could also increase the probability of negative
interaction between A and B, even in situations in which enemies of enemies
interact rather friendly than hostile if they interact. Indeed, in Section 3 we
show that in networks of international cooperation and conflict, countries hav-
ing common enemies have a higher marginal probability to fight each other,
compared to a random pair of countries. (Note that this result has also been
made by Maoz et al. (2007); we repeat and extend their analysis later in our
paper.)

We argue that such an empirical finding is not evidence against balance the-

1For ease of readability we say that actors connected by positive ties are “friends” and
actors connected by negative ties are “enemies” regardless of the actual meaning of signed
ties.
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ory but rather it is evidence against a certain method to test balance theory. In
the same empirical data about international relations we show that, conditional
on the presence of interaction, countries that share a common enemy are more
reluctant to fight each other (and more likely to become allies) compared to
a random pair of countries that do interact. The latter finding also turns out
to be very robust with respect to the inclusion or exclusion of variables that
control for other network effects.

The key to design more appropriate statistical tests for structural balance
theory lies in carefully distinguishing between the tendency to interact at all
and the preference (or reluctance) to fight rather than collaborate if interaction
takes place. A general decomposition that achieves this distinction is elaborated
in Section 2. Empirical evidence is provided in Section 3 where we test balance
theory in international relations networks alternatively with models that esti-
mate the marginal probability of positive or negative ties and with models that
condition on the presence of interaction. Section 4 discusses further implica-
tions of our findings, including how the conditional analysis could be done in
more sophisticated network models such as exponential random graph models
and stochastic actor-oriented models. The next section reviews previous work
on structural balance that is related to our contribution.

1.1 Related work

Heider (1946) postulated that if a person P has a positive attitude towards
another person O, then P ’s attitude towards an entity X should coincide (both
positive or both negative) with P ’s perception of O’s attitude on X. In contrast,
if P is negatively linked to O then the P -X dyad should have the opposite sign
of the O-X dyad. The fundamental claim of balance theory is that actors
have a preference for such balanced structures and that they tend to remove
imbalances by adapting their ties. Cartwright and Harary (1956) generalized
Heider’s theory to larger and not necessarily complete signed networks, i. e.,
networks of n actors in which pairs are either connected by a positive or a
negative tie or are not tied at all. They called a signed network balanced if
every cycle has an even number of negative ties and proved that a network
is balanced if and only if its actors can be divided into two groups with only
positive ties within groups and only negative inter-group ties.

Note that Heider’s distinction between attitudes and actors’ perceptions on
the attitudes of other actors gets ignored in the definition of Cartwright and
Harary which has been criticized among others in Doreian (2004). While we
agree that this distinction is crucial in general, it is of less importance in our
paper: our concern with certain methods to statistically assess structural bal-
ance applies independently of whether we analyze attitudes or perceptions of
attitudes.

Empirical support for structural balance theory has been mixed and find-
ings about imbalances in social networks often lead to refining, augmenting, or
generalizing structural balance theory or it lead researchers to explain observed
patterns with alternative theories. For instance, Davis (1967) proposes a gener-
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alized version of structural balance in which, among others, the triad with three
negative ties is not considered as imbalanced. Doreian and Mrvar (2009, 2014)
see some violations of structural balance as resulting from other processes such
as mediation, differential popularity, and internal subgroup hostility. Maoz et al.
(2007) argue that realist theories of political behavior can explain imbalances
in networks of international relations. Leskovec et al. (2010) showed that some
behavioral patterns in online interaction that are inconsistent with structural
balance can be well explained by status theory. Doreian and Krackhardt (2001)
found that structural balance theory is supported if the p-o dyad is positive
but contradicted if it is negative. Furthermore, they found that the number
of signed triplets increases over time whenever pq and oq have the same sign,
independent of the sign of po.2 Thus, also in their work, the popularity of q
seems to matter more than the balance of the p-o-q triad. In contrast to the
last-mentioned papers, our work here does not seek to assess the validity of
balance theory per se but makes a methodological contribution to do so. While,
obviously, structural balance has to be confronted with other network theories,
we emphasize that empirical tests to assess balance theory against competing
theories crucially rely on valid statistical methods.

An insight related to the methodological contribution of our paper is given
by de Nooy who analyzed structural balance in networks of positive or negative
reviews among literary authors and critics. As de Nooy writes

“In my case, the presence or absence of a line (literary evaluation)
is not the important phenomenon to be explained because it depends
on events and constraints outside the power of the actors in the
network.” [. . . ] “As we will see, it is possible and interesting to
predict the sign of an evaluation, conditional on the presence of an
evaluation, from the pattern of signs of previous evaluations.” (de
Nooy 2008, Introduction, Paragraphs 5 and 7)

While we also recommend to analyze the conditional sign of ties, our reasoning
is different: we claim that even in situations in which the presence or absence
of a tie can be explained by factors endogenous to the network, it might still
confound balance effects. We argue and demonstrate that structural balance
theory reliably explains the sign of a tie, conditional on the presence of a tie; on
the other hand, empirical support for balance effects on the marginal probability
of positive or negative interaction is weak. Besides de Nooy (2008), other pa-
pers that analyze the conditional probability of positive or negative interaction
include Brandes et al. (2009); Lerner et al. (2012, 2013); de Nooy and Kleinni-
jenhuis (2013). Note however that these papers, including de Nooy (2008), do
not compare their results with the analysis of the marginal probability of signed
ties and therefore do not clarify whether this could lead to different results.

General model frameworks that can deal with complex statistical depen-
dence in network data include exponential random graph models (ERGMs) for

2Note that Doreian and Krackhardt analyzed person-to-person networks and replaced Hei-
der’s symbol for the entity X with the symbol q denoting a third person.
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cross-sectional data (e. g., Robins et al. 2007; Lusher et al. 2013), temporal
ERGMs (e. g., Hanneke et al. 2010; Cranmer and Desmarais 2011; Krivitsky
and Handcock 2014), and stochastic actor-oriented models (SAOMs) (e. g., Sni-
jders 2005). While these model families have been mostly applied to binary
network data (where ties can be either present or absent but have no sign) they
have recently been generalized to signed networks, for the case of ERGMs in
Huitsing et al. (2012), and in Huitsing et al. (2014), for SAOMs. In our pa-
per we briefly discuss how ERGMs and SAOMs for signed networks could be
decomposed to distinguish between the marginal and conditional probability of
signed interaction.

Analyzing structural balance in networks of international relations (as in
the empirical Section 3 of our article) has been done relatively early by Harary
(1961) who provided a rather descriptive analysis of a selected subset of state
actors. Doreian and Mrvar (2015) discuss these limitations in geographic and
temporal scope and fitted blockmodels to the whole longitudinal network of in-
terstate cooperation and conflict for the period from 1946 to 1999. While Dor-
eian and Mrvar (2015) adress the fundamental hypothesis of structural balance
theory that networks tend towards balanced states—and consequently analyzed
the evolution of imbalance of the whole network—our work is much closer to
that of Crescenzi (2007) and Maoz et al. (2007) who analyzed how the probabil-
ity of direct cooperation or conflict gets influenced by signed indirect relations
via third actors. Ultimately it is not obvious whether probabilistic adherence to
local structural balance rules would imply a global trend towards balance since
imbalance could also be increased by other network effects. Thus, analyzing the
evolution of the network’s degree of imbalance (e. g., Doreian and Mrvar 2015)
and analyzing probabilistic temporal patterns (e. g., Crescenzi 2007; Maoz et al.
2007, and our paper) are simply two different aspects of testing structural bal-
ance theory. The most crucial difference between our analysis and that of the
two last-mentioned references is that we distinguish between the probability to
interact at all and the tendency to interact friendly or hostile if interaction takes
place.

2 Separating the probability to interact from
the tendency to fight

To elaborate our central claim we note a simple but insightful decomposition
of the probability of negative and positive interaction on a given dyad into the
probability of interaction times the conditional probability that the interaction is
negative or positive, respectively. We formulate this decomposition in symbolic
terms as follows; the decomposition can and will be made precise whenever we
fix a concrete model for signed networks. For negative ties we have

P (negative interaction) = P (interaction)× P (negative
∣∣ interaction) (1)
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and the corresponding decomposition for positive ties is

P (positive interaction) = P (interaction)× P (positive
∣∣ interaction) (2)

The left-hand side of Equation (1) is the marginal probability that there is
negative interaction on a given dyad, say (u, v), and we are especially interested
in how this probability changes if u is, for instance, the enemy of an enemy of v.
The first factor on the right-hand side is the probability that there is interaction
(positive or negative) on the dyad (u, v) and the second factor is the conditional
probability that the interaction is negative, given that there is interaction on
the dyad (u, v).

Structural balance theory claims that actors try to avoid unbalanced cycles.
Thus, if actors u and v have (say) a common enemy w, then there are two states
for the dyad (u, v) that do not turn the triad u-v-w unbalanced: a positive tie
between u and v or no interaction on the dyad (u, v). The third state, that is
a negative tie between u and v, would create a triangle with three negative ties
which is unbalanced according to Cartwright and Harary (1956). From this rea-
soning it seems that a test of balanced theory could just estimate the marginal
probability of negative ties and check whether it is lower for enemies of ene-
mies than for a random pair of actors. However, such a test would ignore that
other network effects could strongly influence the probability to interact at all,
positively or negatively. Thus, it is at least thinkable that enemies of enemies
have more negative ties compared to a random dyad (assessed by the marginal
analysis) but that enemies of enemies still interact rather positively than nega-
tively compared to a random dyad on which there is interaction (assessed by the
conditional analysis). Our empirical analysis in Section 3 shows that these po-
tential discrepancies between the marginal and conditional probability are not
pure speculation but rather seem to be the rule than the exception, at least in
international relations networks. While the findings of the conditional analysis
are very reliable and in accordance with balance theory, the marginal analysis
often contradicts balance theory and is much more sensitive to control variables.

More generally, we claim that the separation of the marginal probability
of signed interaction can also be insightful when the focus of the analysis is
not on balance theory but on others effect in signed networks. Estimating
all components of Equations (1) and (2) gives a more complete picture of the
patterns in signed networks than estimating just, say, the marginal probabilities
of positive and negative interaction. In our empirical analysis we will also discuss
findings for other network effects than balance theory.

2.1 Hypotheses

The goal of this paper is to understand differences between the marginal and
conditional tests of structural balance. Consequently, we formulate three hy-
potheses, H1(C) to H3(C), in which different types of signed indirect ties influ-
ence the conditional probability of positive and negative ties. We then mirror
these hypotheses to explain the marginal probability of positive and negative
ties, in H1(M) to H3(M).
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In short, the conditional (C) hypotheses predict the sign of existing ties while
the marginal (M) hypotheses predict the existence of signed ties. The claim of
this paper is that the hypotheses for the conditional analysis H1(C) to H3(C)
get strong and stable empirical support while support for H1(M) to H3(M) is
mixed and more unstable with respect to the choice of the concrete model. All
hypotheses come in pairs making predictions for positive (P) or negative (N)
ties, respectively.

Analyzing conditional probabilities. Hypotheses that make predictions
about the conditional (C) probability apply only to pairs of actors that are
connected by a tie and claim that, dependent on various types of indirect links,
the sign of this tie is more (or less) likely to be positive (or negative) compared
to a random pair of actors that are connected by a tie. Thus, these hypotheses
predict the sign of existing ties.

1. H1(CP) (Friends of friends are friends, if they interact) Given that
two actors are connected by a tie, the sign of this tie is more likely to be
positive if they are friends of friends, compared to a random pair of actors
that are connected by a tie.

2. H1(CN) (Friends of friends are not enemies, if they interact) Given
that two actors are connected by a tie, the sign of this tie is less likely to
be negative if they are friends of friends, compared to a random pair of
actors that are connected by a tie.

3. H2(CP) (Enemies of friends are not friends, if they interact) Given
that two actors are connected by a tie, the sign of this tie is less likely to
be positive if they are enemies of friends, compared to a random pair of
actors that are connected by a tie.3

4. H2(CN) (Enemies of friends are enemies, if they interact) Given
that two actors are connected by a tie, the sign of this tie is more likely
to be negative if they are enemies of friends, compared to a random pair
of actors that are connected by a tie.

5. H3(CP) (Enemies of enemies are friends, if they interact) Given
that two actors are connected by a tie, the sign of this tie is more likely
to be positive if they are enemies of enemies, compared to a random pair
of actors that are connected by a tie.

6. H3(CN) (Enemies of enemies are not enemies, if they interact)
Given that two actors are connected by a tie, the sign of this tie is less
likely to be negative if they are enemies of enemies, compared to a random
pair of actors that are connected by a tie.

3Since we consider undirected networks in this paper, we write “enemies of friends” as
shorthand for pairs of actors that are enemies of friends or friends of enemies (or both). In
directed signed networks we would distinguish between the two.
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Analyzing marginal probabilities. Hypotheses that make predictions about
the marginal (M) probability apply to all pairs of actors and claim that, depen-
dent on various types of indirect links, these actors are more (or less) likely to be
connected by a positive (or negative) tie compared to a random pair of actors.
Thus, these hypotheses predict the existence of signed ties.

1. H1(MP) (Friends of friends are friends) Two actors are more likely
to be connected by a positive tie if they are friends of friends, compared
to a random pair of actors.

2. H1(MN) (Friends of friends are not enemies) Two actors are less
likely to be connected by a negative tie if they are friends of friends,
compared to a random pair of actors.

3. H2(MP) (Enemies of friends are not friends) Two actors are less
likely to be connected by a positive tie if they are enemies of friends,
compared to a random pair of actors.

4. H2(MN) (Enemies of friends are enemies) Two actors are more likely
to be connected by a negative tie if they are enemies of friends, compared
to a random pair of actors.

5. H3(MP) (Enemies of enemies are friends) Two actors are more likely
to be connected by a positive tie if they are enemies of enemies, compared
to a random pair of actors.

6. H3(MN) (Enemies of enemies are not enemies) Two actors are less
likely to be connected by a negative tie if they are enemies of enemies,
compared to a random pair of actors.

2.2 Notation

Let Y = (Yuv), 1 ≤ u < v ≤ n denote a collection of random variables associated
with the undirected dyads among actors 1, . . . , n. The random variables Yuv can
take values from the set {1, 0,−1} where 1 encodes a positive tie, −1 a negative
tie, and 0 encodes that there is no tie between u and v. For convenience, if u > v
we define Yuv = Yvu and we define for the diagonal elements Yvv = 0. With
|Yuv| we denote the absolute value of the random variable Yuv which assumes
the value 1 if there is interaction (positive or negative) between u and v and 0
if there is no interaction.

With this notation we can write decomposition (1) for the probability of
negative ties as

P (Yuv = −1) = P (|Yuv| = 1) · P (Yuv = −1
∣∣ |Yuv| = 1) (3)

and we can write the corresponding decomposition for positive ties (2) as

P (Yuv = 1) = P (|Yuv| = 1) · P (Yuv = 1
∣∣ |Yuv| = 1) (4)
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For testing the marginal hypotheses for positive ties, that is H1(MP), H2(MP),
and H3(MP), we estimate P (Yuv = 1) and for testing the conditional hy-
potheses for positive ties, that is H1(CP), H2(CP), and H3(CP), we estimate
P (Yuv = 1

∣∣ |Yuv| = 1).
For testing the marginal hypotheses for negative ties, that is H1(MN), H2(MN),

and H3(MN), we estimate P (Yuv = −1) and for testing the conditional hy-
potheses for negative ties, that is H1(CN), H2(CN), and H3(CN), we estimate
P (Yuv = −1

∣∣ |Yuv| = 1).
While we perform empirical tests only for undirected network, the general

framework for directed networks would look very similar, the only difference
is that in directed networks the dyadic variable Yuv is not necessarily equal
to the variable on its reverse Yvu. We note, however, that when analyzing
directed networks we would get many more possibilities to define the explanatory
variables that express the different variants of signed indirect ties. We briefly
discuss this when we have introduced the explanatory variables in Section 3.2.

3 Empirical evidence

3.1 Data: international alliances and conflicts

The longitudinal signed network we use for our tests is the international system
given by the year from 1885 to 2001. Thus, the actors in the network of a given
year are all sovereign countries in that year. Actors are connected by undirected
signed ties where two countries are connected by a positive tie4 in a given year if
they have a formal alliance in that year and they are connected by a negative tie
if there is a militarized interstate dispute (MID) among them. Additionally we
use in some models data about geographic adjacency and distance, an index of
national material capabilities, major power status, trade relations, IGO mem-
bership, and an indicator for the form of government. These additional data
(denoted “covariates” in this paper) will be taken only as explanatory variables
and are also given by the year. This and other data about the international
system is available from the web page of the Correlates of War project.5 We
believe that the public availability of the data is a strong advantage since it
allows other researchers to reproduce and/or augment our analysis.

The concrete data that we use for our analysis has been prepared by Oneal
and Russett for an analysis of realist and liberal explanations for the causes of
conflict and peace (Oneal and Russett 2005). This reference provides a good
summary of political theories about the causes of war and peace and gives
many additional references. Papers emphasizing the network aspect of the in-
ternational system include Hoff and Ward (2004); Hafner-Burton and Mont-
gomery (2006); Maoz (2009); Cranmer and Desmarais (2011) and a reference
that specifically discusses structural balance in international relations networks

4For convenience, we call a pair of countries connected by a positive tie “friends” and we
call them “enemies” if they are connected by a negative tie.

5http://www.correlatesofwar.org/
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is, e. g., Maoz et al. (2007).

3.2 Models

The models used for our analysis specify the probability that two actors u and v

are in a formal alliance in year t, that is, P (Y
(t)
uv = 1), and the probability that

they engage in an MID in year t, that is, P (Y
(t)
uv = −1), as a function of several

explanatory variables that take only data from the preceding year t− 1. In do-
ing so we assume here that tie variables in year t are conditionally independent,
given the data from the previous year. For instance, the existence and sign of a
tie between actors u and w in year t− 1 might have an influence on the distri-

bution of Y
(t)
uv but Y

(t)
uv and Y

(t)
uw are assumed to be conditionally independent,

given the network and covariate data from year t− 1. In Section 4.2 we briefly
outline models that can relax the assumption of conditional independence.

We model the probability of positive and negative interaction between actors
u and v in year t by logistic regression using combinations of the following
explanatory variables.

1. (dyadic inertia) two binary variables for the existence of an alliance, or
MID, respectively, among u and v in year t− 1, that is

posInertia = max(y(t−1)uv , 0)

negInertia = −min(y(t−1)uv , 0)

2. (signed degree) two variables for the average number of alliances, or
MIDs, respectively, of u and v in year t− 1, that is

posDegree =
1

2

∑
w

max(y(t−1)uw , 0) + max(y(t−1)vw , 0)

negDegree = −1

2

∑
w

min(y(t−1)uw , 0) + min(y(t−1)vw , 0)

3. (friends of friends) number of actors that are friends of both u and v,
that is

FF =
∑
w 6=u,v

max(y(t−1)uw , 0) ·max(y(t−1)vw , 0)

4. (enemies of friends) number of actors that are friends of one of u or v
and enemies of the other, that is

EF = −
∑
w 6=u,v

max(y(t−1)uw , 0) ·min(y(t−1)vw , 0)

−
∑
w 6=u,v

min(y(t−1)uw , 0) ·max(y(t−1)vw , 0)
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5. (enemies of enemies) number of actors that are enemies of both u and
v, that is

EE =
∑
w 6=u,v

min(y(t−1)uw , 0) ·min(y(t−1)vw , 0)

6. (dyadic covariates) Theories in international relations research explain
peace and conflict, among others, with the following variables. For their
precise definition and political theories related to them see Oneal and
Russett (2005) and references therein as well as the code books provided
at the Correlates of War web page (http://www.correlatesofwar.org/).

(a) contiguity: binary indicator for geographic adjacency; has the value
one if the two countries share a land border or a river border or are
separated by no more than 150 miles of water;

(b) lnDistance: logarithm of geographic distance between capitals;

(c) lnCapRat: logarithm of ratio of the national material capability
(NMC) of the stronger actor divided by the NMC of the weaker
actor;

(d) minorPowers: binary indicator that is one if neither u nor v have
major power status;

(e) lnTrade: logarithm of average of trade from u to v and from v to u;

(f) lnJointIGO: logarithm of number of joint IGO memberships;

(g) minPolity: Polity score of the more autocratic (that is, less demo-
cratic) country u or v.

From this set of variables we define three subsets (leading to Models 1 to 3) that
assess the influence of the structural balance variables and increasingly control
for other effects.

Model 1 uses only the three structural balance variables friends-of-friends,
enemies-of-friends, and enemies-of-enemies (and, as any other model, an inter-
cept). Model 1 is, by any standard, not a good model for the evolution of
international relations since it explains the probability of conflict or alliances
only via signed indirect ties. Clearly other indicators are likely to have a much
stronger effect and will be included successively in Models 2 and 3. Model 1,
however, allows comparison to some related work, e. g., Maoz et al. (2007).

Model 2 uses all variables of Model 1 and, in addition, four variables that
control for the effects of past interaction: positive and negative inertia and
positive and negative degree. The dyadic inertia is likely to be a very strong
effect since it can be expected that countries sustain alliances and conflicts.
The positive and negative degree-variables control for the (likely) effect that
engagement in positive and negative relations is not equally distributed over all
countries but that few countries have much higher numbers of positive and/or
negative ties than others.

Model 3 finally uses all variables of Model 2 and, in addition, all covariates
listed under Point 6 above. In international relations research it is an established
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density 1 0 missing
alliances 6.372 % 41 607 611 352 none
MIDs 0.409 % 2 672 610 581 39 706
minorPowers 90.564 % 591 347 61 612 none
contiguity 3.321 % 21 683 631 276 none

Table 1: Descriptive statistics of binary variables.

fact that these variables have a strong influence on peace and conflict among
state actors; see, for instance, Oneal and Russett (2005).

Treatment of missing values. We drop a particular dyad uv from year t if

the outcome variable (y
(t)
uv ) is missing, that is if we do not know whether u and

v had an alliance or an MID, respectively, in year t. We also drop the dyad-year
(u, v, t) from the analysis if a dyadic explanatory variable (from the previous

year) that is included in the model is missing, that is, if y
(t−1)
uv is unknown

or if any of the covariates for the dyad uv in year t − 1 is unknown and the
missing value would have been used in the estimation. However, we do not drop
a particular dyad if the computation of the degrees or the structural balance
variables involves a missing value but all dyadic variables are known. When
computing degrees or common friends or enemies, a missing value is always
replaced by a zero. We believe that the low density of the network justifies this
approach.

Descriptive statistics. The number of countries (i. e., the number of nodes
in the network) ranges from 36 in 1885 and 1886 to 191 in 2000 and 2001 and is
143 on average. The data has 652 959 different dyad-years, that is, unique triples
of the form (t, u, v) where t is a year and u and v are two different countries that
are members of the international system in year t. Note that, since we consider
undirected networks, at most one of (u, v) or (v, u) will be a dyad for a given
year.

In Table 1 we note descriptive statistics for the binary variables that we
use in our models. For each variable we give the percentage of dyad-years that
assume a value of one (for alliances and MIDs this is the network’s density),
the number of dyad-years with value 1, number of those with value 0, and the
number of dyad-years for which the value is missing.

In Table 2 we note descriptive statistics for the numeric variables that we
use in our model. For each variable we give the minimum, maximum, mean,
standard deviation, and the number of dyad-years for which the value is miss-
ing. Note that the first five variables have no missing values since we replaced
missing values by zeros when computing degrees or shared partners/enemies, as
explained above.
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min max mean sdev missing
FF 0 52 1.287 5.043 none
EF 0 19 0.069 0.390 none
EE 0 12 0.011 0.131 none
posDegree 0 55 8.988 8.211 none
negDegree 0 22.5 0.469 0.886 none
lnCapRat 0 11.960 2.372 1.931 2 072
minPolity -10 10 -4.080 5.872 124 245
lnTrade 0 12.900 1.280 1.923 92 301
lnDistance 1.792 9.421 8.233 0.806 none
lnJointIGO 0 4.682 2.822 0.793 3 271

Table 2: Descriptive statistics of numeric variables.

Adaption to directed networks. Even though we analyze only undirected
networks in this paper, we will briefly outline how these models could be adapted
to networks of directed ties. Similar to the undirected case, we would model
in the marginal analysis the probability that there is a positive or negative
directed tie from u to v; that is, we would model P (Yuv = 1) or P (Yuv = −1),
respectively. A difference to the undirected case is that Yuv and Yvu are two
different variables that can take different values. Similarly, in the conditional
analysis we would model P (Yuv = 1

∣∣ |Yuv| = 1) or P (Yuv = −1
∣∣ |Yuv| = 1),

respectively.
The major difference to the undirected case is in the definition of the ex-

planatory variables where we get many more possibilities. When describing how
the tie on the dyad (u, v) might be influenced by an indirect tie via a third actor
w we have to distinguish not only the signs of the ties with w but also their
directions. For instance, it might make a difference if the directed ties (u,w)
and (v, w) are both negative (u and v fight a common enemy) or if the directed
ties (w, u) and (w, v) are both negative (u and v get attacked by a common
enemy). Similarly we have to distinguish whether (u, v) closes a transitive tri-
angle (that is, it completes the directed two-path (u,w), (w, v) going in the same
direction) or if (u, v) closes a cyclic triangle (that is, it completes the directed
two-path (v, w), (w, u) going in the reverse direction). Combining the different
possibilities for signs and directions on the two dyads connecting u and v with
w we get 16 different types of indirect ties that might be completed by the di-
rect tie (u, v). Leskovec et al. (2010) analyzed the effects of these 16 different
types of signed indirect ties and indeed found out that direction matters. Their
analysis on directed networks enabled a comparison of balance theory with sta-
tus theory, where empirically the predictions of status theory were supported
more often. We note that in the analysis of directed, signed networks we could
also distinguish between the marginal and conditional probability of signed ties.
We further note that we could define even more variants of indirect ties if we
considered the value of the two pairs of reverse dyads, (u,w) with (w, u) and
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(v, w) with (w, v), together. We could then, for instance, distinguish situations
in which a common enemy w fights back or not.

3.3 Results and discussion

In this section we discuss only findings about the structural balance variables
since we make only hypotheses about these. However, we briefly discuss results
related with other effects in signed networks in Section 3.4. All estimations have
been done with the glm function in the basic R stats package (R Core Team
2015). The parameter tables have been typeset with the help of the R-package
texreg (Leifeld 2013).

3.3.1 Explaining negative ties

Conditional probability of negative ties, given interaction. In Table 3
we report parameters for modeling the conditional probability that two countries
engage in an MID, given that there is interaction on the same dyad. Consis-
tent with hypothesis H1(CN) we find that a tie between friends of friends has a
lower probability to be negative in all three models. Consistent with hypothesis
H2(CN) we find that a tie between enemies of friends has a higher probabil-
ity to be negative in all three models. Mostly consistent with H3(CN) we find
that a tie between enemies of enemies has a lower probability to be negative in
Models 1 and 2; the parameter associated with the enemies-of-enemies statistic
is insignificant (it almost reaches significance at the 5% level), albeit negative,
in Model 3. Thus, (almost) all effects on the conditional probability for conflict
are consistent with balance theory. We note, however, that the sizes of the pa-
rameters associated with the friends-of-friends and enemies-of-friends variables
strongly decrease when we control for inertia and degrees (the major change is
between Model 1 and Model 2). We interpret this in the sense that Model 1
gives unjustifiably strong effect sizes to the structural balance variables.

Marginal probability of negative ties. In Table 4 we report parameters
for modeling the marginal probability that two countries engage in an MID.
Contrary to hypothesis H1(MN) we find that friends of friends have an increased
probability to be connected by a negative tie in Models 1 and 3; the parameter
is negative and almost significant at the 5% level in Model 2. Consistent with
hypothesis H2(MN) we find that enemies of friends have a higher probability
to be connected by a negative tie in all three models. Contradicting H3(MN)
we find that enemies of enemies have a higher probability to be connected by
a negative tie in Models 1 and 2; the parameter associated with the enemies-
of-enemies statistic is insignificant in Model 3. We note that similar results for
enemies of friends and enemies of enemies have been reported by Maoz et al.
(2007) who analyzed an even larger time span from 1816 to 2001.

Thus, we get a different picture if we apply balance theory to predict the
existence of negative ties (marginal analysis) than if we apply it to predict the
sign of an existing tie (conditional analysis). While results of the conditional
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Model 1 Model 2 Model 3
(Intercept) −0.855 (0.029)∗∗∗ −0.385 (0.050)∗∗∗ 1.237 (0.456)∗∗

FF −0.244 (0.004)∗∗∗ −0.049 (0.007)∗∗∗ −0.020 (0.009)∗

EF 0.718 (0.030)∗∗∗ 0.116 (0.045)∗ 0.222 (0.060)∗∗∗

EE −0.168 (0.062)∗∗ −0.266 (0.085)∗∗ −0.256 (0.134)
posInertia −3.807 (0.101)∗∗∗ −4.918 (0.125)∗∗∗

negInertia 2.634 (0.127)∗∗∗ 2.238 (0.144)∗∗∗

posDegree −0.002 (0.005) 0.048 (0.008)∗∗∗

negDegree 0.441 (0.029)∗∗∗ 0.296 (0.041)∗∗∗

lnCapRat −0.119 (0.029)∗∗∗

minPolity −0.053 (0.007)∗∗∗

minorPowers −0.648 (0.122)∗∗∗

lnTrade 0.067 (0.020)∗∗∗

contiguity 1.885 (0.101)∗∗∗

lnDistance −0.079 (0.050)
lnJointIGO −0.499 (0.068)∗∗∗

BIC 12 449.485 8 179.779 5 740.764
Num. obs. 43 369 42 575 33 555
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3: Logistic regression for the conditional probability of dyadic MIDs, given
that there is interaction on the same dyad, P (Yuv = −1

∣∣ |Yuv| = 1).

analysis do almost always support balance theory, the marginal analysis does
often contradict it. From another point of view, a pattern in the marginal
analysis is that indirect ties do in most cases increase the probability of negative
ties, irrespective of the sign of indirect ties.

Note that the above findings for friends of friends (in Models 1 and 3) and
enemies of enemies (in Models 1 and 2) could seemingly be interpreted as evi-
dence against balance theory since they imply a tendency to create unbalanced
triangles with one or three negative ties, respectively. We stress that we do not
interpret it in this way: related to the central claim of our paper, we argue that
modeling the marginal probability of negative interaction cannot be taken as
evidence for or against balance theory since the analysis can be confounded by
other effects that influence the probability to interact at all. In a supplementary
analysis (not included in this paper) in which we added single control variables,
one at a time, to Model 1 we found that posInertia and geographic closeness
(contiguity and lnDistance) are the strongest confounders for the friend-of-friend
effect on the marginal probability of negative ties.

3.3.2 Explaining positive ties

Conditional probability of positive ties, given interaction. In Table 5
we report parameters for modeling the conditional probability that two coun-

15



Model 1 Model 2 Model 3
(Intercept) −5.614 (0.022)∗∗∗ −5.754 (0.036)∗∗∗ −0.159 (0.291)
FF 0.021 (0.003)∗∗∗ −0.013 (0.006) 0.016 (0.007)∗

EF 0.596 (0.016)∗∗∗ 0.201 (0.023)∗∗∗ 0.103 (0.024)∗∗∗

EE 0.686 (0.046)∗∗∗ 0.144 (0.054)∗∗ −0.046 (0.082)
posInertia 1.567 (0.101)∗∗∗ −0.582 (0.110)∗∗∗

negInertia 4.133 (0.063)∗∗∗ 2.525 (0.078)∗∗∗

posDegree −0.037 (0.003)∗∗∗ 0.024 (0.005)∗∗∗

negDegree 0.190 (0.010)∗∗∗ 0.150 (0.017)∗∗∗

lnCapRat −0.207 (0.020)∗∗∗

minPolity −0.074 (0.005)∗∗∗

minorPowers −1.834 (0.073)∗∗∗

lnTrade 0.049 (0.013)∗∗∗

contiguity 2.268 (0.076)∗∗∗

lnDistance −0.541 (0.031)∗∗∗

lnJointIGO −0.284 (0.038)∗∗∗

BIC 32 788.013 25 758.952 16 300.421
Num. obs. 613 253 592 047 458 200
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4: Logistic regression for the marginal probability of dyadic MIDs,
P (Yuv = −1).

tries are allied, given that there is interaction on the same dyad. Consistent
with hypothesis H1(CP) we find that a tie between friends of friends has a
higher probability to be positive in all three models. Consistent with hypothe-
sis H2(CP) we find that a tie between enemies of friends has a lower probability
to be positive in all three models. Consistent with hypothesis H3(CP) we find
that a tie between enemies of enemies has a higher probability to be positive in
all three models. Thus, all effects on the conditional probability of alliances are
consistent with balance theory. Again, we note that the sizes of the parameters
associated with the friends-of-friends and enemies-of-friends variables decrease
strongly when we control for inertia and degrees. Thus, even though the find-
ings for all models go in the direction predicted by balance theory, the effects
are not as strong as suggested by Model 1.

Marginal probability of positive ties. In Table 6 we report parameters for
modeling the marginal probability that two countries are allied. Consistent with
hypothesis H1(MP) we find that friends of friends have an increased probability
to be connected by a positive tie in all three models. Contrary to hypothesis
H2(MP) we find that enemies of friends have a higher probability to be con-
nected by a positive tie in Model 1 but consistent with H2(MP) the alliance
probability for enemies of friends is lower in Model 3. (The parameter of EF is
not significant in Model 2.) Consistent with H3(MP) we find that enemies of
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Model 1 Model 2 Model 3
(Intercept) 0.568 (0.032)∗∗∗ 0.502 (0.055)∗∗∗ −0.052 (0.615)
FF 0.994 (0.038)∗∗∗ 0.181 (0.028)∗∗∗ 0.145 (0.035)∗∗∗

EF −0.957 (0.047)∗∗∗ −0.231 (0.071)∗∗ −0.362 (0.099)∗∗∗

EE 0.408 (0.085)∗∗∗ 0.730 (0.135)∗∗∗ 0.517 (0.205)∗

posInertia 6.158 (0.284)∗∗∗ 7.444 (0.347)∗∗∗

negInertia −1.823 (0.181)∗∗∗ −1.836 (0.268)∗∗∗

posDegree −0.003 (0.006) −0.041 (0.009)∗∗∗

negDegree −0.558 (0.039)∗∗∗ −0.441 (0.062)∗∗∗

lnCapRat 0.132 (0.040)∗∗∗

minPolity 0.071 (0.010)∗∗∗

minorPowers 0.365 (0.152)∗

lnTrade −0.173 (0.028)∗∗∗

contiguity −1.706 (0.138)∗∗∗

lnDistance −0.099 (0.066)
lnJointIGO 0.706 (0.095)∗∗∗

BIC 7 322.873 4 133.959 2 559.894
Num. obs. 43 480 42 662 33 629
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5: Logistic regression for the conditional probability of dyadic alliances,
given that there is interaction on the same dyad, P (Yuv = 1

∣∣ |Yuv| = 1).

enemies have a higher probability to connected by a positive tie in Model 1 but
contrary to H3(MP) the alliance probability for enemies of enemies is lower in
Models 2 and 3.

Thus, as when modeling negative ties, we get a different picture if we ap-
ply balance theory to predict the existence of positive ties (marginal analysis)
than if we apply it to predict the sign of an existing tie (conditional analysis).
While findings from the conditional analysis do always support balance theory,
the marginal analysis does often contradict it. In contrast to the results for
the marginal probability of negative ties, we did not find that any indirect tie
increases the probability of positive ties; having a common enemy rather turns
out to decrease the probability for alliances in Models 2 and 3.

Again we do not interpret these results as evidence against balance theory:
related to the central claim of our paper, we argue that modeling the marginal
probability of positive interaction cannot be taken as evidence for or against bal-
ance theory since the analysis can be confounded by other effects that influence
the probability to interact at all. In a supplementary analysis (not included in
this paper) in which we added single control variables, one at a time, to Model 1
we found that posInertia is the strongest confounder for all three balance effects
on the marginal probability of positive ties.
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Model 1 Model 2 Model 3
(Intercept) −4.611 (0.013)∗∗∗ −5.629 (0.033)∗∗∗ 0.476 (0.295)
FF 0.479 (0.002)∗∗∗ 0.028 (0.004)∗∗∗ 0.033 (0.006)∗∗∗

EF 0.174 (0.015)∗∗∗ −0.035 (0.036) −0.126 (0.044)∗∗

EE 0.688 (0.041)∗∗∗ −0.600 (0.055)∗∗∗ −0.971 (0.081)∗∗∗

posInertia 9.271 (0.066)∗∗∗ 8.952 (0.084)∗∗∗

negInertia −0.135 (0.192) −0.722 (0.224)∗∗

posDegree −0.047 (0.003)∗∗∗ −0.033 (0.005)∗∗∗

negDegree −0.002 (0.024) 0.017 (0.030)
lnCapRat 0.005 (0.016)
minPolity −0.006 (0.004)
minorPowers −1.229 (0.081)∗∗∗

lnTrade −0.091 (0.013)∗∗∗

contiguity 0.013 (0.086)
lnDistance −0.693 (0.031)∗∗∗

lnJointIGO 0.141 (0.047)∗∗

BIC 82 549.370 34 672.970 22 629.742
Num. obs. 632 117 610 341 458 184
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6: Logistic regression for the marginal probability of dyadic alliances,
P (Yuv = 1).

3.3.3 Explaining interaction

Even though our hypotheses do not make any predictions about the probability
to interact, positively or negatively, we nevertheless assess which variables in-
fluence this probability in which way in Table 7. A summarizing view on these
results is that being friend of a friend and being enemy of a friend increases the
probability to interact at all in all three models. In contrast, having common
enemies increased this probability only in Model 1. Estimation of Models 2
and 3 revealed that enemies of enemies interact less than a random dyad. Thus,
the finding from Table 6, Models 2 and 3, that countries are less likely to ally
with the enemy of their enemy is consistent with them interacting less. If we
condition on the presence of interaction in Table 5, we find that countries pre-
fer to ally with the enemies of their enemies, rather than fighting them. This
is one example that illustrates that the analysis of all three components—the
marginal probability to interact positively, the probability to interact at all, and
the conditional probability that interaction is positive—can give more detailed
insight into the patterns in signed networks than just analyzing one component.
In a supplementary analysis (not included in this paper) in which we added
single control variables, one at a time, to Model 1 we found that posInertia is
the strongest confounder for the friend-of-friend and enemy-of-enemy effects on
the probability to interact.
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Model 1 Model 2 Model 3
(Intercept) −4.378 (0.011)∗∗∗ −5.058 (0.025)∗∗∗ 1.073 (0.217)∗∗∗

FF 0.454 (0.002)∗∗∗ 0.028 (0.003)∗∗∗ 0.034 (0.005)∗∗∗

EF 0.350 (0.011)∗∗∗ 0.043 (0.016)∗∗ 0.052 (0.020)∗∗

EE 0.767 (0.037)∗∗∗ −0.562 (0.047)∗∗∗ −0.784 (0.080)∗∗∗

posInertia 8.386 (0.061)∗∗∗ 8.060 (0.081)∗∗∗

negInertia 3.600 (0.066)∗∗∗ 2.269 (0.080)∗∗∗

posDegree −0.039 (0.002)∗∗∗ −0.014 (0.003)∗∗∗

negDegree 0.116 (0.011)∗∗∗ 0.086 (0.015)∗∗∗

lnCapRat −0.097 (0.013)∗∗∗

minPolity −0.027 (0.003)∗∗∗

minorPowers −1.613 (0.055)∗∗∗

lnTrade −0.029 (0.010)∗∗

contiguity 1.255 (0.063)∗∗∗

lnDistance −0.615 (0.023)∗∗∗

lnJointIGO −0.041 (0.031)
BIC 101 361.135 52 997.098 34 052.026
Num. obs. 652 959 612 753 458 886
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 7: Logistic regression for the probability of dyadic interaction, MIDs or
alliances, P (|Yuv| = 1).

3.4 Findings about other effects in signed networks

Even though we formulated only hypotheses about the effect of signed indirect
ties, we discuss some other findings of our analysis. We focus on the differences
and similarities between the marginal and conditional analysis.

Differences between the marginal and conditional analysis do not only ap-
pear when we model the influence of indirect tie but also when we analyze the
inertia effects (that is, ties in year t− 1 influence the probability of ties on the
same dyad in year t). The most remarkable difference is that in Model 2 in
Table 4 pairs of countries that were allies in year t − 1 have an increased(!)
probability to engage in an MID with each other in year t. We can explain
this counter-intuitive finding when we look at the analysis of the probability to
interact in Table 7. There we see that countries who are allies in year t − 1
have a largely increased probability to interact in year t (positive parameter of
posInertia). Apparently, by chance alone, this increased also the probability to
interact negatively. If we condition on the presence of interaction we found that
the conditional probability to interact negatively given that there is interaction
is decreased for allies, see Table 3. The posInertia effect in the marginal analysis
gets reversed when we control for covariates in Model 3. (The finding that allies
might be more likely to engage in conflict is not new; see for instance Bremer
(1992).)

Findings for the covariate effects on negative ties are qualitatively very sim-
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ilar for the conditional analysis (Table 3) and the marginal analysis (Table 4)
although there are some differences in the significance of parameters. Findings
for the covariate effects on positive ties differ somewhat between the conditional
analysis (Table 5) and the marginal analysis (Table 6). First we observe that
many of these variables are not significant in the marginal analysis. Among
those that are significant we find some qualitative differences. For instance, if
the dyad (u, v) does not contain a major power, then conditional on the presence
of interaction, the tie between u and v is rather positive (Table 5). In contrast,
the marginal probability of a positive tie is largely decreased for minor powers
(Table 6). Again we can explain this discrepancy by looking at the decreasing
effect of minorPowers on the probability to interact (Table 7). Thus, pairs of
minor powers interact less but if they do their interaction is more likely to be
friendly. A similar pattern can be found for geographical closeness measured by
the variables contiguity and lnDistance. More distant countries interact less and
they have a decreased marginal probability to interact positively but conditional
on interaction their tie is rather positive.

It is further informative to discuss findings related to other network effects
in the international relations data. For instance, Doreian and Mrvar (2009,
2014) use blockmodel analysis to detect patterns called mediation, differential
popularity, and internal subgroup hostility in signed networks. Note that these
patterns contradict certain predictions of classical balance theory (Cartwright
and Harary 1956) but can often be found in empirical data. It is insightful to
discuss whether the differences between the marginal and conditional analysis
are also relevant when the focus is on these patterns.

However, before discussing these effects we have to point out the fundamen-
tal difference between blockmodel approaches (that seek to identify the global
structure of the network) and modeling tie probabilities dependent on local
structures (as in our paper). Another big difference is that we assume actor ho-
mogeneity while blockmodeling techniques explicitly seek groups of actors who
behave differently than other groups. For instance, internal subgoup hostility
(Doreian and Mrvar 2009, 2014) implies that there is one (or a few) groups of
actors who are mutually in conflict with each other. In the blockmodel anal-
ysis such a mutually hostile group gives rise to a negative diagonal block that
creates many triangles with three negative ties. In contrast, we could just find
out whether all actors (on average) tend to fight the enemy of their enemy. For
this question we indeed get different answers in the marginal and conditional
models. The marginal Models 1 and 2 (Table 4) imply that countries tend to
fight enemies of enemies (apparently there are even large groups of mutually
hostile actors), while Model 3 finds no significant effect for EE. In contrast, the
conditional models (Table 3) consistently find that enemies of enemies do rather
not fight each other. So it seems that conditioning on interaction, all-negative
triangles are rather infrequent. We stress again that, due to assumed actor
homogeneity, we cannot find out whether some smaller group shows internal
subgroup hostility.

Differential popularity might be assessed in our model with the two degree
parameters but again, due to assumed actor homogeneity, we can only detect
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whether on average actors with many positive (negative) ties attract even more
positive (negative) ties. We further point out that in undirected networks we
cannot distinguish differential popularity from differential activity which de-
scribes another big difference between our analysis and the one from Doreian
and Mrvar (2009, 2014). The marginal analysis (Table 4) reveals that countries
with many conflicts indeed seem to attract more conflicts (positive parameter of
negDegree)—thus there seems to be a differential anti-popularity or differential
dislike. On the other hand, differential (positive) popularity is not supported
in the marginal analysis (Table 6)—rather the opposite of it. When dealing
with differential popularity we get qualitatively similar results in the conditional
analysis (Tables 3 and 5): support for differential dislike but not for differential
popularity. Thus the conditional and marginal analysis seem not to differ as
much in analyzing degree effects as in analyzing the effect of indirect ties.

Mediation effects could be formalized as countries having positive ties to
two enemies (for instance leading to the rule that the enemy of a friend is a
friend). We do not find evidence for this, neither in the conditional nor in the
marginal analysis. Again it has to be noted that, due to actor homogeneity, our
method cannot identify if one or only few actors act as mediators. Homogeneity
of actors could be relaxed in our model if we had covariates explaining different
actor behavior or with models that try to identify latent classes of actors. This
is out of scope of this paper.

4 Discussion

4.1 Summary of differences between the marginal and con-
ditional analysis

The six hypotheses claiming that the conditional sign of interaction is in ac-
cordance with structural balance theory get overwhelming and stable support.
With exception of the enemy-of-enemy parameter in Model 3 in Table 3—which
has the predicted sign but tightly missed being significant at the 5%-level—all
parameters in the conditional-sign models are significant and have the predicted
sign. Thus, networks of international relations seem to be in much stronger ac-
cordance with structural balance theory than suggested by the analysis given in
Maoz et al. (2007). We emphasize however that our analysis does not rule out
that the level of imbalance of the whole system might actually increase, which
has been found for some periods of time by Doreian and Mrvar (2015). Indeed,
analyzing the marginal probability of conflict revealed in some cases a tendency
to create more unbalanced triangles (with one or three negative ties) than ex-
pected by chance alone—even though balanced triangles seem to be prefered
over unbalanced ones.

The analysis of the marginal probability of signed ties is often in contradic-
tion with balance theory. Most of these contradiction occured when predicting
negative ties and when looking at the effect of having common enemies. Inter-
estingly, the generalization of balance theory proposed by Davis (1967) differs
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from the theory of Cartwright and Harary (1956) by defining the triangle with
three negative ties (enemies of enemies that are enemies) as not imbalanced.
Based on our empirical analysis we suggest that Davis’ generalization is indeed
necessary to explain patterns in international relations revealed by the marginal
analysis. In contrast, findings from the conditional analysis consistently support
the theory of Cartwright and Harary (1956) claiming that enemies of enemies
are friends and not enemies. It seems that the theory of generalized structural
balance is not necessary for the conditional analysis, at least not in international
relations.

In a supplementary analysis (not included in this paper) in which we added
single control variables, one at a time, to Model 1 we found that posInertia is the
strongest confounder for balance effects on the interaction probability and the
marginal probabilities for positive and negative ties. Additionally geographic
closeness (contiguity and lnDistance) are strong confounders for the friend-of-
friend effect on the marginal probability of negative ties.

The distinction between the marginal and conditional analysis is also rele-
vant when testing other effects in signed networks (besides structural balance).
As outlined above, we get huge differences when assessing the effects of the vari-
ables posInertia, minorPowers, and variables coding the geographical distance.
Such differences between the marginal and conditional analysis could often be
explained by the fact that these variables also have a strong influence on the
probability to interact at all.

Altogether we see strong evidence for our central claim that tests of struc-
tural balance theory with the conditional models have a much clearer interpreta-
tion than tests estimating the marginal probability of signed interaction. More
generally, we argue that distinguishing between the probability to interact at
all and the tendency to fight rather than collaborate, if interaction takes place,
provides valuable additional insight—for structural balance but also for other
effects in signed networks.

4.2 Relaxing conditional independence

Despite providing support for our central claim, summarized in the last para-
graph of the previous section, the models considered so far suffer a serious
drawback. While we clearly recommend that tests of structural balance theory
should estimate the conditional sign of interaction, we would not recommend—
in general—to do so with models that assume independence of dyadic obser-
vations. However, researchers who want to analyze the conditional probability
of positive/negative interaction are not bound to do so with logistic regres-
sion models. In this section we outline that a decomposition similar to that
in Equations (1) and (2) is also possible in frameworks that can validly model
dyadic dependence. We sketch such possible adaptions for exponential random
graph models (ERGMs) (e. g., Robins et al. 2007; Lusher et al. 2013; Hanneke
et al. 2010; Cranmer and Desmarais 2011; Krivitsky and Handcock 2014; Huits-
ing et al. 2012) and stochastic actor-oriented models (SAOMs) (e. g., Snijders
2005; Huitsing et al. 2014). While it seems hard to fit reasonable ERGMs or
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SAOMs to the longitudinal network of international relations with its almost
200 actors and more than a hundred time steps, the outline here can still be
valuable for researchers who want to analyze smaller networks or shorter time
spans or who apply other parameter estimation techniques, such as maximum
pseudo-likelihood (Cranmer and Desmarais 2011; Cranmer et al. 2012).

4.2.1 Exponential random graph models

As in Section 2 we consider a random signed network, given by a collection of
random variables Y = (Yuv)1≤,u<v≤n that take values in {−1, 0,+1}. Let Y
denote the set of possible outcomes of the random signed network; usually this
is the set of all symmetric n× n matrices with zero diagonal whose entries are
from {−1, 0,+1}. The interaction network associated with a signed network
y = (yuv) is denoted by |y| and is obtained from y by taking the absolute values
of the elements of y. A value |y|uv = 1 encodes that there is a positive or a
negative tie between u and v in y and a value |y|uv = 0 encodes that there
is no tie. For a set Y of signed networks let |Y| denote the associated set of
interaction networks

|Y| = {|y| ; y ∈ Y} .
For a given instance of a signed network y ∈ Y, let

Y[|y|] = {y′ ∈ Y ; |y′| = |y|}

be the restriction of the space of signed networks to those having the same
underlying interaction network as y. The random interaction network associated
with a random signed network Y is denoted by |Y | and models the probability
that signed networks have a given interaction network, that is, for any |y| ∈ |Y|
it is

P (|Y | = |y|) =
∑

y′∈Y[|y|]

P (Y = y′) .

An exponential random graph model (ERGM) on a set of signed networks
Y specifies a probability function of the form (compare Huitsing et al. 2012)

P (Y = y) =
1

z(θ; g;Y)
· exp

(
k∑
i=1

θi · gi(y)

)
, (5)

where the θi ∈ R are parameters, the gi:Y → R are statistics, and z(θ; g;Y) =∑
y′∈Y exp

(∑k
i=1 θi · gi(y′)

)
is the normalizing constant, where we abbreviate

θ = (θ1, . . . , θk) and g = (g1, . . . , gk). We note that the normalizing constant
sums over all possible signed networks y′, where each dyad can take values from
{−1, 0, 1} (rather than just zero or one as in ERGMs for binary networks). For
instance, the unconstrained set of signed networks over M unordered pairs of
nodes has 3M elements.

When modeling the joint probability of signed networks, Equation (1) can
be formulated as

P (Y = y) = P (|Y | = |y|) · P (Y = y
∣∣ |Y | = |y|) (6)
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Here P (|Y | = |y|) is the probability that the signed network has a given in-
teraction network and P (Y = y

∣∣ |Y | = |y|) is the conditional probability of
the signed network, given the underlying interaction network. Note that this
decomposition does not make any assumption about statistical independence;
the equation is correct by the definition of conditional probabilities.

In the case of ERGMs the three terms in Eq. (6) are given in the following.
The marginal probability of a signed network P (Y = y) has been specified
already in Equation (5). It is decomposed into a product of two factors, first,
the probability of the interaction network

P (|Y | = |y|) =
∑

y′∈Y[|y|]

P (Y = y′)

=
1

z(θ; g;Y)
·
∑

y′∈Y[|y|]

exp

(
k∑
i=1

θi · gi(y′)

)

=
z(θ; g;Y[|y|])
z(θ; g;Y)

.

and, second, the conditional probability of the signed network, given the inter-
action network

P (Y = y
∣∣ |Y | = |y|) =

P (Y = y)

P (|Y | = |y|)

=

1
z(θ;g;Y) · exp

(∑k
i=1 θi · gi(y)

)
z(θ;g;Y[|y|])
z(θ;g;Y)

=
1

z(θ; g;Y[|y|])
· exp

(
k∑
i=1

θi · gi(y)

)
,

To illustrate the difference between the marginal probability of signed net-
works P (Y = y) and the conditional probability P (Y = y

∣∣ |Y | = |y|), we outline
how we would interpret a finding such as “the observed network has more all-
negative triangles than expected by chance alone” in the two models. In both
models such a finding would be revealed by estimating a significantly positive
parameter associated with a statistic counting all-negative triangles6 but the
implied network effect would be different. In the conditional model we take it
for granted which actors are connected by non-zero ties (that is either by pos-
itive or by negative ties); this also fixes the number and location of unsigned
triangles in the network. The only variation that is explained by the model is
how the signs of ties are distributed over the given non-zero ties. If we found
in this model that a count of all-negative triangles is associated with a positive

6We are fully aware that statistics counting triangles are likely to lead to degenerate models
and have to be replaced by statistics that, for instance, geometrically weight down the marginal
effect of having several shared partners (Robins et al. 2007). For sake of simplicity we ignore
this distinction in this article.
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parameter, then this would mean that actors tend to distribute the signs in
such a way that we get more all-negative triangles than we would expect if we
distributed the signs independently over the given ties. In other words, it would
imply that actors really have a tendency to fight the enemy of their enemy. In
contrast, the same finding in the marginal model would imply that actors tend
to choose their signed ties such that we get more all-negative triangles than we
would expect if we distributed the signed ties independently over all pairs of
actors. This finding could result from different network effects: for instance, it
could be that actors really have a tendency to fight the enemy of their enemy;
however, the same finding could also emerge if interaction in the network forms
locally dense clusters so that we just get more triangles and—even if the signs
are choosen independently of each other—also more all-negative triangles. As
in the logistic regression models applied in this paper, the findings from the
marginal analysis for structural balance would be more ambiguous.

However, we would like to point out that in the ERGM framework we can
also control for structural properties of the interaction network in a model for
the marginal probability of signed networks P (Y = y). For instance, we can
include in this model a statistic counting the number of unsigned triangles and a
statistic counting the number of all-negative triangles. We would then expect the
former to be associated with a positive parameter to account for local clustering
and the latter to be associated with a negative parameter since we expect fewer
unbalanced triangles among the observed number of triangles. Formulating
this on a more intuitive level, “controlling for the interaction network” in an
ERGM for signed networks means that the model includes terms specifying a
reasonable distribution for the non-zero ties. That is, it contains an ERGM for
binary networks as a sub-model.

We note that the approach to fit conditional ERGMs has also been pro-
posed for binary networks where we can, for instance, condition the sample
space on the observed number of edges, on the observed degree distribution, or
require other constraints (Morris et al. 2008). The question remains whether
conditioning on the observed interaction network in models for signed networks
is preferable over controlling for structural effects of the interaction network.
While this question certainly requires future work we point out that estimat-
ing the conditional probability has computational advantages since the sample
space has less free variables and each of these variables can take only two val-
ues, instead of three. We also believe that there can be situations in which the
estimation converges for the conditional model but not for the marginal proba-
bility. More generally we argue that distinguishing between the probability of
the interaction network and the conditional probability of the signed network
can provide valuable additional insight when analyzing signed networks. Thus,
as we demonstrated with the regression models in this paper, estimating all
three components of Equation (6) is likely to give a more complete picture of
the patterns in signed networks.
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4.2.2 Stochastic actor-oriented models

Making the distinction between the marginal and conditional probability of
signed interaction is not as straightwforward for SAOMs as it is for ERGMs.
However, we still can make a suggestion how it might be done.

In short, due to their actor-oriented nature it is not straightforward to de-
compose SAOMs for signed networks into a component modeling interaction and
one component modeling the conditional distribution of signs. This is mostly
due to the fact that SAOMs do not provide a closed formula for the probability
of a network but rather model the actors’ decisions that lead the network from
one time step to the next. Here, in the specification of the tie-change probabil-
ities, we might bring in the idea of the conditional probability of a sign, given
that there is a tie, in the following way. Similar to the use of the creation or
endowment function in state-of-the-art SAOMs, we could distinguish how actors
evaluate (say) a negative tie by the state of the tie prior to the tie change: if
a null-tie is turned into a negative tie then this depends on the marginal prob-
ability of negative ties; if a positive tie is turned into a negative tie (that is
if the sign of an existing tie is flipped), then this depends on the conditional
probability of negative ties, given that there is a tie. If a negative tie is deleted
(turned into a null-tie) then this again is related to the marginal probability but
if it is turned into a positive tie it depends on the conditional probability.

Clearly this distinction in the actors’ decisions is not the same as it can be
achieved in ERGMs but the analysis might yield similar findings, for instance,
that enemies of enemies might have an increased marginal probability to create
a negative tie but a decreased conditional probability.

5 Conclusion

In this paper we made a methodological contribution to the statistical assess-
ment of structural balance in signed networks. We argued that just analyzing
the marginal probabilities of positive and negative ties does not yield clear
evidence for or against balance theory. We demonstrated that other network
effects that influence the probability to interact at all can obfuscate structural
balance effects in a way that balance theory gets seemingly rejected even when
actors prefer balanced triangles over unbalanced ones. A clear recommendation
for researchers who want to test balance theory is to specify and estimate the
conditional probability that a given tie has a positive or negative sign.

More generally we argue that estimating all three terms of Equations (1)
and (2) can provide additional insight when analyzing signed networks. Doing
so allows to distinguish between factors that have an influence on the probability
to interact at all and factors that have an influence on the tendency to interact
friendly rather than hostile if interaction takes place. This distinction has been
shown to be also relevant when other theories than structural balance are to be
tested.

As a substantive contribution we have shown that balance theory gets far
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more support in international relations networks than suggested by previous
work. Indeed, given that there is interaction among countries, the sign of their
tie is mostly chosen in accordance with balance theory. However, our discussion
in Sections 3.3 and 4.1 made it clear that this pattern can still allow for an
increase in a global measure of imbalance.

An important issue for future methodological work is to further develop
and implement ERGMs and SAOMs for longitudinal signed networks as it has
been outlined in Section 4.2. This also involves a systematic comparison of
models that control for the structure of the interaction network with models
that condition on the interaction network.

With regard to further empirical tests of balance theory it seems to be
promising to consider models for the conditional sign of interaction also for
other signed networks than the international relations networks analyzed in this
paper. For instance, tests that confront balance theory with, for instance, sta-
tus theory in directed signed networks can be re-analyzed with conditional-sign
models.
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